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Plant growth regulators (PGRs) have the potential to negatively affect the outcome of biological control
via plant architectural changes and plant chemical changes. Despite studies demonstrating the negative
effects of PGRs on herbivore survival and development, to date, no studies have investigated the tritroph-
ic effects of PGRs on parasitoid life history traits. In this study we investigated the effect of four com-
monly used PGRs on Myzus persicae abundance and suppression, and Aphidius colemani fitness in a
greenhouse experiment. None of the PGRs reduced aphid abundance alone or affected aphid suppression
by A. colemani. However, paclobutrazol reduced the number of mummies that developed on plants. PGRs
had a range of negative effects on parasitoid fitness. No adult parasitoids eclosed from mummies on
ancymidol treated plants. Paclobutrazol reduced parasitoid size, and paclobutrazol and uniconazole
reduced female:total ratio. This study shows that PGRs can negatively affect parasitoid fitness, and reduce
parasitism, suggesting the potential for negative long-term effects on the efficacy of biological control.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The efficacy of augmentation biological control is often unpre-
dictable as it is influenced by many biotic and abiotic factor (Collier
and Van Steenwyk, 2004; Frank, 2010). Although the effect of many
ecological interactions on biological control efficacy has been well
studied (Holt and Lawton, 1994; Martinou et al., 2010; Fill et al.,
2012), we know little about the impact of common horticulture
practices such as the use of plant growth regulators (but see
Oetting and Latimer, 1995 and Uçkan et al., 2008). Plant growth
ll rights reserved.
regulators (PGRs) are non-nutrient, organic compounds used in or-
namental plant production to modify plant growth and develop-
ment (Basra, 2000). PGRs can be used to reduce plant growth
rate, improve coloring, increase branching and bushiness, or syn-
chronize flowering times (Basra, 2000). By changing plant chemis-
try, physiology, and architecture PGRs may alter arthropod
behavior and development (e.g. Prado and Frank, 2013). Although
PGRs are widely used in horticulture and agriculture, still much re-
mains to be known about their effects on herbivores, natural ene-
mies, and their interactions.

PGRs have the potential to reduce pest population growth by
reducing fecundity, egg viability, and increasing development time
(Visscher, 1980; Coffelt et al., 1993; Kaur and Rup, 2002). For
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Fig. 1. Overall mean (±SE) number of aphids on caged pepper plants during a three week experiment in which plants were untreated or treated with one of four PGRs and had
parasitoids absent or present within the cages. Though a non-parametric mixed-effects ANOVA was performed to determine the effects of parasitoids and PGRs on aphid
abundance, the untransformed aphid abundances are presented in this graph. Different letters above horizontal bars indicate significant (P < 0.05) main effect of parasitoids
on aphid abundance.
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example, Coffelt et al. (1993) showed that high doses of pac-
lobutrazol significantly slowed the development and decreased
the survival of Anisota senatoria Smith (Lepidoptera: Saturnidae).
Several phloem feeding insects including aphids and lace bugs
are also negatively affected by PGRs (Honeyborne, 1969; Coffelt
and Schultz, 1988). Chlormequat chloride was found to reduce
Aphis fabae Scopoli (Hemiptera: Aphididae) fecundity and survival,
and ethylene-bisnitrourethane to reduce its size (Honeyborne,
1969). Although we have some evidence that PGRs can compro-
mise herbivore development (e.g. Visscher, 1980; Coffelt et al.,
1993; Kaur and Rup, 2002), few studies have investigated the ef-
fects of these chemicals on natural enemies.

