



# **Effects of energy supplementation for pasture forages on in vitro** ruminal fermentation in continuous cultures C. T. Noviandi<sup>1\*</sup>, M. N. McDonald<sup>1</sup>, A. J. Young<sup>1</sup>, D. R. ZoBell<sup>1</sup>, J.-S. Eun<sup>1</sup>, M. D. Peel<sup>2</sup>, and B. L. Waldron<sup>2</sup> <sup>1</sup>Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT <sup>2</sup>Forage and Range Research Laboratory, USDA-ARS, Logan, UT

## Introduction

- High quality pasture forages commonly lack energy and have low N utilization efficiency in the rumen.
- Energy supplementation of forage diets improves N utilization efficiency and fermentation profiles, and reduces methane (CH<sub>4</sub>) emissions.
- Starch-based energy supplements, such as corn grain, cause depressions in forage intake and decrease fiber digestibility.
- Dried distillers grains with solubles (**DDGS**) contain high concentration of readily digestible fiber, which allows this product to serve as partial replacement for forages as well as for concentrates in diets of dairy and beef cattle.
- Birdsfoot trefoil (BFT) has condensed tannins (CT) which can increase N utilization efficiency and reduce  $CH_4$  production.
- Mixed pasture consisting of grass (tall fescue: **TF**) and BFT would be beneficial to improve N utilization by dairy cows.

## Objective

• To assess in vitro ruminal fermentation characteristics by supplementing ground corn or DDGS in grass monocultures [TF without (**TF**–**NF**) or with N fertilizer (**TF+NF**)] and low- [TF and alfalfa (TF+ALF)] and high-CT grass-legume (TF+BFT) mixtures.

## Materials & Methods

- Control (no energy supplement) and 2 types of energy supplementation (30% DM ground corn and 30% DM DDGS) combined with 4 types of pasture forage (TF–NF, TF+NF, TF+ALF, and TF+BFT), resulted in 12 dietary treatments.
- Treatments tested in a split-plot design with energy supplementation as a whole plot and pasture forage as a subplot, with 3 replicated runs (n = 3).
- Each run lasted 10 d, having 7 d of treatment adaptation and 3 d of data collection.
- Artificial saliva delivered at a rate of 6.3%/h.
- Anaerobic condition maintained by CO<sub>2</sub> flow at 20 mL/min.
- Each fermentor received a total of 15 g DM/d divided in 4 equal portions and fed at 0600, 1200, 1800, and 2400 h. Two equal portions of energy supplements fed at 1200 and 2400 h.
- Culture contents analyzed for VFA, NH<sub>3</sub>-N, and microbial N.
- Headspace gas analyzed for CH<sub>4</sub>.



