Table 1. Average Wetland Influent Hydraulic and BOD₅ Loading Rate Parameters

Influent	Hydraulic Loading Rate	Hydraulic ^a Retention Time	A STATE OF THE PROPERTY OF THE	BOD ^b ling Rate	and the second s	ΓΚΝ ^d ding Rate
Loading Rate	L/day	days	mg/L	kg/ha/dayc	mg/L	kg/ha/day°
High	13,234	5.7	80.6	13.18	89.3	14.60
Medium	8,043	8.7	80.6	8.01	89.3	8.87
I'M Low	5,821	11.4	80.6	5.80	89.3	6.42

*Hydraulic Retention Time (HRT) = (L)(W)(y)(n)

Q

Where:

L=Length of wetland (m)

W=Width of wetland (m)

y=operating water depth, 0.1524 m

n=porosity of litter/stalks, 0.65 for mature wetland

 $Q = Flow in (m^3/d) + Flow out (m^3/d)$

2

HRT over both tiers, Q = Flow into upper tier (m³/day) + Flow out of lower tier (m³/day)

2

^bBiological/biochemical oxygen demand.

BOD loading rate based on two-tiered system.

dTotal kjeldahl nitrogen.

TKN loading rate based on two-tiered system.

Table 2. Wastewater Treatment Efficiencies for Constructed Wetland Cells Loaded at Three BOD Loading Rates^a Over 23 Months

	Upper Tier			Lower Tier		Total
Wetland	Inflow	Outflow	Reduction	Outflow	Reduction	Reduction
Loading	mg/L	mg/L	%	mg/L	%	%
High						
TKN	89.3	56.2	37.1	36.0	35.9	59.7
NH ₃ -N	63.6	44.3	30.3	28.7	35.2	54.9
BOD ₅	80.6	37.8	53.1	24.3	35.7	69.9
TP	31.6	26.9	13.2	18.0	33.1	41.9
TSS	161.6	39.6	75.5	33.6	15.2	79.2
Medium						
TKN	89.3	45.3	49.6	27.1	40.2	69.7
NH ₃ -N	63.6	36.2	43.1	21.0	42.0	67.0
BOD ₅	80.6	28.6	64.5	15.0	47.6	81.4
TP	31.0	22.4	27.7	15.5	30.8	50.0
TSS	161.6	34.6	78.6	25.5	26.3	84.2
Low						
TKN	89.3	33.8	62.2	20.2	40.2	77.4
NH ₃ -N	63.6	27.2	57.2	14.7	46.0	76.9
BOD ₅	80.6	20.5	74.6	9.5	53.7	88.2
TP	31.0	16.1	48.1	10.8	32.9	65.2
TSS	161.6	28.2	82.6	25.1	11.0	84.5

^{*}Loading rates (kg BOD/ha/d): high=13.18; medium=8.01; and low=5.80.

TKN Loading Rates (kg TKN/ha/d): high=14.60; medium=8.87; and low=6.42.

Table 3. Wastewater Treatment Based on Three Loading Rates of TKN^a and BOD₅ Entering and Exiting a Two-Tiered Wetland System Over 23 Months

na profesional de la companya de la	Upper Tier			Lowe	- Total	
Wetland	Inflow	Outflow	Reduction	Outflow	Reduction	Reduction
Loading	kg/ha/day	kg/ha/day	%	kg/ha/day	%	%
High						
TKN	14.60	9.44	35.3	6.74	28.6	53.8
BOD ₅	13.18	6.35	51.8	4.55	28.3	65.5
Medium						
TKN	8.87	4.99	43.7	3.48	30.3	60.8
BOD ₅	8.01	3.15	60.7	1.92	39.0	76.0
Low MH L		. 22				
TKN	6.42	3.05	52.5	2.07	32.1	67.8
BOD ₅	5.80	1.85	68.1	0.97	47.6	83.3

^{*} BOD₅ Loading Rates (kg/ha/day): high=13.18; medium=8.01; and low=5.80.

Note: See Table 1 for loading rate calculations.

^b TKN Loading Rates (kg/ha/day): high=14.60; medium=8.87, and low=6.42.

