

Cornell Cooperative Extension Vegetable Program

Onion Spacing and Mulch Type to Improve Quality and Profitability of Fresh Market Onions

Christy Hoepting,

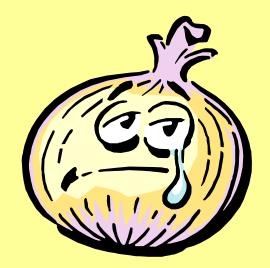
Judson Reid & Katie Klotzbach Cornell Cooperative Extension Vegetable Program Jeff Stolzfus Eastern Lancaster County School District

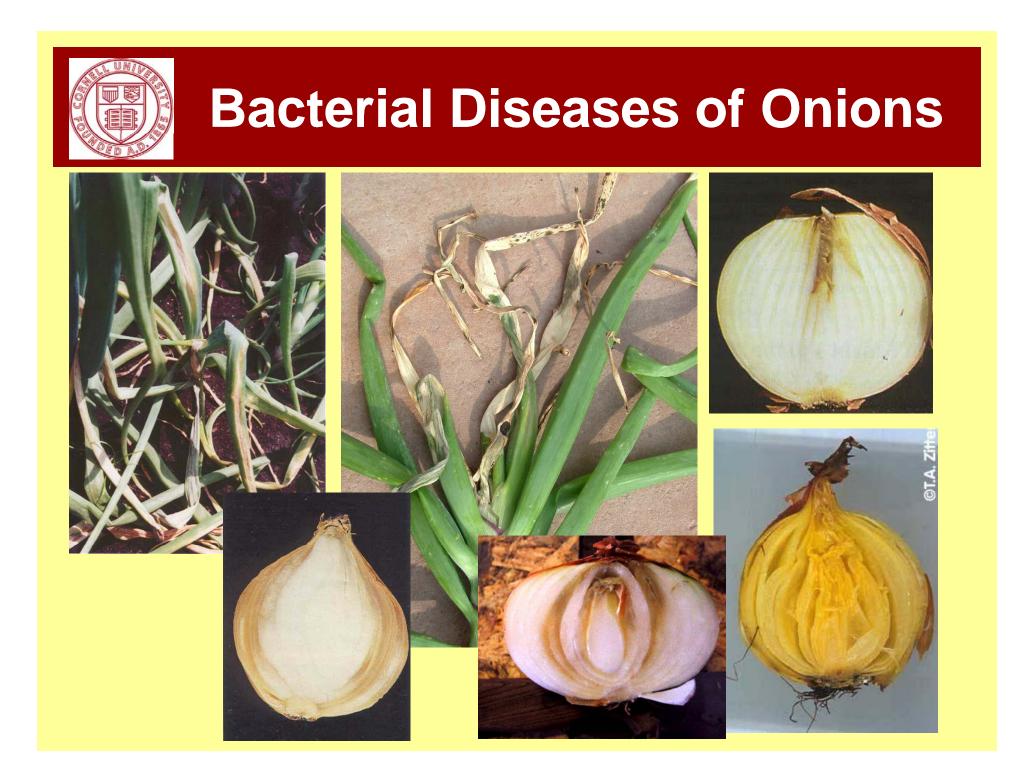
Acknowledgements

- Grower cooperators:
 - Eli Stoltzfus, Interlaken, NY
 - Amos Lap, New Holland, PA
- CVP Program Assistant
 - Katie Klotzbach
- Funding provided by:
 NESARE Partnership Grant

