Table 1. Mean (± standard deviation) pH, total alkalinity, and macronutrients of geotextile leachate collected from geotextile bag and used in ebb and flow system.

	Leachate
pH	8.1 ± 0.1
Total alkalinity (mg·L ⁻¹ as CaCO ₃)	880.0 ± 10.0
Macronutrients (mg· L^{-1})	
Total ammonia-nitrogen	60.1 ± 14.1
Nitrate-nitrogen	24.0 ± 17.8
Phosphorus (as PO ₄ ⁻³)	29.9 ± 10.2
Calcium	185.0 ± 32.4
Magnesium	80.7 ± 21.7

	SPAD	Height (cm)	Growth index (cm)	Shoot dry wt. (g)	Root dry wt. (g)	Shoot:root ratio
Dwarf						
Standard	41.0b	13.9a	20.0a	5.5a	1.4a	4.0a
Small	47.4a	12.6a	18.8a	5.0a	1.3a	3.9a
Standard						
Green	37.7a	15.1b	21.5b	6.4a	1.5a	4.4a
White	42.1a	17.6a	24.8a	6.8a	1.7a	4.2a

 Table 2. Pak choi growth response to geotextile bag leachate dewatering aquaculture effluent 18 days after planting in the ebb and flow system.

Mean separation within varieties in the same column followed by a different letter are significantly different by t-test at $P \le 0.05$.

Table 3. Macronutrient and micronutrient concentrations of dwarf and standard pak choi plant
tissue 18 days after planting in the ebb and flow system supplied with leachate from geotextile
bag.

	Dv	warf	Star		
	Standard	Small	Green	White	Sufficient ^a
Macronutrients (%)					
Nitrogen ^b	3.1a	3.2a	3.0a	2.8a	2.39-5.51
Phosphorus	0.3b	0.4a	0.4a	0.3a	0.36-0.80
Potassium	6.2a	4.8b	6.2a	5.4a	2.86-5.74
Calcium	2.5a	2.3a	1.7a	2.2a	1.29-3.21
Magnesium	0.5a	0.6a	0.4a	0.5a	0.19-0.35
Sulfur <u>Micronutrients (</u> mg·L ⁻¹)	0.9a	0.8a	0.8a	0.8a	0.41-0.77
Boron	62.4a	64.5a	59.3a	53.0a	19-39
Manganese	162.7a	183.3a	163.0a	233.0a	85-363
Iron	228.1a	455.0a	131.6a	170.3a	35-52
Copper	5.2a	6.2a	4.5a	4.7a	_
Zinc	25.6b	33.3a	30.7a	28.4a	_

^aUchida 2000 ^bFor each variety, means within row separated by different letters are significantly ($P \le 0.05$) different with t- test.

To days after planting.								
	SPAD	Height (cm)	Growth index (cm)	Shoot dry wt. (g)				
			•					
Dwarf								
Fertilizer	43.5a	9.4a	15.6a	2.3a				
Leachate	27.0b	7.7b	14.3a	1.3b				
Standard								
Fertilizer	41.0a	12.8a	22.2a	4.2a				
Leachate	22.6b	8.2b	17.8b	1.8b				

Table 4. Pak choi growth response to inorganic fertilizer or geotextile bag leachate16 days after planting.

Mean separation within varieties in the same column followed by a different letter are significantly different by t-test at $P \le 0.05$.

Table 5. Mean (± standard deviation) pH, total alkalinity, and macronutrients of geotextile leachate collected from geotextile bag dewatering effluent from tilapia farm in Browns, Alabama.

	Leachate
pH	7.9 ± 0.1
Total alkalinity (mg·L ⁻¹ as CaCO ₃)	305.0 ± 35.4
Macronutrients (mg· L^{-1})	
Total ammonia-nitrogen	15.4 ± 4.5
Nitrate-nitrogen	11.3 ± 8.1
Potassium	29.0 ± 7.1
Phosphorus (as PO ₄ ⁻³)	62.3 ± 43.8
Calcium	70.0 ± 28.2
Magnesium	25.0 ± 21.2

