Using Crop Models to Understand and Maximize Soybean Yields

Giovani Stefani Fae Embrapa & Penn State

Armen Kemanian Charlie White Del Voight Greg Roth

Keystone Crops and Soils Conference October 25th, 2017

Why should we use Crop Models?

- It is a great tool to help you think over several agronomic questions
- It helps you to obtain a more refined understanding of the situation
- It allows you to answer questions that are almost impossible to assess in the field

Talk Messages

- Soybean yield overview
- Each location has its own yield potential
- How Cycles works
- Yield Simulations: soil depth, planting date, Brazil, population, cropping systems
- Soil health and yield
- 2018 International Soybean Production Tour

US yields Yield relative to maximum

Yield gap

Growth Radiation and Transpiration

Recall that:

- Radiation drives photosynthesis and plant water use

- H₂O and CO₂ leave and enter through stomata

https://plantstomata.wordpress.com

http://www.plantsciences.ucdavis.edu/plantsciences_faculty/gilbert/main/stomata_ water_use_research.htm

Growth Radiation, Temperature, Humidity

Variable	Lebanon, PA	St. College, PA	Urbana, IL
Thermal Time, Cd *	2460	2120	2670
Days of Growth	197	183	202
Radiation, MJ/m ²	3540	3200	3660
Rad x Temp, MJ/m ²	2640	2300	2860
Rad x Vapor, MJ/m ²	2280	2010	2410
Relative "Yield"	95	83	100

*(T_b = 6°C)

Simulations Cornwall, PA Full Season_2016

Cycles Model

<u>Nitrogen</u>

N Fixation, Fertilizer Additions N Mineralization, Crop Uptake N Leaching and Gas Losses

The coupled cycles of energy, water, carbon, and nitrogen, interacting with the environment over time, in the context of agricultural crop production

📃 UEP	P_works	hop.weather	- Notepad
-------	---------	-------------	-----------

<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> ie	ew <u>H</u> elp						
LATITU	DE	- 33	3.25					
ALTITUE	DE	57						
SCREENI	[NG_HEIGH	HT 2						
YEAR	DOY	PP	ТХ	TN	SOLAR	RHX	RHN	WIND
1995	1	0.0	35.8	19.3	29.59	83.84	31.91	1.40
1995	2	0.0	32.7	18.9	23.76	84.33	37.20	2.35
1995	3	0.0	31.4	21.6	17.68	87.31	48.99	4.03
1995	4	0.0	32.6	21.3	25.88	90.04	46.34	2.68
1995	5	0.0	31.2	20.3	23.80	95.76	50.17	2.34
1995	6	0.0	28.3	15.1	32.65	96.83	43.19	2.13
1995	7	0.0	32.7	10.5	29.84	88.01	22.58	2.02
1995	8	0.0	35.0	20.5	16.27	89.42	38.32	3.17
1995	9	0.0	27.8	14.0	22.03	97.43	41.67	1.91
1995	10	0.0	25.5	9.3	31.79	89.72	32.21	2.16
1995	11	0.0	25.7	12.1	26.39	91.15	38.96	3.12
1995	12	0.0	28.2	8.5	27.97	91.53	26.56	2.32
1995	13	1.7	21.9	19.0	12.85	89.31	74.67	2.87
1995	14	3.7	33.2	21.8	28.66	82.05	42.10	1.35
1995	15	0.0	31.1	21.5	27.68	89.50	50.77	2.36
1995	16	0.0	28.4	18.1	5.94	95.08	51.02	3.02
1995	17	41.3	26.9	16.8	22.93	93.23	50.31	2.03
1995	18	0.0	26.0	14.9	19.01	89.56	45.13	2.33
1995	19	0.0	27.5	16.1	22.61	85.12	42.41	3.53
1995	20	0.0	31.0	20.6	25.02	64.19	34.65	2.13
1995	21	0.0	30.3	20.5	23.22	89.42	49.93	3.62
1995	22	0.9	28.4	20.4	21.78	93.41	57.84	3.54
1995	23	0.0	33.5	19.3	26.46	93.94	40.62	2.03
1995	24	0.0	31.5	19.0	22.75	98.14	46.63	1.65
1995	25	0.0	31.4	13.8	26.57	84.87	29.12	1.92
1995	26	0.0	32.2	13.3	29.05	74.17	23.54	1.54
1995	27	0.0	34.2	17.4	26.39	79.92	29.50	3.31
1								

PP = precipitation in mm TX = maximum temperature in C TN = minimum temperature in C SOLAR= solar radiation MJ/m² RHX= Maximum Relative Humidity (%) RHN=Minimum Relative Humidity (%) WIND= Wind Speed in m/s **Radiation** * Canopy Interception * Rad. Use Efficiency