### **Table 1.** Nutrient composition (% DM) of dietary treatments.



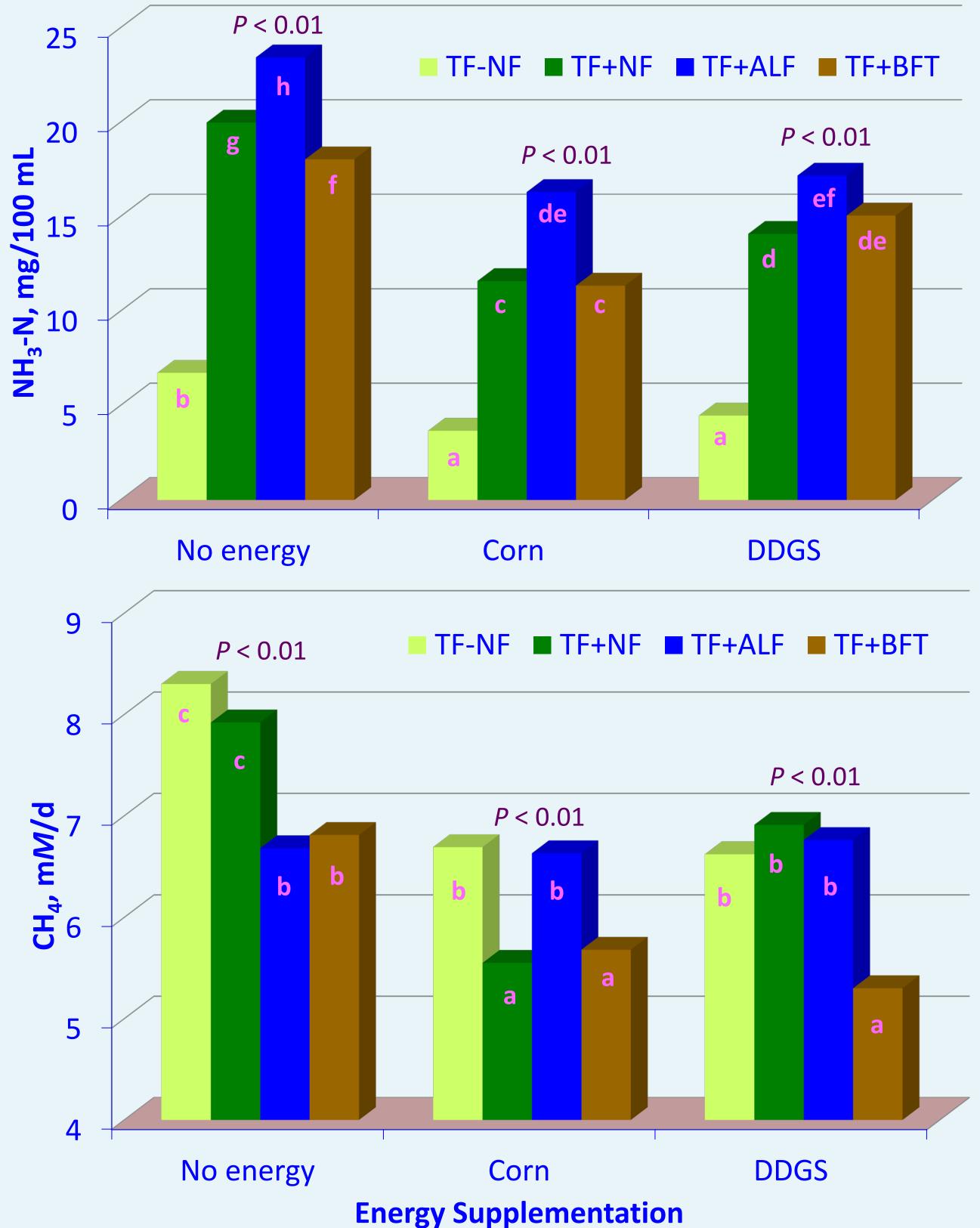
|                  | Dietary treatment <sup>1</sup> |       |        |        |       |       |        |        |       |       |        |        |
|------------------|--------------------------------|-------|--------|--------|-------|-------|--------|--------|-------|-------|--------|--------|
| ltem             | No energy                      |       |        |        | Corn  |       |        |        | DDGS  |       |        |        |
|                  | TF-NF                          | TF+NF | TF+ALF | TF+BFT | TF-NF | TF+NF | TF+ALF | TF+BFT | TF-NF | TF+NF | TF+ALF | TF+BFT |
| СР               | 13.5                           | 15.5  | 16.3   | 17.8   | 12.1  | 13.5  | 14.0   | 14.5   | 17.7  | 19.6  | 19.4   | 20.3   |
| EE <sup>2</sup>  | 2.70                           | 2.54  | 2.68   | 2.77   | 2.81  | 2.88  | 2.66   | 3.02   | 5.50  | 5.57  | 5.55   | 5.73   |
| NDF              | 56.8                           | 56.7  | 51.4   | 52.6   | 45.7  | 45.4  | 43.6   | 42.6   | 51.8  | 50.5  | 49.8   | 49.3   |
| ADF              | 31.7                           | 31.4  | 30.1   | 31.4   | 21.9  | 21.2  | 23.3   | 22.0   | 25.6  | 24.2  | 26.6   | 25.1   |
| NFC <sup>3</sup> | 13.6                           | 12.1  | 18.0   | 15.5   | 30.6  | 30.1  | 31.6   | 32.2   | 18.3  | 17.8  | 19.1   | 18.5   |
| CT <sup>4</sup>  | 0.95                           | 0.47  | 0.60   | 2.57   | 0.67  | 0.82  | 0.74   | 1.77   | 0.55  | 1.17  | 0.92   | 1.55   |

<sup>1</sup>TF–NF = tall fescue without N fertilizer; TF+NF = tall fescue with N fertilizer; TF+ALF = mixture (50:50 on an as-fed basis) of tall fescue (without N fertilizer) and alfalfa; and TF+BFT = mixture (50:50 on an as-fed basis) of tall fescue (without N fertilizer) and birdsfoot trefoil. <sup>2</sup>Ether extract. <sup>3</sup>Non-fibrous carbohydrate = 100 - CP - NDF - EE - ash. 4CT = condensed tannins.

pasture types.