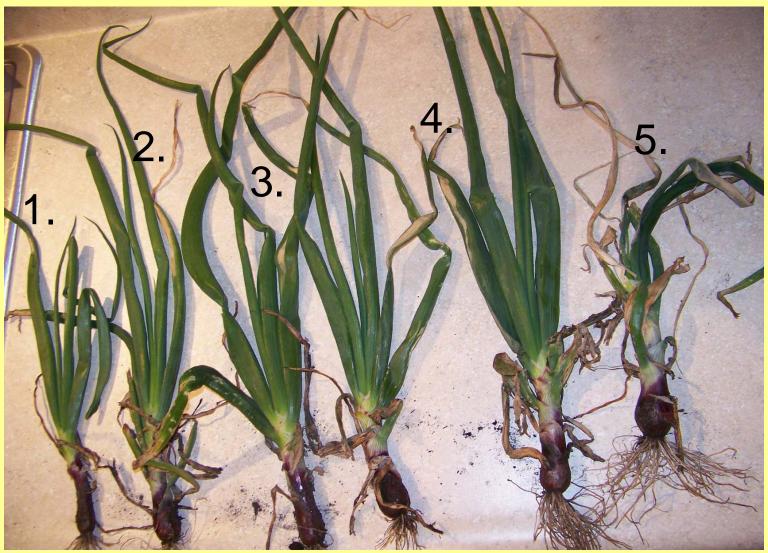
Fresh Market Onions

High Demand:

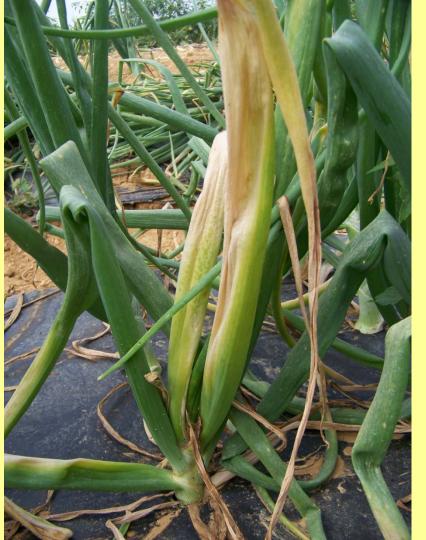

- Increased market demand for fresh onions
 - "Eat Local"/"locavore" craze (sell out of storage)
 - In general, there is an increased demand for sweet onions grown in the Eastern U.S. as an alternative to the high costs of shipping them from the west
 - PA broker has market to sell 3 times his current volume


Cause Serious Economic Losses:

- Especially in PA in sweet onions, losses of 30-45% occur regularly.
- In 2008, 34 growers in PA lost \$140,000



- Sour Skin Burkholderia cepacea*
- Soft Rot Erwinia carotovora subsp. carotovora, Pseudomonas marginalis, Pectobacterium caratovora
- Center Rot Pantoea ananatis*, P. agglomerans, Xanthomonas axonopodis and Pseudomonas viridiflava
 *identified in New York, others in PA.



Bacterial Disease Progression

Bacterial Diseases of Onions - plant symptoms

How bacterial diseases get started:

- Bacteria persist in soil, water, crop debris, weeds, other crop hosts.
- Infection generally occurs through a wound (pelting rain, hail, thrips, herbicide injury, mechanical, etc.) when free water (rain, irrigation or flooding) causes water congestion in the host tissue.

Bacteria enter the plant:

- 1. Via contaminated water during irrigation or splashing soil during heavy rainfall events, when it settles in the leaf axils.
- 2. Via wounds and aging tissue when foliage falls at maturity.
- 3. Directly through the green neck tissue when onions are topped during harvest.

Bacteria enter and move through the plant in **green** tissue only, NOT necrotic tissue

Disease Cycle:

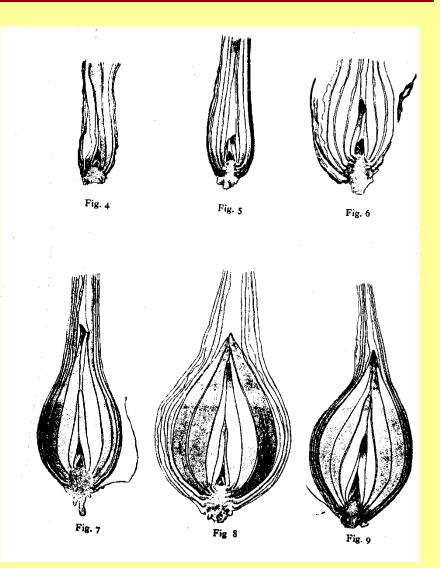
- Infection may occur at any time during the growing season – often plants do not show symptoms until after bulbing.
- Moves down leaf, through the neck and into bulb. Once in bulb, nothing you can do.
- Bacteria spread more rapidly in water-soaked tissue
- Wide temperature range (32 to 105 °F)
- Favored by excessive nitrogen fertilization