Transpiration * Transp. Use Efficiency (\propto Vapor Pressure Deficit)

Radiation or Transpiration limited growth

Since GR and GT can be different, each day we select the minimum of the two

Sunny day: limited by transpiration

Cloudy day: limited by radiation

UEPP.	soil - Notepa	ad								\times	
<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> ie	ew <u>H</u> elp									
CURVE_	NUMBER	70								~	
SLOPE		0									
TOTAL_	LAYERS	10									
LAYER	THICK	CLAY	SAND	ORGANIC	BD	FC	PWP	NO3	NH4		
1	0.09	20.70	39.20	3.30	1.16	-999.00	-999.00	20.00	3.00		
2	0.18	19.60	39.00	1.50	1.39	-999.00	-999.00	15.00	2.00		
3	0.14	46.90	24.40	1.00	1.39	-999.00	-999.00	7.00	1.00		
4	0.20	48.30	22.20	0.70	1.34	-999.00	-999.00	2.00	0.50		
5	0.10	45.80	22.80	0.34	1.37	-999.00	-999.00	1.00	0.20		
6	0.28	40.40	28.50	0.20	1.42	-999.00	-999.00	0.50	0.10		
7	0.26	44.40	37.20	0.09	1.73	-999.00	-999.00	0	0		
8	0.16	47.30	39.30	0.02	1.55	-999.00	-999.00	0	0		
9	0.31	32.60	48.60	0.02	1.55	-999.00	-999.00	0	0		
10	0.18	28.90	55.70	0.02	1.57	-999.00	-999.00	0	ø		
									•	\checkmark	
<										>	1

Soil Depth

Location: Lebanon, PA Climate: 1984 – 2012 daily time series Soils: silt loam to clay loam, 2 ft and 4 ft deep Crops: Corn and Soybean Management: Irrigation included to estimate yield potential

File Settings	Help				
Simulation Control	Soil Description	Crop Descriptions	Field Operations	Log	
Full Path: C:\Use	rs\jpm44\Docum	ents\PENN_STATE	MODEL_DEVEL	OPMENT\P	ublished_Models_6\Sample_Files\Weathe
Duration			Ca	alculation Op	otions
Sir	nulation Start Yea	ar 🖉 🔻			Compute adjusted yields
	mulation End Yea	ar 🗸 🗸			Sub-daily water infiltration
S					
Si Ye	ars in the Rotation	n 🔻			Automatic Nitrogen
Si Ye Total Y	ars in the Rotation ears in Simulation	n 💽 🔹			Automatic Nitrogen Automatic Phosphorus

Yields PA Soybean

	Yield bu/A	CV %
Irrigated	75	7
Rainfed	65	13

1/2 of years rainfed soybean was within 95% of potential

	Yield bu/A	CV %
Irrigated	75	7
Rainfed	58	19

1/4 of years rainfed soybean yield was within 95% of potential

Increasing Yields and Profitability for Mid-Atlantic Double-Crop Soybean

Inventing Double Cropping's Future USB Project #1620-832-8273

Tidewater Agricultural Research & Extension Center

Source: Rasel Parvej_ASA 2016

Relative Soybean Yield to Planting Date

Planting Date Study - Landisville

October 7th 2016

Diviner 2000

AccuPAR LP-80

GreenSeeker

PHT

Canopy Cover on August 19th Landisville, PA

Stage:	R3	R2/R3	R2	R1
PAR Inter.:	93.3%	91%	84%	57.4%
NDVI:	0.73	0.71	0.62	0.46

Soybean Thermal Time Landisville, PA_2016

Dianting Data	Thermal Time (°Cd)			
Planting Date	VE - R1/R2	VE - R8		
26-May	682	1898		
27-Jun	667	1589		
6-Jul	625	1489		
12-Jul	591	1402		
19-Jul	531	1281		

Double-Crop Soybean Yield Response to Planting Date

Simulated Cumulative Transpiration and Water Stress

2016 Landisville

FAPA

A FAPA (Fundação Agrária de Pesquisa Agropecuária) foi instituída pela Cooperativa para gerar e aplicar tecnologias que atendam à demanda de produtividade do cooperado, bem como à qualidade requerida pelas unidades de negócios e clientes.

Onze pesquisadores altamente qualificados atuam em áreas específicas, com o intuído de gerar informações completas e direcionadas às regiões de atuação dos cooperados. Os estudos envolvem avaliação e seleção de novos cultivares e híbridos, fertilidade do solo, épocas de

plantio, densidade de plantas, controle de plantas daninhas, manejo de doenças e pragas, e mecanização agrícola.