Substrate	Total porosity (%)	Container capacity (%)	Air space (%)	Bulk density (g·cm ⁻³)
		Experiment 1		
100% F3B ^b	82.7	65.2	17.5	0.15
25% AE	82.3 ^{NS}	68.5 ^{NS}	13.8 ^{NS}	0.23***
50% AE	AE 77.5* 69.7 ^{NS} 7.8 [*]		7.8**	0.27***
75% AE	78.2*	67.2 ^{NS}	11.0**	0.29***
		Experiment 2		
100 % F3B ^b	80.1	65.4	14.7	0.15
5% AE	79.2 ^{NS}	62.1 ^{NS}	17.2 ^{NS}	0.17**
10% AE	77.2*	63.3 ^{NS}	13.9 ^{NS}	0.18***
15% AE	82.5 ^{NS}	65.3 ^{NS}	17.3 ^{NS}	0.19***
20% AE	79.8 ^{NS}	65.0^{NS}	14.9 ^{NS}	0.20***

Table 6. Physical properties ^a of Fafard 3B mix (F3B) and F3B amended with different amounts (v/v) of dewatered aquaculture effluent (AE) in the first and second experiments.

^{NS,} *,**,*** not significant, or different from control at 0.05, 0.01, or 0.001, respectively, Dunnett's two tailed t-test; n=3.

^a Physical properties determined using methods described by Bilderback et al. (1982).

^bControl.

Table 7. Particle size distribution for Fafard 3B mix (F3B) and F3B amended with different amounts (v/v) of dewatered aquaculture effluent (AE) expressed as percent weight of sample in each texture group for Experiments 1 and 2.^a

Substrate	Coarse ^b	Medium	Fine
		Experiment 1	
100% F3B ^c	28.3	31.1	40.6
25% AE	13.0***	41.0**	46.0^{NS}
50% AE	8.4***	48.2***	43.4 ^{NS}
75% AE	3.4***	50.5***	46.1 ^{NS}
		Experiment 2	
100% F3B ^c	23.7	33.4	43.0
5% AE	19.3*	37.6**	43.1 ^{NS}
10% AE	17.2*	42.7***	40.1^{NS}
15% AE	14.4***	44.1***	41.6 ^{NS}
20% AE	12.1***	44.4***	43.5 ^{NS}

^{NS,} *,**,*** are not significant or different from control at 0.05, 0.01, or

0.001, respectively, Dunnett's two tailed t-test; n = 3.

^a Fafard 3B (Conrad Fafard, Inc., Agawam, MA); dewatered effluent from freshwater nile tilapia production system.

^bCoarse>3.35 mm; Medium \geq 1.00 mm and \leq 3.35 mm; Fine <1.00 mm ^c Control.

	-	-					Param	neter ^b							
	pН	EC	NH ₄ -N	NO ₃ -N	Ca	Mg	Р	Κ	S	Na	В	Fe	Mn	Zn	
Experiment 1															
Substrate															
F3B	6.1	1.0	15.6	21.3	43.6	41.4	8.9	103.9	102.4	15.7	0.12	0.77	0.14	0.46	
AE	6.8	1.8	85.0	1.4	49.4	36.7	36.5	156.8	104.5	56.3	0.21	0.70	0.16	0.67	
Experiment 2															
Substrate															
F3B	5.9	1.0	< 0.5	29.4	49.6	48.9	3.1	91.0	89.4	14.1	0.13	0.99	0.27	0.43	
AE	6.4	2.3	125.4	1.1	75.2	45.0	62.0	185.1	108.9	78.5	0.26	1.01	0.31	0.87	
^a Fafard 3B (Con	nrad F	afard,	Inc., Aga	wam, MA)); dewate	red efflu	ient froi	m freshwa	ater nile ti	lapia pr	oduction	n systen	1.		

Table 8. Chemical properties from composite sample of Fafard 3B mix (F3B) and dewatered aquaculture effluent (AE) used as soilless substrates in Experiments 1 and 2.^a

^b Electrical conductivity (EC), 1 mS·cm⁻³ = 1 mmho·cm⁻¹; macronutrients and micronutrients reported as $mg \cdot L^{-1}$, 1 mg·L⁻¹ = 1 ppm.

Table 9. Container leachate pH and electrical conductivity (EC) for Fafard 3B mix (F3B) and F3B amended with different amounts (v/v) of dewatered aquaculture effluent (AE) 3, 8, and 13 days after planting (DAP) in the first experiment and 3, 10, and 17 DAP in the second experiment.^a