Chemical Tactics Have Failed

 Reports in PA of weekly sprays of various bactericides (copper, Oxidate, etc.) starting as early as 5-leaf stage (mid-May) and continuing until its PHI expires

- Resulted in 30% bacterial rot

- If bactericides are to work, they need to be part of an IPM program that incorporates cultural practices
 - Plant spacing
 - Mulch Type


How Does Plant Spacing Reduce Bacterial Rot?

???

What is an onion plant?

- An onion plant is a collection of leaves + a root system
- As bulbs begin to form, the leaf bases of the youngest emerged leaves start to swell
- During bulbing, top growth is translocated into the bulb
- Large plants = large bulbs

How onions grow BIG

- Bulbing is triggered by daylength
 - The longest day of the year June 21st

Bulbing is reversible!

Plant cannot bulb and put on leaves at the same time

Rate of bulbing is affected by:

1. Temperature

- bulbing increases as temperatures increase
- Optimum: 70 81°F
- Plants do not grow when hot (>85 °F)

How onions grow BIG

Rate of bulbing is affected by:

2. Light Quality & Planting Density

- Infra-red light bouncing off neighboring plants increases bulbing
- Thick Stands increase rate of bulbing at the expense of bulb size
- Thinned Stands bulb formation slowed, take longer to mature, more leaf growth = thick necks

Plant Spacing

WIDE plant spacing results in:

- plants with very large, bushy foliage
- thick necks
- delayed or inhibited maturity

Plant Spacing

WIDE plant spacing is favorable for bacterial rots:

- Large plants, bushy leaves: hold water in leaf axils and whorls
 - Favor bacteria to entry into plant
- Thick necks: take longer to dry down, remain green and succulent
 - Bacteria spread from leaves into bulb
- Delayed maturity: interferes with proper lodging & curing of necks and bulbs
 - Bacteria spread from leaves into bulb

Narrow plant spacing is less favorable for bacterial rots

How Does Mulch Type Reduce Bacterial Disease?

Mulch Type

- Black plastic absorbs sunlight
 - Increase soil temperature
 - Promotes early crop growth in April & May
- During late-June, July, early-Aug, black plastic may be creating an environment that is
 - More favorable for bacterial growth
 - Less favorable for onion growth

Mulch Type

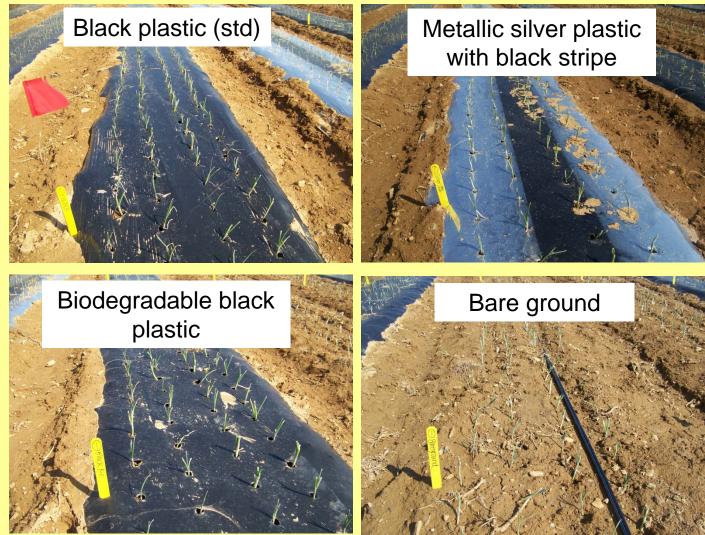
Alternative Mulch Types: Reflective Metalic Silver Plastic:

