SARE Project AS92-1

S441 .S8557

DRAFT

Outline and Executive Summary

Poultry Litter: Potential Threats to Wildlife

Steve R. Lee. Ph.D. WC 290 16612 Weeks Hill Road Prairie Grove. AR 72753

TABLE OF CONTENTS

- Ī. Executive Summary
- Π Introduction
- III. Background
- IV. Objectives
- V. Review of Risks to Waterrowi and Domestic Poultry
 - A Bacteriai Diseases
 - Salmonella Pullorum A-1
 - A-2 Fowi Typhoid
 - A-3 Paratyphoid infections
 - Salmoneila Arizona A-4
 - A-5 Colibacillosis
 - A-6 Fowi Cholera
 - Pseudomberculosis A-7
 - Pasteureila Anaupestifer A-8
 - 4-9 Tuberculosis
 - A-10 Mycopiasma Gallisepticum
 - Mycopiasma Synoviae A-11
 - A-12 Campylobacteriosis
 - A-13 Botulism
 - A-14 Chlamydiosis
 - A-15 Summary of Bacterial Diseases
 - B. Viral Diseases
 - Marek's Disease B-1
 - **B**-2 Lymphoid Leukosis/Sarcomas
 - B-3 Reticuloendotheliosis
 - B-4 Infectious Bronchitis
 - B-5 Larvngotracheitis
 - B-6 Newcastle Disease
 - 3-7 Avian Encephalomyelitis
 - Avian influenza 3-8
 - Egg Drop Syndrome 3-9
 - 3-10 Intecnous Bursai Disease
 - 3-11 Eastern Equine Encephalitis
 - С. Myconic Infections and Mycotoxins
 - Aspergulosis
 - Thrusn (Canaida Albicans)
 - Ergot
 - C-1 C-2 C-3 C-4 Tricothecones
 - C-5 C-5 C-7 Aflatoxin
 - Ochratoxin
 - Rubratoxin
 - Č-3 Citrinin
 - C-9 Islandotoxin
 - C-10 Deoxvnyalenoi (DON, vomitoxin)
 - Antithiamine Toxins C-11
 - C-12 Tearmenone
 - C-13 Fusarocnromanone
 - C-14 Oosporein
 - C-15 Other Mycotoxins

- D. Internai Parasites
- E External Parasites
- F Protozoal Diseases
 - F-1 Cocceidiosis
 - F-2 Histomoniasis
- Drugs and Pesticides (Residues) G.
- H Mineral Elements

H-1	Cu	Copper
H-2	As	Arsenic
H-3	Cđ	Cadmium
H-4	Mg	Magnesium
H-5	B	Boron
H-6	Se	Selenium
H-7	Zn	Zinc

- VI. Recommendations
- VII. Citations
- VIII Tables
- Disease Organisms Found in Poultry Litter that Affect Waterrowi. 1.
- 2. Effect of Composune/Le 3. Approved Disinfectants. Paulter Drugs Effect of Composting/Deep-Stacking on Litter Pathogens.
- 4. Domestic Poultry Drugs Harmful to Waterfowi.
- Drug Residues Found in Litter
 EPA Approved Insecticides for Poultry Use.
- Toxicity Data on EPA Approved Pesticides.
 Mineral Tolerances of Poultry, Waterrowi and Related Species.
- 9. Mineral Content of Poultry Litter, Fertilizer, and Soil Ammendments.

X. Directory of Resource Experts

EXECUTIVE SUMMARY

Poultry litter is an excellent organic femilizer for Arkansas rice, but should be handled, transported, and applied to fields in a manner and time to minimize some small but significant risks to waterfowi. Litter has been transported comparable distances for cattle feeding and crop fertilization in the Delmarva Peninsula (comparable poultry density, manure quality, wild waterfowi population density) with very few observed problems.

The biological risks of litter provided to waterfowl will be somewhat difficult to ascertain since the pathogens are ubiquitous and endemic in waterfowl and their environment. Toxic metals occur in litter, but also in fertilizers and other soil amendments. By far, the greatest disease risks of the litter transport system will be from waterfowl to domestic poultry. Cleaning and disinfecting vehicles, tires and driver's clothing is essential, particularly if trucks carry new bedding (rice hulls, wood shavings) on their return.

