

# Utilizing the Cover Crop Sunn Hemp (Crotalaria juncea L.) to Improve Vegetable Cropping Systems

## INTRODUCTION

Conventional cover crop (CC) management strategies developed and adopted in temperate climates utilize seasonal transitions, plant senescence, and mechanical operations with or without additional chemical termination strategies to ensure effective CC termination. In tropical and subtropical climates, temperate strategies are not practical (due to the cost of inputs), not possible (due to the absence of a killing frost to coincide with crop rotation transitions), and not beneficial to soil quality in the long term. Farmers with low-external-input systems rely heavily on farmderived resources such as CCs for soil and pest management. Tropical agroecosystems require unique CC management strategies that meet environmental and cultural conditions. The use of reduced tillage practices have been promoted to increase soil conservation and reduce on-farm expenses.

The alternative termination method of rolling/crimping CCs to create surface mulch has gained attention because of the additional agroecosystem benefits it provides.

#### GOAL

Our overall goal is to develop cover crop technologies in minimum-till vegetable systems that minimize labor, external inputs, and provide alternative weed control to vegetable cropping systems that ensure competitive vegetable yields.

### **OBJECTIVES**

- . Evaluate the cover crop sunn hemp [Crotalaria juncea cv. IAC-1 (SH)] and identify its suitability for termination with a roller-crimper
- 2. Compare in situ cover crop surface mulch to plastic mulch, hay mulch, and conventional no mulch vegetable systems for weed suppression
- 3. Determine subsequent quality and yield of the pepper crop









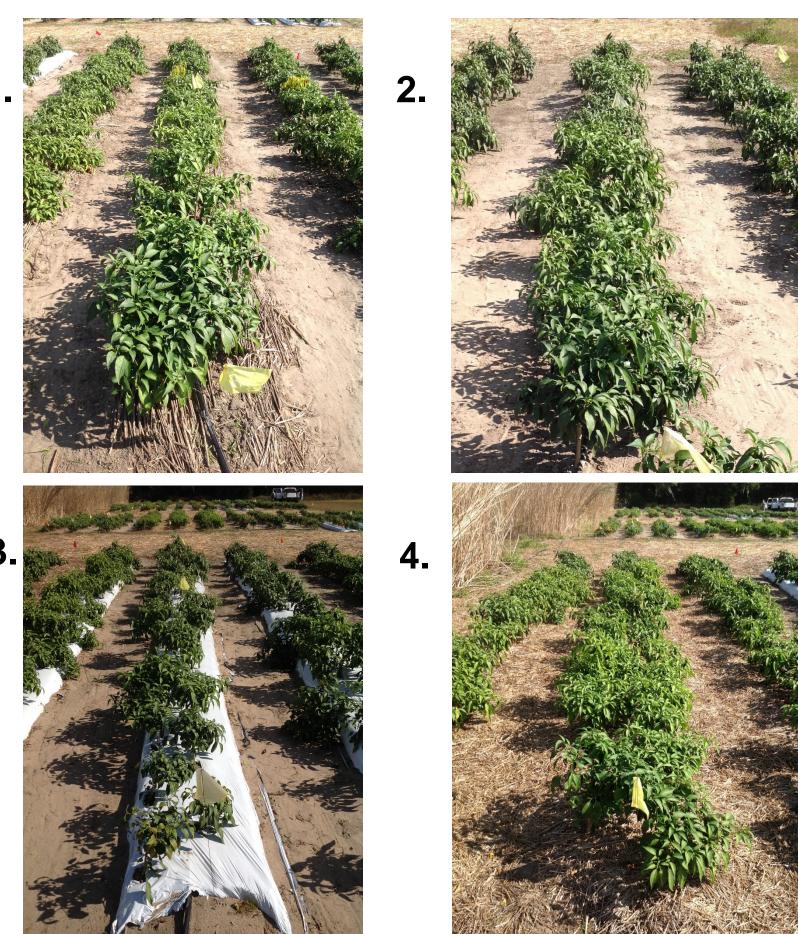
### METHODS

Studies were conducted on the island of St. Croix, US Virgin Islands and at the UF/IFAS Suwannee Valley Agricultural Extension Center near Live Oak, FL.

Four treatments were arranged in a RCBD, then split to two levels of weeding intensity (high and low) six weeks after planting to evaluate the effectiveness of weed management among treatments.