- Cooler temperatures in heat of summer are:
 - Less favorable for development of bacterial disease
 - More favorable for growing big bulbs
 - Possibly at the expense of early plant growth in the spring
- Repels onion thrips to a degree
 - Thrips feeding can provide entry sites for bacterial pathogens

Mulch Type

Alternative Mulch Types:

- Bare ground (no mulch)
 - Cooler temperatures than black plastic
 - Weed control more challenging
- Biodegradable black plastic:
 - compromise between black plastic and bare ground
 - black plastic giving a push to early season growth and then giving way to cooler soil temperatures as it degrades


2009 Field Trials

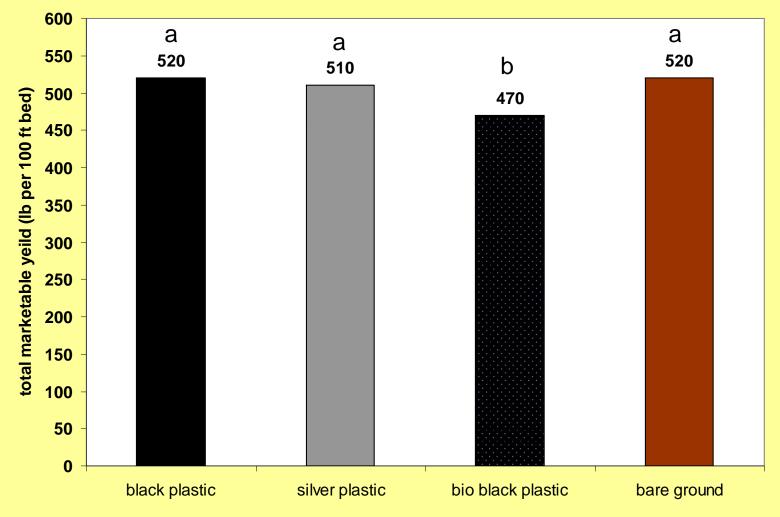
Mulch study: New Holland, PA

- Black plastic (standard)
- Metalic silver plastic with black stripe
- Biodegradable black plastic
- Bare ground (no mulch)

2009 Mulch Trial: New Holland, PA

36 inch² per bulb: 4 rows per bed, 6 inch plant spacing

2009 Mulch Trial



Collected soil temperature and moisture under each type of mulch and bare ground

Results: Mulch Trial total marketable yield

Mulch Type Trial, New Holland, PA: Total Marketable Yield (Jul-16)

2009 Plant Spacing Trials

Objective:

 To evaluate whether narrow plant spacing or high density planting reduces incidence of bacterial rots of onions.

2009 Plant Spacing Trials

Interlaken, NY

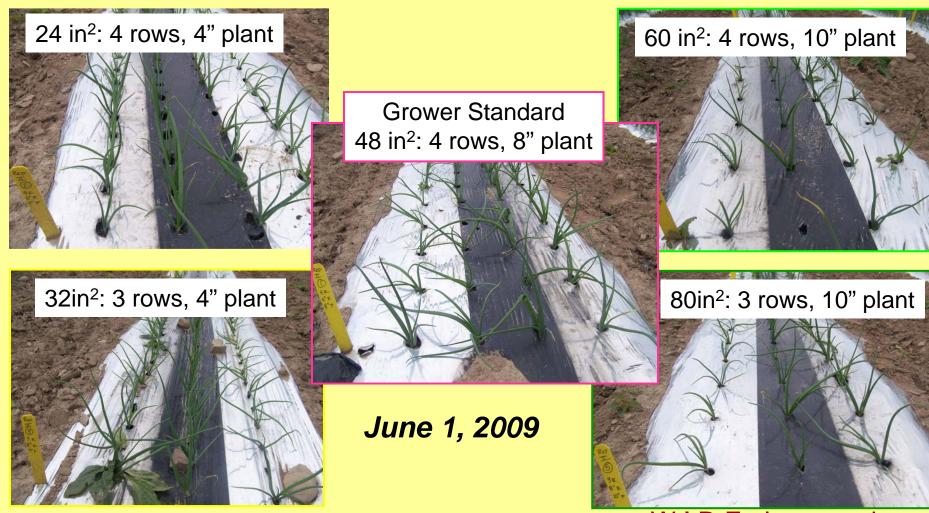
Plant density (in²/bulb)	No. rows /bed	Row spacing (in)	Plant spacing (in)	
24	4	6	4	
32	3	8	4	
48	4	6	8	
60	4	6	10	
80	3	8	10	
<i>Variety:</i> Nebula (yellow) Silver plastic				