As informações técnicas provindas do trabalho de pesquisa são utilizadas pelos agrônomos da assistência técnica e aplicadas junto aos cooperados. As tecnologias também são difundidas por publicações, treinamentos, palestras e eventos técnicos específicos, como o Dia de Campo de Verão e o WinterShow – considerado o maior evento relativo a cereais de inverno no Brasil.

Perfil

Histórico

Missão, Visão e Valores

Política da Gestão Integrada

Cooperados

Pesquisa

Laboratório

Unidades

Guarapuava_Brazil Double-Cropping 2013/2014

Guarapuava_Brazil Double-Cropping 2013/2014

Guarapuava_Brazil Double-Cropping 2013/2014

Compare Crop Production Systems

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Landisville, PA – Comparing Production Systems Crop Yield – bushels/acre (1980 – 2016)

Commodity	Corn_Soy	Corn_Wheat_Soy
Corn	164	162
Wheat	0	118
Soybean	61	41
Total (bu/ac)	225	321

Landisville, PA – Managing Carbon Corn – Wheat – Soybean System Soil Profile: 2 inches

Landisville, PA – Managing Carbon Corn + Wheat + Soybean x Corn + Soy Soil Profile: 2 inches (No-till)

Landisville, PA – Managing Carbon Corn + Wheat + Soybean x Corn + Soy Soil Profile: 2 inches (No-till)

Landisville, PA – Managing Water

1) Identifying a land 2) Tabs menu allows 3) Live simulation parcel of interest brings manipulating and saving provides outputs in the soils and weather rotation settings seconds. files to the menu Cycles WaterSheds-Run Cycles Land Parcel Inputs Sim. Options Find Site User Data Cycles Help Study Site Map Hel Control Operation Weather H Pan Site Fixed Fertilization Planting Tillage Fixed Irrigation Auto Irrigation 540696 540693 Edit Tillage Properties: 540760 **Rotation Year** Rotation DOY All All 540 76 **Tillage Tool** Kill Crop? 540763 +540761 Soil Mixing Depth (m) Decomposition Rate Mixing Efficiency ^ ^ ~ ^ 0.071554 0.00 5.00 ~ * Grain Harvest Forage Harvest Timeline Summary Annual SOM Annual Soil Profile C **Cycles Objects:** 🚯 🛃 🦨 🕓 💉 🔣 🏛 Crop(s) CornLongSeason_1980 1980 - 1980 SoybeanFullSeason 1981 1981 - 1981 Planting Tillage **Fixed Fertilization** Fixed Irrigation Auto Irrigation Rotation Name Mar May Jul Dec Feb Jul Apr Jun Aug Nov Jan Mar Apr May Aug Sep Jun 1980 1981 Crop Quick menu to add sequence operations (tillage, Friendly visualization of manure application)

operations

Why should we use Crop Models?

- It is a great tool to
 help you think over
 several agronomic
 questions
- It helps you to obtain a more refined understanding of the situation
- It allows you to answer questions that are almost impossible to assess in the field

Targeting sustainable soil management practices using crop modeling in soybean systems

Dual Head Infiltrometer

Saturated Hydraulic Conductivity (inches/hour)

- Surface soil layers (< 2 feet):</p>
 - > 30 40% of roots clumped within pores and cracks;
- Subsoil (2 to 5 feet):
 - > 85 100% in pores or cracks (44% in pores with at least 3 other roots).

Brazilian Cerrado (Savannas)

Santa Brígida Farms

July 2010

100 days after the last rain

RAN STATISTICS

Source: Luis Adriano M. Cordeiro

Corn + Brachlaria (Vegetative)

Corn + Brachiaria (Reproductive)

Embrapa

Brachiaria grazing during Dry Season

45 days after Corn Harvest

Cerrados

Brachiaria residue after grazing

Sowing of No-till Soybean

Development of Soybean on Brachiaria residue

Development of Soybean on Brachiaria residue

Brachiaria Roots

Horita Farms, West of Bahia

http://agsci.psu.edu/international/programs/extension/brazil

College of Agricultural Sciences

International Programs

PennState

Study Abroad

Brazil

Research and Outreach

Extension

Gender, Agriculture, Energy,
and Environment Initiative
(GAEEI)

News

Upcoming Events

Academic Programs

International Agriculture and Development Graduate Program 2018 International Soybean Production Tour: Evaluation of sustainable highyielding soybean production systems in Brazil.

ABOUT THE TOUR

Join Penn State researchers for this 11 day tour of Brazilian soybean production. We will begin in the central and finish in the southern region, visiting high yielding soybean production in different climatic zones, including long term no-till pioneers. This tour will provide you insights into state of the art crop management of leading Brazilian farms and be a valuable addition to your future development in soybean production.

Share

Compare Brazillian soybean production to U.S.

Thank You!

giovani.fae@embrapa.br gbs5118@psu.edu