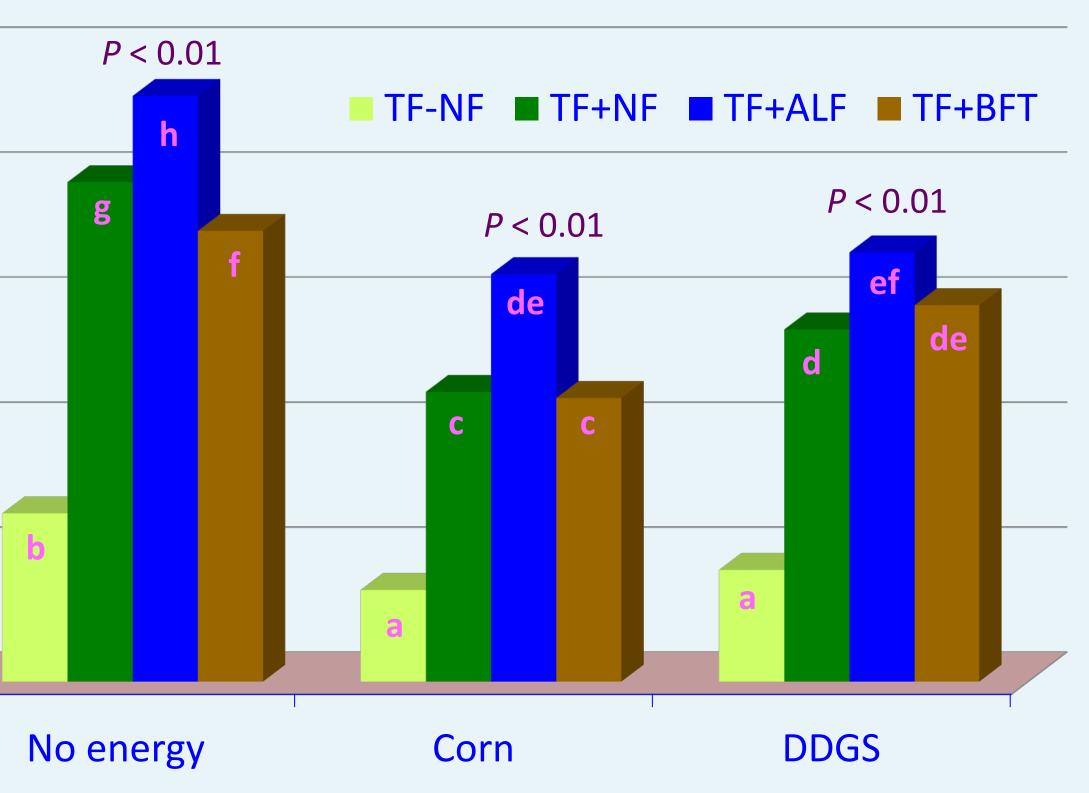
| ltem        | No energy           |                          |                      |                          | Corn                     |                          |                          |                          | DDGS                     |                          |                          |                          |
|-------------|---------------------|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|             | TF–NF               | TF+NF                    | TF+ALF               | TF+BFT                   | TF–NF                    | TF+NF                    | TF+ALF                   | TF+BFT                   | TF–NF                    | TF+NF                    | TF+ALF                   | TF+BFT                   |
| Culture pH  | 6.16 <sup>abc</sup> | 6.08 <sup>abc</sup>      | 6.20 <sup>abcd</sup> | 6.35 <sup>cd</sup>       | 6.07 <sup>abc</sup>      | <b>5.94</b> ª            | 6.31 <sup>bcd</sup>      | 5.97 <sup>a</sup>        | 6.30 <sup>bcd</sup>      | <b>6.44</b> <sup>d</sup> | <b>6.43</b> <sup>d</sup> | 6.02 <sup>ab</sup>       |
| Total VFA   | 36.3 <sup>bcd</sup> | <b>44.7</b> <sup>f</sup> | 36.9 <sup>cd</sup>   | 36.0 <sup>bc</sup>       | <b>39.6</b> <sup>e</sup> | 45.3 <sup>f</sup>        | <b>37.7</b> <sup>d</sup> | 39.2 <sup>e</sup>        | 36.0 <sup>bc</sup>       | <b>44.7</b> <sup>f</sup> | <b>35.4</b> ⁵            | <b>32.9</b> ª            |
| C2          | 22.8 <sup>de</sup>  | 26.6 <sup>f</sup>        | 23.5 <sup>e</sup>    | 22.8 <sup>de</sup>       | <b>23.6</b> <sup>e</sup> | <b>20.7</b> <sup>b</sup> | 22.1 <sup>cd</sup>       | <b>22.4</b> <sup>d</sup> | <b>21.0</b> <sup>b</sup> | <b>27.1</b> <sup>f</sup> | 21.2 <sup>bc</sup>       | <b>18.8</b> ª            |
| C3          | <b>7.74</b> abc     | <b>9.92</b> <sup>d</sup> | 7.42 <sup>ab</sup>   | <b>7.32</b> <sup>a</sup> | 7.78 <sup>abc</sup>      | <b>11.5</b> <sup>e</sup> | 7.76 <sup>abc</sup>      | <b>8.33</b> <sup>c</sup> | 8.20 <sup>bc</sup>       | <b>9.69</b> <sup>d</sup> | 7.63 <sup>abc</sup>      | 7.75 <sup>abc</sup>      |
| C4          | <b>4.00</b> ab      | 5.29°                    | <b>3.82</b> ª        | <b>3.80</b> ª            | 5.32 <sup>e</sup>        | 9.13 <sup>f</sup>        | 5.47e                    | 5.47e                    | <b>4.84</b> <sup>d</sup> | 5.37e                    | 4.55 <sup>cd</sup>       | 4.37 <sup>bc</sup>       |
| Valerate    | <b>0.64</b> ª       | <b>1.18</b> e            | <b>0.63</b> ª        | 0.69 <sup>ab</sup>       | <b>0.74</b> <sup>b</sup> | 1.85 <sup>f</sup>        | 0.71 <sup>ab</sup>       | <b>1.01</b> <sup>d</sup> | <b>0.78</b> <sup>b</sup> | <b>0.90</b> <sup>c</sup> | <b>0.73</b> <sup>b</sup> | <b>0.77</b> <sup>b</sup> |
| Isobutyrate | 0.52 <sup>cde</sup> | <b>0.60</b> <sup>g</sup> | 0.54 <sup>ef</sup>   | 0.52 <sup>cde</sup>      | 0.51 <sup>bcd</sup>      | 0.54 <sup>ef</sup>       | 0.57 <sup>fg</sup>       | <b>0.43</b> ª            | 0.46 <sup>ab</sup>       | 0.49 <sup>bcd</sup>      | 0.53 <sup>def</sup>      | 0.48 <sup>bc</sup>       |
| Isovalerate | <b>0.67</b> ª       | <b>0.95</b> °            | 0.78 <sup>ab</sup>   | 0.80 <sup>abc</sup>      | <b>1.44</b> <sup>d</sup> | <b>1.42</b> <sup>d</sup> | 0.88 <sup>bc</sup>       | <b>1.37</b> <sup>d</sup> | <b>0.66</b> ª            | 0.85 <sup>bc</sup>       | <b>0.68</b> ª            | <b>0.65</b> ª            |
| C2:C3       | 2.95 <sup>de</sup>  | 2.68 <sup>bcd</sup>      | 3.17 <sup>e</sup>    | <b>3.11</b> <sup>e</sup> | <b>3.10</b> <sup>e</sup> | <b>1.81</b> ª            | 2.85 <sup>cde</sup>      | 2.73 <sup>bcd</sup>      | 2.56 <sup>bc</sup>       | 2.80 <sup>cde</sup>      | 2.78 <sup>cd</sup>       | <b>2.43</b> <sup>b</sup> |
| Microbial N |                     | 8.13 <sup>bcd</sup>      |                      | 8.41 <sup>cde</sup>      | 8.00 <sup>abc</sup>      |                          | 9.34 <sup>f</sup>        |                          |                          | 8.34 <sup>bcd</sup>      |                          | 8.44 <sup>cde</sup>      |