*			pН			EC (mS·cm ⁻¹)	
Experiment 1	Substrate	<u>3 DAP</u>	<u>8 DAP</u>	<u>13 DAP</u>	<u>3 DAP</u>	<u>8 DAP</u>	<u>13 DAP</u>
	100% F3B ^b	6.0	6.2	5.9	1.8	0.5	0.6
	25% AE	7.8***	7.6***	7.2***	2.5^{*}	1.7***	2.5***
	50% AE	8.2***	7.8***	7.6***	3.9***	2.5***	3.1***
	75% AE	8.4***	7.8***	7.6***	5.0***	4.7***	4.7***
Experiment 2		<u>3 DAP</u>	<u>10 DAP</u>	<u>17 DAP</u>	<u>3 DAP</u>	<u>10 DAP</u>	<u>17 DAP</u>
	100% F3B ^c	5.9	5.9	6.3	1.8	0.8	0.4
	5% AE	6.9***	6.2*	6.6**	1.8 ^{ns}	2.4***	1.1 ^{ns}
	10% AE	7.4***	6.8***	6.4 ^{ns}	3.0***	3.2***	2.1***
	15% AE	7.7***	7.0***	6.7***	3.5***	3.0***	2.3***
	20% AE	7.7***	7.8***	7.3***	5.7***	4.1***	2.7***

^aFafard 3B (Conrad Fafard, Inc., Agawam, MA); dewatered effluent from freshwater nile tilapia production system. ^bControl

 ns,* , **, *** are not significantly different or significantly different from the control at 0.05, 0.01, or 0.001, respectively; Dunnett's two tailed t-test; Exp. 1 and Exp. 2, n = 5.

_	Plant height (cm)	$LA (cm^2)$	LDM (mg)	SDM (mg)	TDM (mg) ^a
Substrate ^b			Experiment 1		
100% F3B°	7.6	75.2	204.6	38.3	253.6
25% AE	5.4***	37.9***	92.2***	18.1***	120.6***
50% AE	2.3***	5.7***	13.0***	2.8***	21.6***
75% AE	2.0***	2.9***	6.8***	2.4***	14.2***
100% F3B ^c	12.5	108.1	Experiment 2 440.3	149.9	603.9
5% AE	15.8***	242.6***	822.4***	263.0***	1,102.2***
10% AE	15.3***	170.9***	410.1 ^{NS}	146.5 ^{NS}	570.6 ^{NS}
15% AE	14.7**	158.9**	391.3 ^{NS}	140.8 ^{NS}	547.6 ^{NS}
20% AE	11.3 ^{NS}	63.5**	121.8***	56.6***	186.1***

Table 10. Tomato seedling plant height, leaf area (LA), leaf dry matter (LDM), stem dry matter (SDM), and total dry matter (TDM) measured 14 and 21 days after potting in the first and second experiment, respectively.

^{NS},*,**,*** are non-significant or significantly different from the control at 0.05, 0.01, or 0.001, respectively; Dunnett's two tailed t-test.

^a Includes cotyledons.

^b Substrates were: F3B = Fafard 3B mix (Conrad Fafard, Inc., Agawam, MA); dewatered effluent from freshwater nile tilapia production system.

^c Control.

Main Effect	p	H	EC (m)	$S \cdot cm^{-1}$	Height
	0 DAP ^c	25 DAP	0 DAP	25 DAP	26 DAP
Substrate					
100% F3B	6.2c	6.8b	1.7d	0.3c	13.4a
10% AE	7.1a	6.5c	4.7c	0.7c	14.7a
25% AE	7.1a	6.7b	8.2b	2.1b	11.6b
50% AE	6.9b	7.5a	10.1a	3.4a	10.7b
Water					
Municipal		6.9a		1.3b	12.6a
Fertilizer		6.8b		1.9a	12.5a
Significance					
Substrate	***	***	***	***	***
Water		***		***	NS
Substrate and Water		***		NS	NS

Table 11. The pH and electrical conductivity (EC) of Fafard 3B (F3B) and F3B amended with different amounts of dewatered aquaculture effluent (AE) 0 and 25 days after potting (DAP) along with plant height 26 DAP.^{a,b}

^a Fafard 3B (Conrad Fafard, Inc., Agawam, MA).

^b pH and electrical conductivity (EC) of solution obtained by the Virginia Tech pour-thru method; $1 \text{ mS} \cdot \text{cm}^{-1} = 1 \text{ mmho/cm}$.

^c Mean separation of main effects within the same column followed by a different letter are significantly different by Tukey's test at $P \le 0.05$.