Table 4. Overall Treatment Efficiency of Constructed Wetlands Treating Swine Lagoon Effluent

	Lagoon Effluenta	Recycle Water ^b after Wetland	Reduction	Farm Pond ^c
Analytes	mg/L	Treatment mg/L	%	mg/L
TKN	148.5	7.7	94.8	2.1
NH ₃ -N	117.2	2.2	98.1	0.5
NO ₃ -N	1.1	3.7	+236.4	1.2
COD	492.9	103.2	79.1	40.0
BOD	125.6	13.8	89.0	3.4
TP	56.0	6.8	87.9	1.4
TSS	210.4	34.7	83.5	20.2
FCG^d	590000	374	99.9	62

^{*}Raw wastewater prior to treatment

^bFinal treated wastewater recycled for cleaning swine facilities

^{&#}x27;Natural overland flow from grasslands due to rainfall events

^dFecal coliform bacteria, #/100 mL

Table 5. Decline of E. coli O157:H7 and S. typhimurium in wastewater

	Time to achieve 1 and 8 log reductions of bacterial counts					
	E. col	0157:H7	S. typhimurium			
	1 log ^{a)}	8 log ^{b)}	1 log	8 log		
	D	Days		Days		
Primary Lagoon	2.45	19.6	1.85	14.8		
Secondary Lagoon	1.94	15.5	1.81	14.5		
Detention Pond	2.28	18.2	1.94	15.5		
Recycle Pond	2.44	19.5	2.25	18.0		

a) Days required for bacterial count to decline 1 log or 90%.b) Days for count to decline from 1 million bacteria/ml to 1/100 ml.

Figure 1. Flow Path of Swine Lagoon Effluent Through the Constructed Wetland System at SMSS 55-month Study

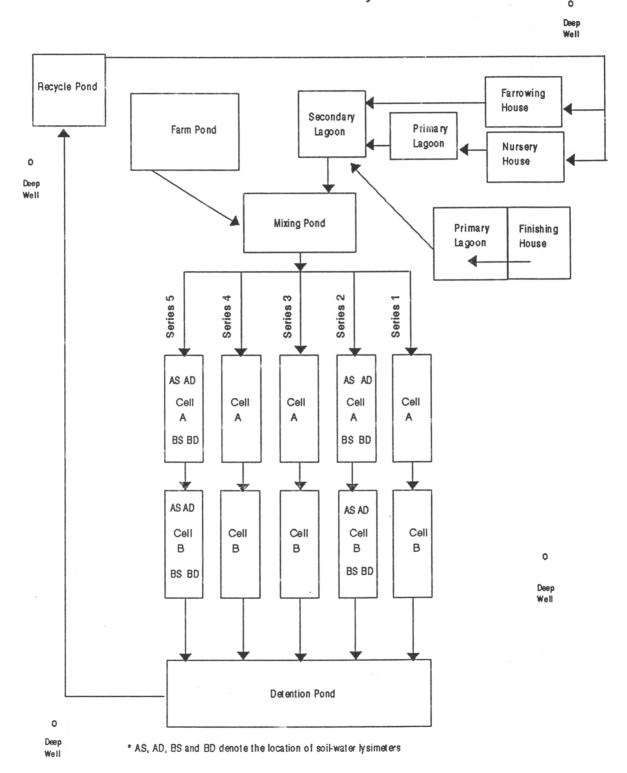
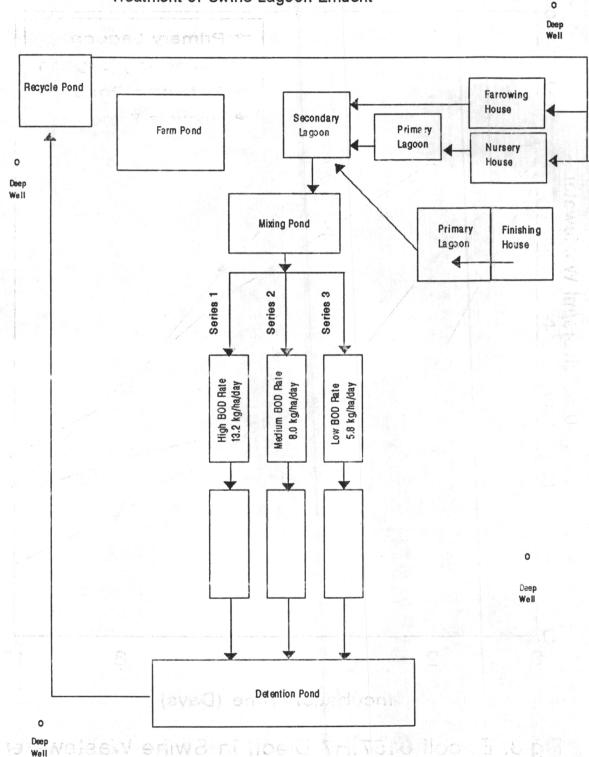