<sup>1</sup>TF–NF = tall fescue without N fertilizer; TF+NF = tall fescue with N fertilizer; TF+ALF = mixture (50:50 on an as-fed basis) of tall fescue (without N fertilizer) and alfalfa; and TF+BFT = mixture (50:50 on an as-fed basis) of tall fescue (without N fertilizer) and birdsfoot trefoil.




## Results

### **Table 2.** Culture pH, VFA profile (mM), and microbial N (%) as affected by energy supplementation and


### Dietary treatment<sup>1</sup>





- corn or DDGS.





**Figure 1.** Ammonia-N concentration and methane production as affected by energy supplementation and pasture types.

## **Summary & Conclusions**

Both corn and DDGS supplementation increased N utilization by decreasing NH<sub>3</sub>-N and increasing microbial protein yield. Energy supplementation decreased A:P, and under corn supplementation the TF+NF and the TF+BFT decreased A:P compared with the TF–NF.

 $\succ$  The TF+BFT decreased CH<sub>4</sub> production, and the effect was more noticeable when the TF+BFT was supplemented with

The TF+BFT showed similar N utilization compared with the **TF+NF, implying that BFT mixed with TF can eliminate N** fertilization to TF.

Grass-legume mixtures would be a sustainable component in grazing dairy systems to improve N utilization efficiency with appropriate energy supplementation.

USDA Agricultural Research Socioco

**UtahState**Univer