By affecting the quality of aphid hosts, PGRs could alter parasit-
oid abundance, fitness, or efficacy. For example, Honeyborne
(1969) found that chlormequat chloride and N-dim-
ethylaminosuccinamic acid (B995) reduce aphid size. Parasitoids
developing in these smaller hosts may also be reduced in size
(Sequeira and Mackauer, 1992) resulting in reduced fecundity (El-
lers et al., 1998; Eijs and van Alphen, 1999; Sampaio et al., 2008).
Parasitoids developing in small hosts also tend to have higher male
sex ratio and mortality rates than those developing in large hosts
(Jarosik et al., 2003). Additionally, small parasitoids tend to have
fewer fat reserves (Ellers et al., 1998; Eijs and van Alphen, 1999),
thus reducing their dispersal potential (Ellers et al., 1998) and their
ability to survive when food is unavailable (Ellers et al., 1998; Eijs
and van Alphen, 1999). Along with altering parasitoid life history
traits, PGRs can reduce parasitism by increasing plant architectural
complexity (Prado and Frank, 2013). Thus, the potential benefit of
PGRs to reduce pest population growth could be nullified if nega-
tive effects on parasitoids disrupt biological control programs.

Myzus persicae Sulzer (Hemiptera: Aphididae) is one of the most
important pests of greenhouse ornamental and vegetable crops
(Heathcote, 1962). M. persicae feeds on over 100 vegetable and or-
namental plant species (Baker, 1994), many of which are treated
Fig. 2. Overall mean (±SE) number of aphid mummies on caged pepper plants with para
with PGRs. Though a non-parametric mixed-effects ANOVA was performed to determin
abundances are presented in this graph. Means with different letters are significantly d
with plant growth regulators during greenhouse production. Aphi-
dius colemani Viereck (Hymenoptera: Braconidae) is a solitary, koi-
nobiont, endoparasitoid (Starý, 1975) used for biological control of
economically important pest aphids including M. persicae (van
Steenis, 1995). As such, A. colemani development is closely tied to
its hosts’ development, making it vulnerable to changes in host
quality, when its host feeds on toxic or low quality plant material
(Kalule and Wright, 2005). In a previous experiment, we showed
that the PGR paclobutrazol reduced aphid suppression by A. cole-
mani by increasing plant architectural complexity (Prado and
Frank, 2013). In this study, we expand on our previous research
to include four of the most commonly used PGRs (Whipker and
Evans, 2012) to determine (1) how different PGRs interact with
A. colemani to affect M. persicae abundance and suppression, and
(2) how different PGRs affect A. colemani fitness and abundance.
To achieve our objectives, we compared aphid populations on or-
namental Black Pearl Pepper plants (Capsicum annuum ‘Black
Pearl’) treated with one of four plant growth regulators to each
other and to untreated plants in the presence and absence of A.
colemani. Furthermore, we compared life history traits of parasit-
oids reared on treated and untreated plants. This research will be
the first to document the effects of multiple PGRs on an aphid par-
asitoid’s fitness and efficacy, and should assist in improving biolog-
ical control programs.
2. Methods

2.1. Study system

A. colemani were purchased from Koppert Biological Systems
(Howell, MI) (product: Aphipar). Upon receipt, the mummies were
placed in a 61 � 61 cm cage where the parasitoids could emerge
and mate. During that time, they were provided with a 25%
sitoids during a three week experiment in which plants were untreated or treated
e the effect of each treatment on mummy abundance, the untransformed mummy
ifferent at the P = 0.05 level.



Fig. 3. Total number of parasitoids that emerged from mummies removed from pepper plants that were untreated or treated with PGRs. Bars with different letters are
significantly different at the P = 0.05 level. The gray dots indicate the total number of mummies that were removed from the pepper plants (right y-axis) from which the
parasitoids emerged.
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sucrose-water solution. All female parasitoids were used less than
72 after emergence. We used M. persicae from a laboratory colony
that was started from field collected aphids. The aphids were
reared on Black Pearl Pepper plants (Capsicum annuum ‘Black
Pearl’) in an incubator at 25 �C and 70–80% RH.