New Holland, PA

Plant density (in²/bulb)	No. rows /bed	Row spacing (in)	Plant spacing (in)	
24	4	6	4	
32	3	8	4	
36	4	6	6	
60	4	6	10	
80	3	8	10	
Variety: Candy (sweet) Black plastic				

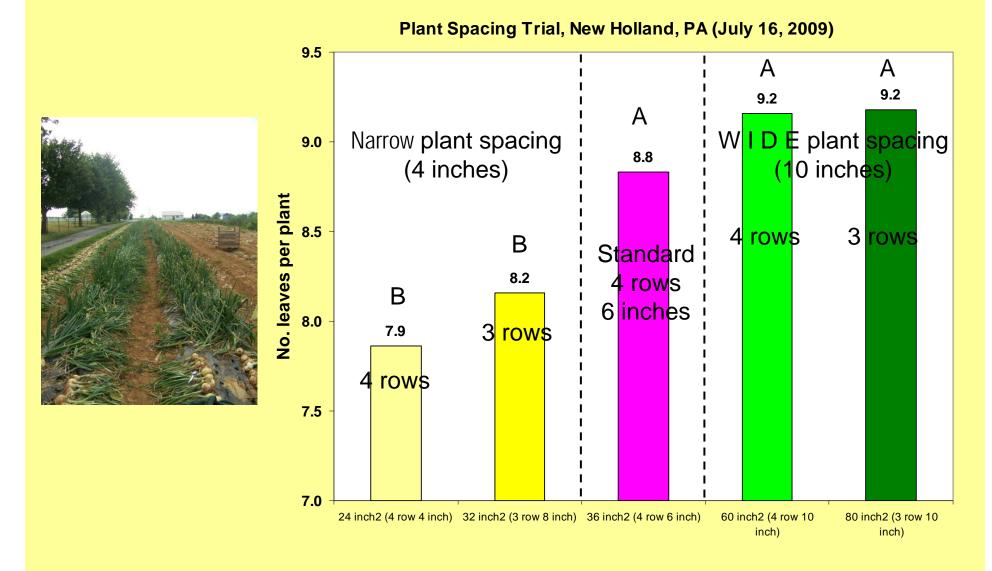
Onion Spacing Trial, Interlaken, NY

Hole bunching tools


Onion Spacing Trial, Interlaken, NY

Eli Stolzfus, April 17, 2009

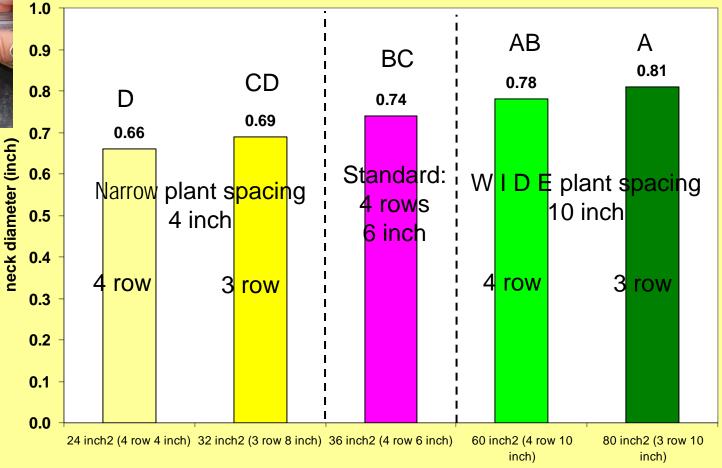
Onion Spacing Trial, Interlaken, NY



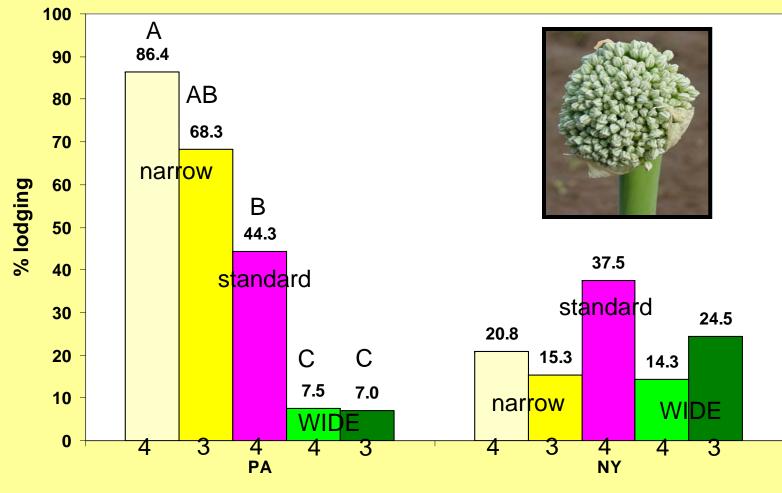
