Internet of Things (IoT)-based Precision Irrigation with LoRaWAN Technology Applied to Vegetable Production

> Submission ID: 2100877 Presenter: Long He Author: Haozhe Zhang, Long He, Francesco Di Gioia, Daeun Choi, Paul Heinemann The Pennsylvania State University

Importance of Precision Irrigation

- Agriculture consumes approximately 80% of water use in the United States.
- Conventional Irrigation: based on experiences, over- or under-irrigation, low water usage efficiency, nitrogen loss.
- Precision Irrigation: determine when and how much to irrigate, which can save water and increase crop production.

Internet of Things (IoT) for Irrigation

IoT system

- Access to sensor data remotely
- Analysis of sensor data
- Remote/automated irrigation control
- Networks for IoT system
 - Wi-Fi, Bluetooth, ZigBee, Sigfox
 - Cellular network (GPRS, EDGE, LTE), LoRaWAN

ASABE

3

Experiment Setup

Experiment Site

Tomatoes open field at Rock Spring (Furnace, PA)

Treatment

- T1: ET-based (ET) (12 mm)
- T2: MP-based, -60 kPa (MP60)
- T3: MP-based, -40 kPa (MP40)
- T4: GesCoN-based (GesCoN)
- 4 replications, RCBD

GesCoN

 GesCoN is a decision support system developed by the University of Foggia (Italy), which provides daily ET₀ and suggestions for irrigation and fertigation.

Irrigation System Setup

Major Components

16 Soil MP sensors

- Watermark 200SS-5, Irrometer, Inc.
- Installation depths: 20/40 cm
- 4 Pressure sensors
 - 5V, 0-1.2 MPa

4 DC latching solenoid valves

PGV Series 1 inch

6 Data loggers

- 4 MP sensors
- 1 Pressure sensors
- 1 Solenoid valves

ASABE

IoT System Development

IoT System Interface

Data chart

Pinboard

App notification

Harvest and Evaluation

- Tomatoes planted on 5/21/2020
- Data record started on 6/25, 35 Days after transplanting (DAT).
- ✤ Harvest on 78, 90, 103, 113, and 125 DAT.
- Only harvest 10 representative plants in the middle bed from 20 plants.
- Crop yield and water use efficiency were analyzed.

Results: Yield

Treatment	Fruit Fresh Weight (Mg/ha)						
	XL	L	М	Cull	TMY	TY	
T1	46.35 bc	4.52 b	3.34	25.73 ab	54.21 bc	79.95 ab	
T2	52.71 ab	6.46 a	3.26	23.66 b	62.43 ab	86.09 a	
Т3	38.16 c	5.43 ab	3.75	27.49 a	47.34 c	74.83 b	
T4	56.72 a	5.95 a	3.52	20.00 c	66.19 a	86.20 a	
P-value	0.01	0.04	0.66	0.002	0.01	0.06	

	ET	+0%
•	MP60	+15.2%
•	MP40	-12.5%
	GesCoN	+22.1%

XL = Extra-Large, L = Large, M = Medium, Cull = Unmarketable,

TMY= Total marketable yield, TY = Total yield

Results: Irrigation Water Use Efficiency (iWUE)

MP60MP40	-3.4% -30.5%
 GesCoN 	-4.1%
↔i\\/LIF	
 MP60 	+19.2%
 MP40 	+25.7%
 GesCoN 	+27.7%
	 ■ MP60 ■ MP40 ■ GesCoN ◆ iWUE ■ MP60 ■ MP40 ■ GesCoN

ASABE 2021 Annual International Meeting

✤Total water usage

Conclusion – System Feasibility

- The IoT system with LoRaWAN technology monitored the sensors and controlled the valves successfully
- ✤ 5.5% signal loss
- Sufficient battery supply
- Minor misfunction of valve control

Conclusion – Crop Irrigation Evaluation

- For yield and iWUE, GesCoN was the highest, followed by MP60, then ET. However, MP60 has no significant difference from other two treatments.
- According to the results of MP60, the developed IoT-based system using LoRaWAN technology can be potentially used for precision and automatic irrigation application for practical vegetable production.

Acknowledgement

- USDA-Northeast SARE, Project No. 19-378-33243
- State Horticultural Association of Pennsylvania (SHAP)
- Pennsylvania Vegetable Growers Association (PVGA)

Thank you!