The most severe bacterial risks to waterrowi are chronic salmonellosis. Fowl Cholera, and botulism; the latter two can kill thousands of ducks overnight. The first two may be readily minimized by choosing sources where litter was quite deep in poultry houses; was produced by broilers instead of older turkey or broiler breeders (disease carriers); and was composted or at least deep-stacked. The pathogens are susceptible to sunlight, ammonia, heating, and most common disiniectants. Field application of litter should occur when waterfowl are absent and allow 24 to 48 hours of exposure to sunlight followed by soil incorporation. Type C <u>Clostridium botulinum</u>, the causative agent of botulism, is an anaerobe; forms one of the most toxic substances known to man botulinum toxin); and reproduces by spores that are extremely resistant to temperature extremes, ac:as and disinfectants. <u>C. Botulinum</u> lives in dead animal carcasses and rotting vegetation [Decomposing rice stubble?]. <u>No dead bird compost</u> or litter showing bird carcasses or large numbers of darkling beetles (intermediate host of <u>clostridia</u>) should be transported to waterfowl areas.

The most severe viral disease risks are Newcastle Disease (ND), avian influenza (AI) and infectious busal disease (IBD). The ND and AI viruses can be killed with most disinfectants, light and heat. The problems with them are their prevalence in waterfowi, rate of spread, numbers of virus in feces, and the constant mutation of the viruses into new lethal (velogenic) strains. For AI the rate of mutation exceeds the rate of vaccine production. Hence, control of lethal AI strains is by test and slaughter of afflicted domestic flocks, thus generating tremendous economic losses. ND virus from whether of afflicted domestic flocks, thus generating tremendous economic losses. ND virus from whether or waterfowl is infrequent but increasing. Immunosuppression follows and predisposes informed birds to many other diseases. The IBD virus is extremely stable and resistant to decontamination. Domestic poultry are protected from IBD with a live vaccine. Breeders are vaccinated multiple times. Breeder and turkey litter should be avoided. IBD is destroyed by composting. Myconc or Fungal diseases <u>per se</u> are a minimal risk. However, the toxic metabolites produced by molds on feed grains and in litter are extremely toxic. Waterrowl are very susceptible to mycotoxins; domestic ducklings are often used as sentinel birds and in bioassays to detect mycotoxins. Toxins excreted by domestic poultry into fees appear as conjugated forms that escape detection by inexpensive, rapid test kits. Several fungi can grow and produce toxins in litter. The main risk is for domestic interfarm transport of fungal spores via shipping of clean bedding. Moldy litter should be rejected.

Pesticides and dewormers may reside in litter from pullet, turkey and breeder operations. Liquid manure from layers often contains insecticides that can be persistent in the environment if misapplied. The wormer piperazine is harmful to ducks. The insecticide cyromazine is structurally similar to triazine herbicides that kill rice. Layer manure, breeder/pullet litter and litter known to have been treated should be avoided.

The control of the intestinal parasites known as the coccidia and <u>Histomonas meleagridis</u> is essential for confinement rearing of broilers and turkeys. Many drugs are available for this and may appear as residues in raw litter. Treatment of bacterial diseases also generates drug residues. Furazolidone, maduramicin, sulfaquinoxaline, halofuginone, arprinocid, dimetridazoles, Ipronidazole, sulfadimethoxine-ormetoprim, Nicarbazin, nitrofurazone, virginiamycin and organic arsenicals have been reported to be toxic to wateriowi at less than recommended therapeutic levels for domestic poultry. Other compounds show wateriowi toxicity if ingested at levels 2 to 5 times recommendations for domestic avians. Incompatible drugs may appear in litter if subsequent flocks are medicated differently.

Many mineral elements are found in poultry litter. Levels of specific elements will vary as a function of management practices for domestic flocks. Litter can contain levels of Cu, As, Cd, Mg, and B sufficient to cause problems within a short time if ingested by wild waterfowl. After years of litter usage, Cu, Se, B, As, Zn, and Cd may buildup in soil, crops and floodwaters. This buildup 1) allows invertebrates to bioaccumulate elements to levels toxic for waterfowl; 2) produces phytotoxicity of crops and plants essential for the aquatic habitat of ducks and geese.

Using only broiler litter will decrease disease vectors. A survey of feed and water medication usage by poultry firms will identify litter containing tewer drug residues, pathogens, and minerals. Deep-stacked and/or composted litter will be virtually free of pathogens, mycotoxins, and residues. Direct ingestion of litter by waterfowi should be prevented. Thorough cleaning and disinfecting of transport trucks will minimize diseases.

Thus, poultry litter fertilizer can be used to advantage by Arkansas rice farms provided it is selected, handled and applied property.