#### **Cropping System**

Sunn hemp was planted as a cover crop and allowed to reach full bloom prior to termination. Following termination either jalapeno (Florida) or cubanelle (USVI) peppers were transplanted into treatment plots.


| Cover Cro |
|-----------|
| Sunn H    |
| Weeds     |
| Broa      |
|           |
| S         |
|           |

#### **Vegetable Crop Treatments**

#### **Two Weed Removal Frequencies:**

Each plot was divided in half perpendicular to tractor direction, and weeding treatments were randomly assigned to each plot six weeks after planting (WAP). LOW INTENSITY weeding (every 3<sup>rd</sup> week) HIGH INTENSITY weeding (every week)





Stuart A. Weiss, Rhuanito S. Ferrarezi, K. Paul Beamer, and Tom Geiger; University of the Virgin Islands Danielle D. Treadwell and Jose Perez; University of Florida - IFAS

|        | 2013 FL | 2014 FL | 2015 USVI |  |
|--------|---------|---------|-----------|--|
| ор     | kg ha⁻¹ |         |           |  |
| Hemp   | 9,026   | 6,704   | 7,208     |  |
|        |         |         |           |  |
| adleaf | 0       | 62B     | 67A       |  |
| Grass  | 0       | 346A    | 39B       |  |
| Sedge  | 0       | 0B      | 25B       |  |

#### Surface mulch treatments:

. **ROLLER-CRIMPER**: Sunn hemp terminated by crimper, residue remains on soil surface 2. <u>NO MULCH</u>: Sunn hemp mowed and soil incorporated

3. **PLASTIC**: Sunn hemp mowed and soil incorporated, Plastic mulch applied. 4. <u>CUT-N-CARRY:</u> Sunn hemp residue mowed and soil incorporated, straw applied to surface.



Experimental plots near Live Oak. Florida at the Suwannee Valley Agricultural Extension Center.

#### **Total Weed Biomass at 3 and 6 Weeks Post** Termination kg ha<sup>-1</sup>

|              | 0                                   |                |                  |             |
|--------------|-------------------------------------|----------------|------------------|-------------|
|              | MULCH SYSTEM (kg ha <sup>-1</sup> ) |                |                  |             |
| Florida 2013 | Sunn Hemp<br>Mulch                  | Straw<br>Mulch | Plastic<br>Mulch | No<br>Mulch |
| 3 Week       | 17c                                 | 46b            | 3c               | 82a         |
| 6 Week       | 17ab                                | 1b             | 5ab              | 40a         |
| Florida 2014 |                                     |                |                  |             |
| 3 Week       | 66b                                 | 263a           | 264a             | 134ab       |
| 6 Week       | 88a                                 | 175a           | 335a             | 41a         |
| USVI 2015    |                                     |                |                  |             |
| 3 Week       | 468a                                | 136bc          | 64c              | 218b        |
| 6 Week       | 1,130a                              | 156bc          | 46c              | 295b        |

Experimental plots on St. Croix, US Virgin Islands at GLG Farm.



| Total Weed Biomass 9 ks Post Termination kg ha <sup>-1</sup> |         |                           |       |  |
|--------------------------------------------------------------|---------|---------------------------|-------|--|
| US Virgin Islands 2015                                       | Weeding | Weeding Every<br>3rd Week |       |  |
| MULCH SYSTEM                                                 | Weekly  |                           |       |  |
| Roller-Crimped Sunn Hemp                                     | 14      | 404                       | А     |  |
| Cut and Carry Straw                                          | 3       | 64                        | В     |  |
| Plastic Mulch                                                | 0       | 26                        | В     |  |
| No Mulch                                                     | 19      | 96                        | В     |  |
| Ρ                                                            | 0.0895  | <0.0001                   | <0.05 |  |

| Total Weed Biomass       | 12 ks Post  | Termina | tion kg h |
|--------------------------|-------------|---------|-----------|
| US Virgin Islands 2015   | M/a a din a |         | Weedi     |
| MULCH SYSTEM             | Weeding     | weekiy  | 3rd       |
| Roller-Crimped Sunn Hemp | 10          | А       | 181       |
| Cut and Carry Straw      | 1           | С       | 24        |
| Plastic Mulch            | 2           | BC      | 3         |
| No Mulch                 | 6           | AB      | 91        |
| Р                        | 0.0023      | < 0.05  | < 0.0001  |