All Black Pearl pepper plants were obtained from cuttings.
Source plants were cut 5–10 cm below the bud. The cut tips were
then dipped into ‘‘Rhizopon AA Dry Powder Rooting Hormone #1’’
(Active ingredient (a.i.): 0.1% 3-Indolebuteric acid) (Earth City, MO)
and planted in 48 pot trays (56 cm by 25.5 cm tray) with sifted Faf-
ard 2P mix (Agawam, MA) for germination. The cuttings were left
to root in a misting area for 6 weeks before they were transplanted
into 15.2 cm-diameter pots with Farfard 2P soil mix with 396.44 g
of Scotts Osmocote (N-P-K: 14-14-14) fertilizer (Marysville, OH)
for every 0.08 m3 of soil. Each PGR was applied as a drench to 12
plants 2.5 weeks after transplanting the cuttings. 118.29 ml of
solution were applied to each pot. Rates were as follows: 8 ppm
of Bonzi� (a.i. paclobutrazol 0.4%), 2 ppm of Topflor� (a.i. flurprim-
idol 0.38%), 14 ppm of Abide� (a.i. ancymidol 0.0264%) and 2 ppm
of Sumagic� (a.i. uniconazole 0.055%). Twelve plants were left un-
treated as controls. Plants were left to grow for another 10 days be-
fore the experiment began.
2.2. Effect of four PGRs on aphid abundance

To determine the effects of four plant growth regulators on
aphid abundance and suppression, we conducted a 2 � 5 factorial
experiment that crossed 5 plant growth regulator treatments
(‘Ancymidol’, ‘Paclobutrazol’, ’Control’, ‘Uniconazole’ and ‘Flur-
primidol’) with two parasitoid treatments (‘absent’ and ‘present’).
Every treatment combination was replicated 6 times for a total of
60 ‘Black Pearl’ pepper plants. Every pot was covered in a bag made
of organdi fabric that was supported from within by 45 cm bamboo
Fig. 4. Overall mean (±SE) hind tibia length of parasitoids emerging from mummies rem
emerged from ancymidol, and therefore no hind tibia length measurements could be ta
stakes and fastened around the base of the pot using a binder clip.
On the first day, we infested each plant with 15 M. persicae of ran-
dom instars from the laboratory colony. After 4 h two mated fe-
male A. colemani were released into cages assigned to the
parasitoid ‘present’ treatments. One week after parasitoids were
released, we recorded total aphid and mummy abundance on each
pepper plant. This process was repeated five times, every 72 h, fol-
lowing the first data-collection day.

2.3. Effect of four PGRs on A. colemani life history traits

On the last day of the experiment (day 19), mummies were
picked off the plants from all the parasitoid ‘present’ treatments
and placed in glass vials plugged with cotton. All mummies were
grouped by PGR treatment for a total of five vials. Parasitoids were
reared out of mummies in the laboratory and preserved in 90%
alcohol upon emergence. We examined each parasitoid under a
dissecting microscope with an ocular micrometer to determine
their gender and measure the length of their left hind tibia. Parasit-
oid percent emergence was determined by dividing the total num-
ber of emerged parasitoids by the total number of mummies from
each treatment. In 5 of the plants (1 from Paclobutrazol, 1 from the
untreated, and 3 from the Flurprimidol) no mummies formed over
the course of the experiment, so they were included as replicates in
the parasitoid ‘absent’ treatment.

2.4. Statistical analysis

As total aphid abundance and mummy abundance could not be
normalized, a nonparametric factorial repeated measures analysis
was performed using the package nparLD (Noguchi et al., 2012)
to determine how time, PGRs, parasitoids, and their interaction af-
fected their numbers. Differences in parasitoid percent emergence
oved from pepper plants that were untreated or treated with PGRs. No parasitoids
ken. Means with different letters are significantly different at the P = 0.05 level.