<u>LISTED BELOW ARE THE DISENFECTANTS APPROVED FOR AVIAN INFLUENZA:</u> <u>BIOGARD M185</u> - Biolabs, Inc., Decatur, Georgia 404-373-1753 <u>TEKTROL</u> - Biotex Industries, Inc., 1212 Memlo Dr., Atlanta, Georgia 404-351-7048 * <u>ONE STOKE ENVIORION</u> - Vestal Labs, New Jersey - 201-351-0251 <u>BACTOPHENE</u> - Auxford Chemicals, Inc., Atlanta, Georgia - 404-452-1100 <u>LIEFLEX - 1</u> Whiz Chemicals, Balo, Fennsylvania - 215-825-3555

TEW/khg 1/13/84

* Recommended by Arkansas State Veterinarian as best overall disinfectant.

From: AR Diegnostic inconstorer of The Livestock and Povitry Connission Springdate Laboratory 3905 N. Thompson Springiale, AR 72764 TEL! (SOI) 751-4869 FAX: (501) 751 - 0358

Table =. EFA Approved Insecticid: Condensed from: Molan Edg and Poultry Produce:	es Used in Eg , M. P. 1939 12 liga la-co	g and Poultry <u>Insecticide</u> Elt Service C	Production. <u>Use Chart fo</u> r Nice, 3050
Insecticide		Mode of Use	
Jeneric/(Trade R) Name	On Birds	On Litter	Fly Control
Bomyl (True Grit Blue)	Но	No	Bait Cnly
Carbaryl (Sevin)	Zes	Yes	Yes
Chlorfenvinphos (Birlane, Cmpd. 4072, Supona)	No	No	<u>Under Layer</u> Cages Only
Chlorpyrifos (Dursban, Lorsban)	Хо	<u>Turkey</u> Range Only	<u>Paint on</u> Only
Cyromazine (Larvadex)	Но	No	<u>Feed Thru</u> Layers Chly
Dichlorvos (DDVP, Vapona)	Yes	Yes	Yes
Dimethoate (Cygon, Defend,) Rebelate)	Мо	No	Under Layer Cages Chly
Disodium Cctaborate Tetrahydrate (Red Ione Darkling Beetle Control)	Ио	<u>Soil & Wall</u> Treatment Only	No
Erythrosine B (Synerid Bait)	Чо	Хо	Bait Only
Fenthion Baytex, Entex, Tiguvon)	Но	Но	Zes
Malathion Sythion)	Yes	Zes	Zes
Methomyl Lannate, Nudrin)	No	No	<u>Bait Only</u>
Haled Dibrom)	Yes	Yes	Yes
Nicotine Sulfate (Blackleaf40)	Zes	Zes	Но
Orthoporic Acid (Safecide)	Чо	<u>Soil & Wall</u> Treatment Only	Чо
Permethrin Ambush, Atroban, Ectiban, Fenvalerate, Permaban, Pramex, Pounce)	Zes	Yes	Yes
Pyrethrins, Pyrethrums	Zes	Zes	?es
Tetrachlorvinphos or Stirofos (Rabon)	Zes	Zes	Yes

Table #. Insecticide Residues. Review of the Merck Index and Fish a Wildlife Service Reports and Others on the Uses and Lethal Doses of EPA Approved Insecticides that Could Reside in Litter.

Insecticide Generic Name	Uses	Lethal Doses Route; Species; LDsc (mg/kgBW)	US Fish and Wildlife Serv Contaminant Hazard Rev.#*		
<u>Carbofuran</u> **	<u>Used in Rice Production.</u> Insecticide, Nematocide, Acaricide	NOT USED in Poultry Prod. Compare lethal doses. Oral; Mice; 2	85(1.3)		
Bomyl	Insecticide	Oral; Rat; 32	No		
Carbaryl	Contact Insecticide	Oral; Rat; 250	Но		
Chlor- fenvinphos	Insecticide	Acutely toxic to fish. Oral; Rat; 9.66	No		
Chlorpyrifos	Insecticide, Acaricide	Oral; Rat; 145	85(1.13)		
Cyromazine	Insect growth regulator Insecticide, Ectoparasiticide	Phytotoxic to Rice? (Very similar to Triazine Herbicides)	85(1.18)		
Dichlorvos	Insecticide, Antihelmintic	Oral; Rat female; 56	No		
Dimethoate	Systemic & Contact Insecticide	Toxic to Ducks *** Cral; Rat; 2 50	Мо		
Disodium Octaborate Tetranydrate	Darkling Beetle Control	Oral; Duck female; Embryotoxic ~300 mg/kg FW#***	35(1.20)		
Erythrosine B	Fly Bait	(FDA Food Color FD&C #3) Oral; Rat; 2258	Уо		
Fenthion	Ectoparasiticide	Oral; Rat male; 215	No		
Malathion	Insecticide, Pediculicide Ectoparasiticide	Oral, Rat female; 1000	Хо		
Methomyl	Insecticide	Oral; Rat male; 17	No		
Naled	Insecticide, Acaricide	Oral; Rat; 250 Dermal; Rat; 800	No		
cotine Sulfate	Insecticide, Sumigant, Ectoparasiticide, Antihelmintic	(Highly Toxic) Oral; Mice; 2 30	No		