Figure 2. Plan View for Evaluating BOD₅ Loading on Wetland Treatment of Swine Lagoon Effluent

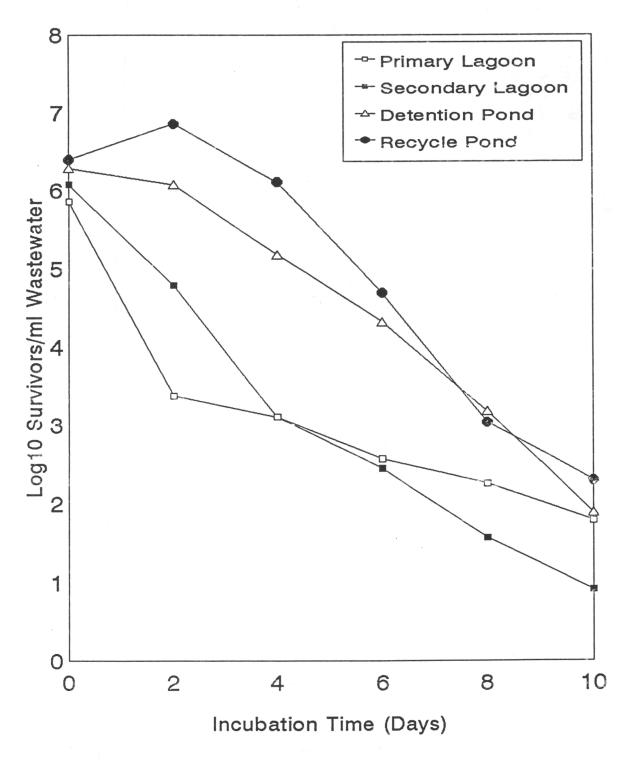


Fig.3. E. coli 0157:H7 Dieoff in Swine Wastewater

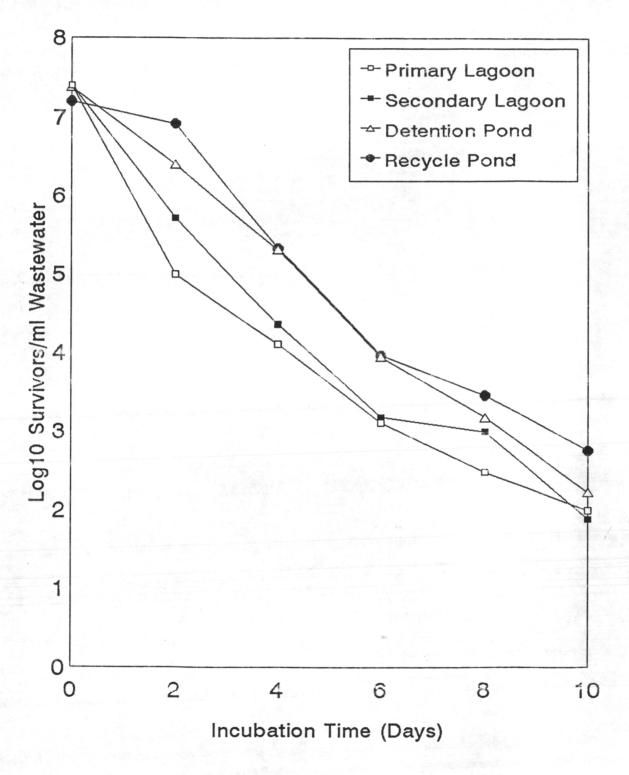


Fig.4. Salmonella Dieoff in Swine Wastewater