W I D E plant spacing

Narrow plant spacing

Results: Onion Spacing Trial – Plant Size: # leaves



Results: Onion Spacing Trial – Plant Size: neck diameter



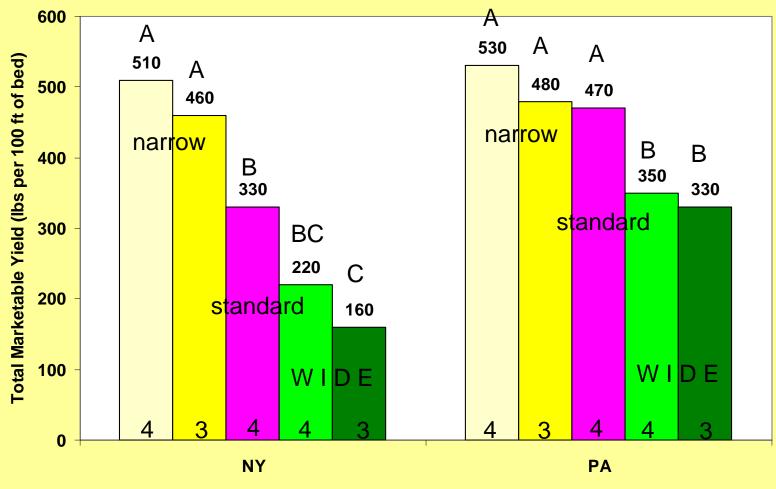
Plant Spacing Trial: New Holland, PA (July 16, 2009)

Results: Onion Spacing Trial – Maturity: % lodging

Onion Spacing Trial: PA (Jul-16) & NY (Aug-13)

□ 24 inch2 (4 row 4 inch) □ 32 inch2 (3 row 8 inch) □ 36 inch2/ 48 inch2 □ 60 inch2 (4 row 10 inch) □ 80 inch2 (3 row 10 inch)