No Mulch 82a 134ab 218b

Marketable Pepper Yield in Florida kg ha<sup>-1</sup>

| Florida 2013                                                                                                 | Marketable Yield            |                               |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|--|
| MULCH SYSTEM                                                                                                 | kg ha⁻¹                     |                               |  |
| Roller-Crimped Sunn Hemp                                                                                     | 16,061                      | В                             |  |
| Cut and Carry Straw                                                                                          | 22,706                      | А                             |  |
| Plastic Mulch                                                                                                | 15,008                      | В                             |  |
| No Mulch                                                                                                     | 16,974                      | В                             |  |
| Ρ                                                                                                            | 0.0001                      | p<0.05                        |  |
|                                                                                                              | Marketable Yield            |                               |  |
| Florida 2014                                                                                                 | Marketa                     | ble Yield                     |  |
|                                                                                                              |                             | ble Yield<br>ha <sup>-1</sup> |  |
| MULCH SYSTEM                                                                                                 |                             |                               |  |
| MULCH SYSTEM<br>Roller-Crimped Sunn Hemp                                                                     | kg                          | ha <sup>-1</sup>              |  |
| MULCH SYSTEM<br>Roller-Crimped Sunn Hemp<br>Cut and Carry Straw                                              | <b>kg</b><br>9,071          | ha <sup>-1</sup><br>B         |  |
| Florida 2014<br>MULCH SYSTEM<br>Roller-Crimped Sunn Hemp<br>Cut and Carry Straw<br>Plastic Mulch<br>No Mulch | <b>kg</b><br>9,071<br>9,856 | ha <sup>-1</sup><br>B<br>AB   |  |

Marketable Pepper Yield in the USVI kg ha<sup>-1</sup>

| ••                       |                                      |       | •             |       |
|--------------------------|--------------------------------------|-------|---------------|-------|
| US Virgin Islands 2015   | Marketable Yield kg ha <sup>-1</sup> |       |               |       |
| 05 Virgin Islands 2015   | Weeding Weekly                       |       | Weeding Every |       |
| MULCH SYSTEM             |                                      |       | 3rd Week      |       |
| Roller-Crimped Sunn Hemp | 11,327                               | В     | 8,099         | С     |
| Cut and Carry Straw      | 19,837                               | А     | 20,418        | А     |
| Plastic Mulch            | 17,217                               | А     | 15,462        | В     |
| No Mulch                 | 11,352                               | В     | 15,595        | В     |
| Р                        | 0.0009                               | <0.05 | 0.0028        | <0.05 |

ing Every Week



## **RESULTS & DISCUSSION**

In Florida and the USVI, sunn hemp provided substantial quantities of biomass at 2.5% nitrogen containing an estimated range of potentially available nitrogen of 168 to 226 kg ha<sup>-1</sup>.

Treatment effects from Cropping System experiments conducted in Florida contrasted from results observed in similar cropping systems evaluated in the U.S. Virgin Islands. In Florida, roller-crimped SH mulch either reduced weeds or had similar weed biomass compared to the other mulch treatments. In the USVI, SH mulch had greater total weed biomass than all other treatments at 3 and 6 weeks and at 9 and 12 weeks after termination for the low intensity weeding frequency. In Florida, pepper yields were unaffected by weeding frequency. This indicates that regardless of the weed management system, fewer weeding events will be economically beneficial. In the USVI, there was a marketable yield x weeding frequency interaction and marketable yield is presented independently for low and high intensity weed removal frequencies.

In both FL and the USVI, pepper yields were greatest in the cut and carry straw treatment. In FL in 2013, the roller-crimped SH treatment pepper yields were similar to the plastic mulch and no mulch treatments and in 2014 were similar to the cut and carry straw but greater than the no mulch treatments. This indicates that under Florida conditions, when SH residue is utilized as mulch for subsequent pepper production, pepper yields can be similar to or greater than yields obtained by conventional mulching methods that rely upon full tillage for weed suppression. However, roller-crimped SH treatments in the USVI had the lowest marketable pepper yields. When SH is tilled into the soil and additional cut and carry straw mulch is utilized, then yields are similar or exceed those from all other weed management practices evaluated.

# **Cropping System Management**

Cover crop management and the proper timing of cover crop termination followed by pepper transplanting is critical to system performance. Delayed termination and an extended interval between roller-crimping and pepper transplant resulted in a decrease in weed control for the roller-crimped SH treatment. Precise cropping system management is needed to fully achieve the benefits of integrated vegetable cropping systems. Reduced tillage from the adoption of roller-crimped SH can provide additional ecosystem service benefits.