Orthoboric Acid	Darkling Beetle Control	Oral; Duck female; Embryotoxic ~300 mg/kgFW****	85(1.20)
Permethrin	Insecticide	"Supertoxic" to aquatic arthropods. Oral; Quail; >4000 Oral; Rat female; 3800	2(24)
Pyrethrins, -chrums	Natural Insecticide, Scabicide, Ectoparasiticide	Destroyed by Sunlight Oral; Rat; >1200	No
Tetrachlor- vinphos or Stirofos	Insecticide	Oral; Rat; 1 100	No

* For in-depth wildlife toxicity data for ducks and aquatic systems.

** Listed for comparison to products approved for use in poultry. Carbofuran is <u>much more toxic</u> and is sprayed <u>directly on rice</u> in paddies that <u>attract migratory waterfowl</u>.

*** M. P. Nolan personal communication.

**** FW = Fresh weight of substances eaten.

*. Mineral Tolerances of Avian and Related Animals. (Adapted from NRC30, 77, 34 and Other Sources.)

Tai

Ele- sent	llass of Lnimels	ਮੈਕੁਵ ਼ਾਟ ਆਹ	Element Quantity (ppm)	Element Source	Jura- tion	Route	Effects	Reference
**	Chicken	l da	500	11017	unknown	Diet	;Bone Ash	Storer 4 Nelson 1958
			1000	12(50))		Diet	+Mortality	MET30W 1900
35	Thick	1 wk	24 mg/1	3bHı (gas)	unknown	lir	Hemolysis +Mortality	3teele et. al. 1944
عذ	Juck	1130g	345	lrsanilic scid	3ingle iose	Diet	Max. single dose tolerated	Frost <u>et. al.</u> 1955
3a	Chicken	Young	218	ЗаССы	unknown	Diet	Gain	Taucins
	Chicken	Young	1390	BaCl2			+Mortality	<u>et. 31.</u> 1309
3	Chicken	Embryo	¥25	Na280013- 4H20	21 d	Egg Conc.	Mortality	Lee <u>1989</u>
		Hen	300	а <u>,</u> т	Chronic	Diet	Hatch	Lee & Emmel 1390
3-	Thick	1 d	≥500 0	NaBr	29 d	Diet	Gain	Doberens
			≤20000				Mortality	<u>-t. al.</u> 1900
:H	ien	Adult	3	C4301	inknown	Diet	.Igg Prod.	Leach
	luail	i i	75	CdCli	23 d	Diet	Mortality	<u>et. 11.</u> 1373 Jacobs <u>et. 11.</u> 1369
1	Thicken Duck	≤8 wis	22.53	CaC01	weels	liet	? Rickets .3100d P	Many 7ariea
:=	Chick	Young	>2000	CrCli	21 d	Diet	.Jain	Hill & Matrone 1970
` ⊃	Thick	Young	≥10≤50	unknown	unknown	Diet	•Mortality	Turk 6 Zaaraan 1960
			200	CoC12+6H2O		Diet	Jain	Hill 1974
°ц.	Duck Drayfish Minnows	3 di ? ?	100 50 ug/1 >113 µg/1	Cu30 5H2Q	3 wk Chronic T T	Diet H2O H2O	•Growth Death Death	King 1975 Hubschman'67 Brungs <u>et. al.</u> 1976
	l. Geese	Adult	100		Winter	Pona H2O	Necrotic Gissards	Henderson & Winterfield 1975
	Thicken	Young	>324 1270	Cu304 - 5H20	4 we 4 we	Diet	M. D ys . •Mortality	Mayo et. sl. 1956
	hicken	Young	750 ppm	Phosphate Rock	unknown	Diet	Gain	Kick <u>et. al.</u> 1933