Fig. 5. Overall ratio of female:total number of emerged parasitoids. Means with
different letters are significantly different at the P = 0.05 level. The gray dots
indicate the total number of emerged parasitoids (right y-axis) from which the
female ratio was calculated.
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across PGRs was determines using a Pearson’s Chi square test. A
Chi square test was also used to calculate the differences in para-
sitoid sex ratio between PGR treatments. Lastly, a two-way analy-
sis of variance (ANOVA) was used to determine how PGRs and
parasitoid sex interact to affected parasitoid size. All analyses were
performed using R version 2.14.2.
3. Results

3.1. Effect of four PGRs on aphid abundance

There was a significant interaction between parasitoid presence
and time on aphid abundance, such that aphid abundance in-
creased more slowly when parasitoids were present than when
they were absent (F1.94,1 = 9.74; P < 0.0001). The main effects of
time (F1.94,1 = 188.34; P < 0.0001) and parasitoids were also signif-
icant (F1,1 = 52.95; P < 0.0001, Fig. 1), however there was no signif-
icant main effect of PGR (F3.50,1 = 1.38; P = 0.24). The interaction
between time, parasitoids and PGR was not significant
(F6.00,1 = 0.97; P = 0.44) nor were the interactions between PGR
and time or PGR and parasitoids (F6.00,1 = 1.122; P = 0.35;
F3.50,1 = 0.54; P = 0.68, respectively).

There was a significant main effect of PGR on mummy abun-
dance (F3.47,1 = 3.71; P = 0.0077) (Fig. 2) wherein mummy abun-
dance was significantly lower on paclobutrazol-treated plants
than for the other treatments. There was also a significant effect
of time (F2.19,1 = 13.66; P < 0.0001) on mummy abundance. How-
ever, there was no significant interaction between PGR and time
on mummy abundance (F6.16,1 = 0.78; P = 0.59).
3.2. Effect of four PGRs on A. colemani life history traits

A chi-square test showed a significant effect of PGR on the fre-
quency of emerged parasitoids (v2

4 = 123.99; P < 0.0001) (Fig. 3).
There was also a significant interaction between parasitoid sex
and PGR on parasitoid size (F3192 = 2.83; P = 0.0392), wherein fe-
male parasitoids emerging from paclobutrazol treated plants were
significantly smaller, and male parasitoids emerging flurprimidol
and uniconazole treated plants were significantly larger than fe-
males and males emerging from the control (Fig. 4). The main ef-
fects of sex and PGR were also significant (F1192 = 32.73;
P < 0.0001; F3192 = 10.05; P < 0.0001, respectively). Parasitoid fe-
male ratio (female:total) was also significantly affected by PGR
(v2

3 = 63.52; P < 0.0001), resulting in highly male-biased popula-
tions on paclobutrazol and uniconazole treated plants and fe-
male-biased populations on flurprimidol and the untreated
control plants (Fig. 5).
4. Discussion

In this study we assessed how four of the most commonly used
PGRs affect M. persicae abundance and suppression, and A. colemani
fitness. Previous studies showed that PGRs can decrease herbivore
reproduction rate (Visscher, 1980; Kaur and Rup, 2002), increase
their development time (Coffelt and Schultz, 1988), and decrease
their survival (Coffelt et al., 1993). Despite the generally negative
effects of PGRs on herbivores, only one study has documented
the effect of a PGR on parasitoid development and reproduction
(Uçkan et al., 2008). Prado and Frank (2013) found that pac-
lobutrazol reduces biological control of M. persicae by increasing
plant architectural complexity. However, they did not consider
physiological effects on parasitoid life history traits as a mecha-
nism for this reduced aphid suppression. Based on these previous
studies, our hypothesis was that PGRs would reduce aphid abun-
dance and suppression by A. colemani. We also predicted that
PGR treated plants would have indirect negative effects on parasit-
oids via their aphid hosts. We did not find any significant effect of
PGRs on aphid abundance or suppression but three of the four
PGRs tested had negative effects on at least one aspect of A. cole-
mani life history.

