Factors that Influence Soybean Yield "Ground Truthing Data"

Giovani Stefani Faé

Armen Kemanian Charlie White Del Voight Greg Roth Jack Watson

Brazil

2018 Soybean Production Tour

Soils

Highly weathered, acid soils:

- Low pH
- High Al content (toxic for plants)
- Low fertility: P, Ca, K, Mg, Zn

Cerrados 25 harvesting machines 17 sowing machines No-Tillage System 50% of the cultivated area

and the dis

Effect of straw of Brachiaria grasses intercropped with corn (B. ruziziensis and B. brizantha cv. Piatã) on soybean yield cv. M-SOY 8866. Triunfo, Formosa do Rio Preto, BA. Means followed by different letters differ from each other by the Tukey test (P <0.05). Source: Vilela et al. (2017)

Santa Brígida Farms

July 2010

100 days after the last rain

Source: Luis Adriano M. Cordeiro

Brachiaria Roots

Horita Farms, West of Bahia

não subestime sua competêncial.

USA. 1972.

São invencíveis!

Brasil 1

USA, 2011 5000 Kg

Brasil, 2013 5,000 Kg

"E temos ainda a cultura de inverno!"

US yields Yield relative to maximum

Physiological Mechanisms associated with gains in Soy Yields

Historical gains in Soy yields (1923 to 2007):

- <u>PAR Interception</u>: canopy light interception
- <u>Energy Conversion (RUE)</u>: light energy into Biomass
- Partioning Efficiencies (HI): biomass into seed

Koester et al. (2014)

Yield Potential = PAR Intercept x RUE x HI Monteith (1977)

Landisville 2015

NESARE

2016 - Soil health and soybean yield

Targeting sustainable soil management practices using crop modeling in soybean systems

What is the most important soybean yield predictor?

Planting Date x Yield (21 Fields, 18 Planting Dates, 2016 and 2017)

Understanding and Increasing Soybean Yields

R.V. Roekel & L. Purcell / Crop Insights Vol. 26 № 7 (2016) Dupont Pioneer

Sunlight

Light Interception

PAR Interception x Yield (SEAREC and Rock Springs, 2016)

8-year average (36 – 96% range) in Rock Springs: 10% change in light interception at flowering represents an impact of **4.4** bu/ac in soybean yield!

Soybeans Remotely Sensed Variables Correlation by Date Corn Belt – 2006 to 2011

D.M. Johnson / Remote Sensing of Environment 141 (2014) 116-128

Relationship between NDVI and Surface Temperature to Yield

Factor x Yield – PCA Analysis

Comprehensive Assessment of Soil Health

From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu

Measured Soil Textural Class: silt loam

Sand: 28% - Silt: 50% - Clay: 21%

Group	Indicator	Value	Rating	Constraints
physical	Available Water Capacity	0.21	77	
physical	Surface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Subsurface Hardness			Not rated: No Field Penetrometer Readings Submitted
physical	Aggregate Stability	16.2	20	
biological	Organic Matter	3.1	53	
biological	ACE Soil Protein Index	5.0	32	
biological	Soil Respiration	0.4	21	
biological	Active Carbon	408	31	
chemical	Soil pH	5.8	41	
chemical	Extractable Phosphorus	6.6	100	
chemical	Extractable Potassium	133.2	100	
chemical	Minor Elements Mg: 31.1 / Fe: 2.5 / Mn: 14.5 / Zn: 0.9		56	

Overall Quality Score: 53 / Medium

PCA (Soil Health) – 0 to 6 inches

Multiple Regression (Soil Health)

Soil Health

Take Home Message

- Infiltration (ksat) and root depth are the main yield predictors, and they are related to each other;
- Root depth alone explains 54% of the soybean yield variation;
- The other soil health indicators were not good yield predictors.

Dual Head Infiltrometer

Saturated Hydraulic Conductivity (in/hour)

Infiltration

(Lebanon and Centre, 2017)

- Surface soil layers (< 2 feet):</p>
 - ➤ 30 40% of roots clumped within pores and cracks;
- Subsoil (2 to 5 feet):
 - > 85 100% in pores or cracks (44% in pores with at least 3 other roots).

Final Comments

- **Plant as early as possible** Every day matters!
- Focus on Light Interception at R1 Manage population and row spacing based on your environment.
- After raising soil macro and micro to optimum levels, <u>focus on raising your soil infiltration</u> <u>levels.</u>
- Genotype x Soil x Climate interactions Understand you varieties.

Thank You!

giovani.fae@embrapa.br gbs5118@psu.edu

Sustainable Agriculture Research & Education