Ele- zent	Class of lnimals	ਮੇਰੁਵ or ਆ	Element Quantity (ppm)	Element Jource	Dura- tion	Route	Iffects	Reference
Ξ	Chicken	27 w e	>625 ppm	XI	5 wk	Diet	. Igg Prod . Hatch	Arrington et. al 1967
]e	Chicken	ld	>400 6 <1500	EeS04 - 7H2O	28 d	Diet	Rickets 6 Gain	McGhee et. al. 1965
	Turkey	1 wk	440	Fea (304) a	12 wk	Diet	Bone Ash	Woerpel 6 Balloum 1964
Э₽	Cucks	mature	>бmg/ kaBW	26 (NO 3) 3	24-41 d	Diet	Death	Coburn et. al. 1951
	Chickens	4 wk	>100 €	Pb acetate	29 d	Diet	Gain	Damron
	Jeese	?	?	2p avor	?	Diet	Death 6 ,Hatch	Cook & Trainer 1966
Mg	Chicks	1 d	>0.3%	MgO	4 wk	Diet	Rickets 6 Death	Lee 4 Britton '90
	Chickens	1 d	>0.64%	د MgCO،	4 wit	Diet	Death 6 4Gain	Nugara 6 Edwards 153
Min	Turkey	Young	4800	Mn304 · H2O	21 d	Diet	Gain	Vohra 6 Kratser '58
Нg	Juck	5 d	3.3	Methyl Mercuric	35 d	Diet	No Effect	Gardiner 1972
			33	dicyan- diamide			7D 8 0	
) fo	Thicken	Young	200-300	Naimov i	unknown	Diet	Gain	Davies et. 11. 1360
			5000	(NH4) 2 MoO4			LD33.3	
Ni	Thick	ld	500 1300	Ni Julfate Ni Letate	4 wit	Diet	.Gain .Gain	Weber 5 Reid 1968
2	Chick	1 d	1.6% - 2.0%	(NH4)H2PO4	21 d	Jiet	Rickets 6 Death	McGillivary & Smidt 1974
3e	Chicken Duck Hen	ldult	10	je Methionine	unknown	Diet	Embryo- toxic Deformity	Moxon 1937
3i	-	-	-	Fibrous Silicates		-	yzertez	Anecdotal
ی م	Chick	1 d	200	ن ۵۵ ۱ دور	21 d	Diet	Mortality	Hill et. <u>sl.</u> 1364
	Turkey	1 d	3 00- 900	دNOچڌ	35 d	Diet	Enlarged Heart Gissard D ys trophy	J ensen et. al. 1974
MaCl	Juck	уоцпд	0.4%	NaCl	21 d	HaO	F. Intake Gain	Krista <u>et. al.</u> 136
	Juck	1 d	1.0%			HaO	Mortality	

Table =. Mineral Tolerances of Avian and Related Animals. (Adapted from NRC80, 77, 34 and Other Sources.)

• • •

Mineral Tolerances of Avian and Related Animals. (Adapted from NRC30, 77, 34 and Other Sources.)

Ele- ment	Class of lnimels	lge or wt	Element Quantity (ppm)	Element Jource	Dura- tion	Route	Iffects	Reference
32	Chick	1 d	6000	32003	4 WE	Diet	Tibia Ash	Weber
	Hens	5 110	50,000	32003	4 wit		: Gain :Egg Prod.	<u>et. al.</u> 1960 Doberens <u>et. al.</u> 1967
3	Chick	3-21 d	185	K2304	7 wk	Diet	iGain i Feed Eff	<u>Jasse 6</u> Baker 1974
3n	Chicken	Adult	35	Triethyl Tin Hydroxide	15 wż	Diet	lnorexia	Stoner <u>et. 11.</u> 1955
4	Chick	1 3	45	Na 2 WO 4	35 d	Low Mo Diet	.Gain •Mortality	Higgins <u>et. al.</u> 1954
;	Chick	Young	25	NH VO 3	34 d	Diet	Cx-Phos	Hathcock
	Duck	1 75	10-100	V050+		Diet	Tissue 6	<u>et. 11.</u> 1988 White 6
	Hen	Ldult	15	NH4-VO3	38 d	Diet	Albumin Quality	Serg 1963
	Chick	Young	2000	En304	unknown	Diet <0.5 ppm 3e	Exudative Diathesis "Je	Jensen 1975
	Duck	T WE	2000	دEnCO	50 d	Diet	lnorexia "Reproduct Paralysis	Gasaway 6 Buss 1972
د OI.	Turkey	∀оцлд	~200 (N) 900 (NO3)	NeNOs		HaO	Gain Mortality	ldams <u>et. al.</u> 1967
NOa	Chick	Toung	553 (N) 2162 (NOa)	⊼NO₂	-	Diet	;Vit A liver Enlarge	3 ell 4 Roberts 1963
	Chick	Connà	365 (N) 1200 (NO1)	N2NO2		H2O	Thyroid	