To understand the ways PGRs may affect natural enemy effi-
cacy, we began by looking at the percentage of adult parasitoids
successfully emerging from their hosts. We found a significantly
lower percentage of adult parasitoids emerging from ancymidol,
flurprimidol, and uniconazole treated plants than from pac-
lobutrazol treated plants. While about 56% of adult parasitoids
emerged from mummies on flurprimidol and uniconazole treated
plants, 0% of the parasitoids successfully emerged in the ancymidol
treatment. Several factors are known to affect A. colemani emer-
gence, among which are temperature, desiccation, and declining
parasitoid energy reserves (Colinet et al., 2006). As all mummies
were placed in the same sized vials and in the same environmental
chamber during emergence, we do not believe that temperature or
humidity could have affected parasitoid emergence between treat-
ments. Uçkan et al. (2008) suggested that changes in host hor-
mones caused by the ingestion of the PGR, gibberellic acid,
reduced host survival and increased its developmental abnormali-
ties, potentially affecting parasitoids. We do not know whether the
PGRs in our study had a toxic effect on parasitoids, or reduced the
nutritional quality of their hosts but both of these have been
shown to reduce parasitoid survivorship to adulthood (Slansky,
1986; Thorpe and Barbosa, 1986; Holton et al., 2003). What is clear
is that if the 0% emergence observed in the ancymidol treatment
were to continue, the A. colemani population on these plants would
eventually be reduced to zero, and along with it, aphid suppres-
sion. Though we did not observe reduced aphid suppression in this
study, we suspect that prolonging the experiment for a few more
parasitoid generations would have intensified the population-level
effects of the PGRs on both aphids and parasitoids, resulting in
more distinct differences in aphid abundances.

As only female parasitoids can parasitize aphids, the sex ratio of
the emerged parasitoids can greatly affect aphid suppression (Ha-
gen and van den Bosch, 1968). For instance, although the greatest
number of parasitoids emerged from the paclobutrazol treated
plants, only 6% of these parasitoids were female and able to con-
tribute to biological control of M. persicae. The reduced female ratio
observed for paclobutrazol and uniconazole reared parasitoids
could be due to reduced host quality. Resource limitation during
parasitoid larval development has been shown to cause female lar-
val mortality, resulting in a higher male survivorship, and conse-
quently a male-biased sex ratio (Jarosik et al., 2003). Aphid hosts
may have been resource limited either because of direct toxicity
effects (Uçkan et al., 2008) or because of the reduced nutritional
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value of the uniconazole and paclobutrazol treated plants (Fox
et al., 1990, 1996; Rademacher, 2000).

While a high female ratio is important for effective biological
control (Heimpel and Lundgren, 2000), not all females perform
equally. In general, large parasitoids have higher fitness and have
higher host searching efficiency than small parasitoids (Visser,
1994). Large parasitoids have more fat reserves than small parasit-
oids, allowing them to disperse farther and to survive longer when
food is unavailable (Eijs and van Alphen, 1999). Parasitoid size is
also positively correlated with egg number (Heimpel and Rosen-
heim, 1998; Eijs and van Alphen, 1999; Sampaio et al., 2008),
meaning that smaller parasitoids may become egg-limited and
consequently less effective biological control agents earlier in their
life (Rosenheim and Rosen, 1991; Heimpel and Rosenheim, 1998).
In our study, we found that female parasitoids reared on pac-
lobutrazol treated plants were significantly smaller than parasit-
oids from the other treatments. As with female ratio, and
parasitoid percent emergence, we can only hypothesize how para-
sitoid size was affected by the PGR. For instance, it is possible that
parasitoid size was reduced via a reduced host size caused by toxic
effects of paclobutrazol (Honeyborne, 1969). It is also possible that
direct PGR toxicity affected parasitoid development, reducing its
body size (Couty et al., 2001).

Whatever the mechanism may be, of the four PGRs tested,
ancymidol resulted in parasitoids with the lowest fitness since
none completed development. Of the PGRs that resulted in adult
parasitoids, paclobutrazol had the most negative effects on parasit-
oid fitness. It is evident from this study that PGRs can have strong,
but variable effects on parasitoid life history traits. However, fur-
ther research is needed to uncover the mechanism through which
these effects occur, and their long-term effects on biological con-
trol. This work highlights how a common horticultural practice
can contribute to the unpredictable outcome of biological control.
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