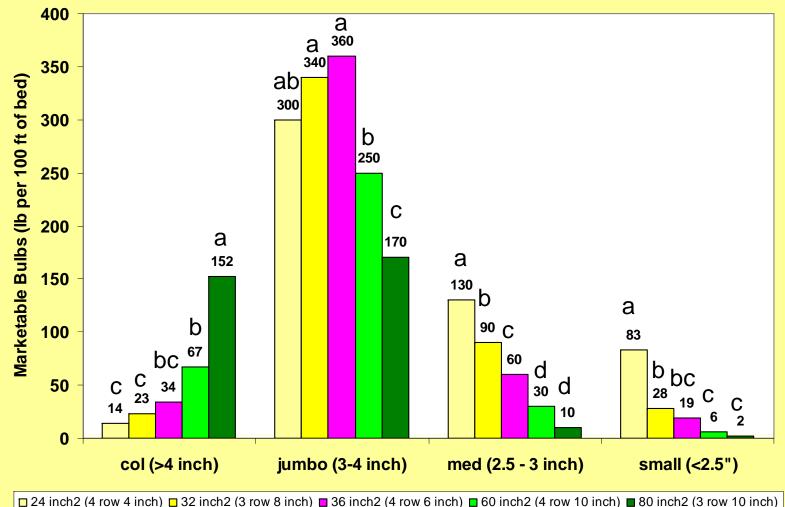
Results: Onion Spacing Trial – Maturity: % bolting



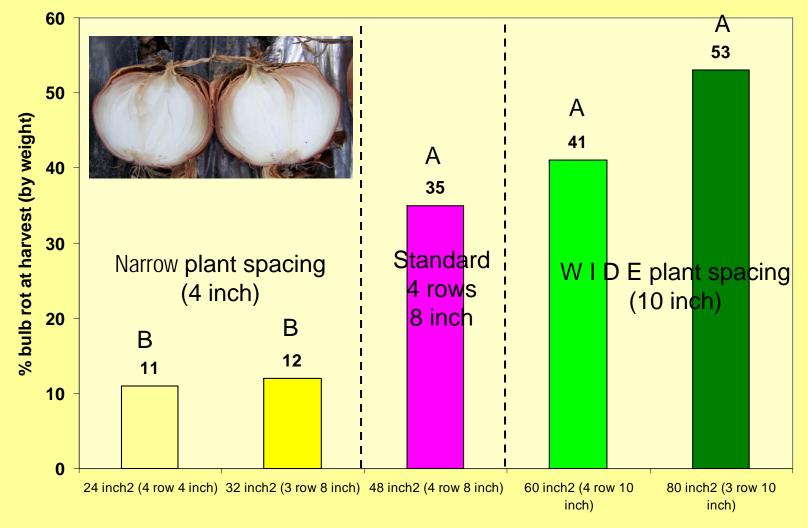
Results: Onion Spacing Trial – Yield and Bulb Size

Results: Onion Spacing Trial – Total Marketable Yield

Plant Spacing Trials: Total Yield in NY (Sep-14) & PA (Jul-16)



□ 24 inch2 (4 row 4 inch) □ 32 inch2 (3 row 8 inch) □ 48 inch2 (4 row 8 inch) □ 60 inch2 (4 row 10 inch) ■ 80 inch2 (3 row 10 inch)