	Leaf dry matter (mg)		Stem dry matter (mg)		Total dry matter (mg)		Leaf greenness ^b	
Water Source ^c	Fertilizer ^d	Municipal	Fertilizer	Municipal	Fertilizer	Municipal	Fertilizer	Municipal
Substrate								
100% F3B ^e	0.9 Aa	0.3 Bb	0.2 Aa	0.1 Bb	1.1 Aa	0.4 Bb	57.6 Aa	44.3 Bb
10% AE	0.8 Aa	0.8 Aa	0.2 Aa	0.2 Aa	1.0 Aa	1.0 Aa	51.3 Ab	48.9 Aa
25% AE	0.4 Ab	0.4 Ab	0.1 Ab	0.1 Ab	0.5 Ab	0.5 Ab	46.1 Ac	45.1 Ab
50% AE	0.2 Ac	0.2 Ab	0.1 Ab	0.1 Ab	0.3 Ac	0.3 Ab	46.7 Ac	45.0 Ab
Significance ^f								
Substrate	***		***		***		***	
Water	*		NS		NS		***	
Substrate and Water	***		*		***		***	

Table 12. Effect of substrate and water interaction on pepper plant leaf dry matter, stem dry matter, total dry matter, and leaf greenness 26 d after potting in Fafard 3B (F3B) and F3B amended with different amounts of dewatered aquaculture effluent (AE).^a

^a Fafard 3B (Conrad Fafard, Inc., Agawam, MA); aquaculture effluent from freshwater nile tilapia production system.

^b Leaf greenness of four recently mature leaves per plant was quantified with a chlorophyll meter (SPAD–502; Minolta Camera Company, Ramsey, NJ).

^c Fertilizer = 20N–4.4P–16.6K; Municipal = Auburn, AL city water.

^d For each parameter values within column followed by different lower-case letters are significantly different for pairwise comparisons of substrate within each level combination of water by Bonferroni adjusted α -level ($P \le 0.05$).

^e For each parameter values within row followed by different upper-case letters are significantly different for pairwise comparisons of water within each level combination of substrate by Bonferroni adjusted α -level ($P \le 0.05$).

^fNS = Nonsignificant; $P \le 0.05$ (*), 0.01 (**), or 0.001 (***) based on two–way analyses of variance.

Main Effect	<u>р</u>	pH ^c		$nS \cdot cm^{-1}$)	SPAD ^d
	0 DAP	15 DAP	0 DAP	15 DAP	16 DAP
Substrate					
100% F3B	6.2c	7.1ab	1.7d	0.1c	42.6c
10% AE	7.1a	7.2a	4.7c	0.4c	46.0b
25% AE	7.1a	6.7c	8.2b	1.9b	51.4a
50% AE	6.9b	7.0b	10.1a	5.1a	52.3a
Water					
Municipal		6.9b		1.9a	48.6a
Fertilizer		7.0a		1.8a	47.6a
Significance					
Substrate	***	***	***	***	***
Water		*		NS	NS
Substrate and Water		NS		NS	NS

Table 13. The pH and electrical conductivity (EC) of Fafard 3B (F3B) and F3B amended with different volumes of dewatered aquaculture effluent (AE) 0 and 15 days after pottingg (DAP) and leaf greenness of pak choi 16 DAP.^{a,b}

^aFafard 3B (Conrad Fafard, Inc., Agawam, MA).

^bpH and electrical conductivity (EC) of solution 16 and 36 d after planting obtained by the pour-

through method; $1 \text{ mS} \cdot \text{cm}^{-1} = 1 \text{ mmho/cm}$.

^cMean separation of main effects within the same column followed by a different letter are significantly different by Tukey's test at $P \le 0.05$ (*), 0.01 (**), or 0.001 (***); NS = Nonsignificant.

^dLeaf greenness of three recently mature leaves per plant was quantified with a chlorophyll meter (SPAD–502; Minolta Camera Company, Ramsey, NJ).

(1 3D) and 1 3D amended with different volumes of dewatered aquaeutate efficient (112).							
	Height (cm)	Growth Index (cm)	Total dry matter (g)				
Main Effect							
Substrate							
100% F3B	14.6ab	17.1b	1.8b				
10% AE	16.9a	21.6a	4.7a				
25% AE	13.9b	21.0a	4.4a				
50% AE	10.9c	15.0b	1.9b				
Water							
Fertilizer	14.1a	19.2a	3.5a				
Municipal	14.0a	18.1a	2.9b				
Significance ^b	_						
Substrate	***	***	***				
Water	NS	NS	**				
Substrate and Water	NS	NS	NS				

Table 14. Plant height, growth index, and total dry matter of pak choi 16 days after potting in Fafard 3B (F3B) and F3B amended with different volumes of dewatered aquaculture effluent (AE).^a

^a Fafard 3B (Conrad Fafard, Inc., Agawam, MA); dewatered aquaculture effluent from nile tilapia production system

^bMean separation of main effects within the same column followed by a different letter are significantly different by Tukey's test at $P \le 0.05$.