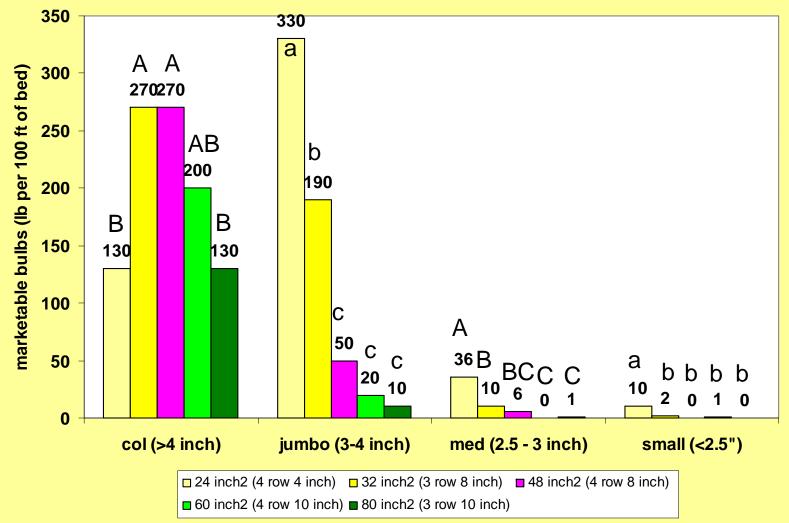

Results: Onion Spacing Trial – bulb size at harvest

Onion Spacing Trial: New Holland, PA (Jul-16): Marketable Bulbs

Results: Onion Spacing Trial – % bacterial rot at harvest

Yellow (cv. Nebula) Interlaken, 2009

Results: Onion Spacing Trial – % bacterial rot at harvest



Bacterial disease caused by Sour Skin (*Burkholderia cepacia*) and center rot (*Pantoea ananatis*) pathogens

Results: Onion Spacing Trial – bulb size at harvest

Plant Spacing Trial, Interlaken, NY (Sep-14): Bulb Size

Results: Onion Spacing Trial – economic return

Yellow onions (cv. Nebula), Interlaken, NY, 2009.

Plant Spacing			Total Marketable	Economic return (\$ per 100 ft of bed)			
Planting density (in²/bulb)	No. rows /bed	Plant spacing (inch)	Yield (lb per 100 ft of bed)	Gross	Cost of transplants	NET	
24	4	4	510 a	\$459	\$40.50	\$419	1.5x
32	3	4	460 a	\$414	\$30.38	\$386	1.4x
48	4	8	330 b	\$297	\$20.25	\$277	
60	4	10	220 bc	\$198	\$16.20	\$182	
80	3	10	160 c	\$144	\$12.15	\$132	

Price of onions: \$0.90 per lb. **Cost of transplants:** \$1.35 for 40 plants or \$0.03375 per plant. **No. plants per 100 ft of bed: 24 in²** – 1200; **32 in²** - 900; **48 in²** – 600; **60 in²** – 480; **80 in²** – 360. All other expenses equal.

Results: Onion Spacing Trial economic return (variable prices)

Yellow onions (cv. Nebula), Interlaken, NY, 2009.

Planting	\$ per size class (per 100 ft of bed)				Economic Return (\$ per 100 ft of bed)			
density (in²/bulb)	Small\$ 0.20/lb		Jumbo \$0.50/lb	Colossal \$0.55/lb	Gross	Cost of transplants	NET	
24	\$2.00	\$14.40	\$165	\$71.50	\$253	\$24	\$229	
32	\$0.40	\$4.00	\$95	\$148.50	\$248	\$18	\$230	1.4x
48	\$0	\$2.40	\$25	\$148.50	\$176	\$16	\$160	
60	\$0.20	\$0	\$10	\$110	\$120	\$9.60	\$111	
80	\$0	\$0.40	\$5	\$71.50	\$77	\$7.20	\$70	

Cost of transplants: \$0.02 per plant (bare roots). **No. plants per 100 ft of bed:** 24 in² – 1200; 32 in² - 900; 48 in² – 800; 60 in² – 480; 80 in² – 360. All other expenses equal.

Summary

- Wider plant spacing (i.e. 10 inches or more) results in:
 - Plants with more leaves and bushy top growth
 - thicker necks
 - Delayed or inhibited maturity
 - Bigger bulbs
 - Increased bacterial rots
- Reducing plant spacing from 8 inches to 4 inches reduced bacterial disease from 36% to 12%, a value of up to \$142 per 100 ft bed

Future Research

- Repeat plant spacing trial in PA (test under conditions favorable for bacterial disease)
- 2. Repeat mulch trial in PA
- 3. Another plant spacing trial in NY
 - Plant spacing: 4, 6, 8 inch with 3 & 4 rows
- 4. Interaction study (plant spacing & mulch combinations)

Recommendations

- If bacterial rot is an economic problem on your farm, try narrower plant spacing (i.e. 4 inch) on a <u>small</u> scale.
 - Wait until we have more years of conclusive data before going large-scale
 - Prove technique in a hot dry summer, different bacterial diseases, onions grown for different markets
 - Bolting issue?
- Practice good sanitation remove culls from fields
- Cut back on nitrogen after bulbing

