

GNext

COLORADO STATE UNIVERSITY

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE Monitoring air quality: Relationship of air components with management, handling, and animal welfare

Diego Manriquez DVM PhD November 21st, 2024

Outline

- Definition of Air Quality
- Air Quality in dairies: state of art
- Ongoing research
 - Methods
 - Findings
 - Limitations
 - Future

COLORADO STATE UNIVERSITY

AgNext

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

Air Quality

What does air quality (AQ) mean?

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Air is our media

What can affect water (medium) quality?

Water composition

Filtration rate (ventilation)

Number of fish

Fish diet (refusal and excretion)

Tank size and cleaning

Fish type

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Air is our medium

AQ is determined by the **amount** of **pollutants** present in our **medium** which can be harmful for **health and the environment**

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Air is our medium

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Air is our medium

Define our medium

Outdoor AQ

- Urban and rural areas \rightarrow Chronic exposure
- Emergencies \rightarrow Acute exposure

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Air is our medium

Define our medium

Indoor AQ

- Households
- Industrial settings \rightarrow Acute/Chronic exposure

AQ Standards for dairies?

AQ standards

- Air composition
 - Gases
 - Chemicals
 - Particulates
 - Physical
 - Microbes

Important

 ✓ Air components variate significantly depending on the place and time of the day

 Humidity can affect the density of the air composition

Air pollutants

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Health and environment risks

Gases	Chemical	Particulates	Physical	Microbes
 Carbon monoxide Carbon dioxide Sulfur dioxide Hydrogen sulfide Nitrogen dioxide Methane Ozone 	 Ammonia Volatile organic compounds Lead 	 Particulate matter 2.5 &10 (ug/m³) 	 Temperature Humidity THI Solar radiation 	BacteriaVirusFungi

Air pollutants

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Health and environment risks for dairy operations?

Measure then mitigate

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

- Complex, semi-closed environment, daily human-animal interaction
- · Air pollutants have been described

Cammalleri et al., 2022; Islam et al., 2022; Place and Mitloehner, 2010; EPA, 2024

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

- AQ affects milk production and worker health
 - Acute, chronic, subclinical effects?
- Cow as canaries study (Beaupied et al., 2022)

Local EPA AQ monitors Located between 20 to 42 km from 3 Dairies

- Cow as canaries study (Beaupied et al., 2022)
- Bulk tank Somatic Cell Counts (SCC)
 - 10 unit increase daily average THI increase SCC by 14,500 cells/mL
 - 10 ug/m³ daily average PM_{2.5} increase SCC by 105,500 cells/mL
- Daily milk production
 - 10 unit increase daily average THI reduced milk yield by 1.2 lb./cow/day
 - 10 ug/m³ daily average $PM_{2.5}$ reduced milk yield by 3.5 lb./cow/day

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

Research opportunities

Dairy worker exposure

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

HHS Public Access

Author manuscript J Occup Environ Hyg. Author manuscript; available in PMC 2021 December 03.

Published in final edited form as:

J Occup Environ Hyg. 2018 March ; 15(3): 182–193. doi:10.1080/15459624.2017.1403610.

Personal exposure of dairy workers to dust, endotoxin, muramic acid, ergosterol, and ammonia on large-scale dairies in the high plains Western United States

Margaret E. Davidson^{a,b,f}, Joshua Schaeffer^{a,b}, Maggie L. Clark^{a,b}, Sheryl Magzamen^{a,b}, Elizabeth J. Brooks^{a,b}, Thomas J. Keefe^{a,b}, Mary Bradford^{a,b}, Noa Roman-Muniz^{a,c}, John Mehaffy^{a,b}, Gregory Dooley^{a,b}, Jill A. Poole^d, Frank M. Mitloehner^e, Sue Reed^f, Marc B. Schenker^e, Stephen J. Reynolds^{a,b,f}

HHS Public Access

Author manuscript

J Occup Environ Hyg. Author manuscript; available in PMC 2024 March 22.

Published in final edited form as:

J Occup Environ Hyg. 2023 January ; 20(1): 14-22. doi:10.1080/15459624.2022.2137297.

Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers

Grant Erlandson¹, Sheryl Magzamen^{1,2}, Julia L. Sharp⁵, Sanchayita Mitra³, Kenneth Jones^{3,4}, Jill A. Poole⁸, Mary Bradford¹, Matthew Nonnenmann⁹, Stephen J. Reynolds^{1,6,7}, Joshua W. Schaeffer^{1,6}

HHS Public Access

Author manuscript *J Occup Environ Med.* Author manuscript; available in PMC 2022 September 21.

Published in final edited form as: *J Occup Environ Med.* 2015 January ; 57(1): 79–87. doi:10.1097/JOM.000000000000304.

Particulate Matter, Endotoxin, and Worker Respiratory Health on Large Californian Dairies

Diane C. Mitchell, PhD, Tracey L. Armitage, MS, Marc B. Schenker, MD, MPH, Deborah H. Bennett, PhD, Daniel J. Tancredi, PhD, Chelsea Eastman Langer, PhD, MPH^{*}, Stephen J. Reynolds, PhD, Greg Dooley, PhD, John Mehaffy, PhD, Frank M. Mitloehner, PhD

- Most studies rely on cross-sectional data
- On-site real time monitoring is rare
- Technological opportunity
 - Multiple sensor platform used in other industrial settings
 - Group scale emissions

Ongoing AQ research

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

- Assessment of AQ continuous monitoring systems in dairy farms
- Study hypothesis:

Air components can be <u>detected</u> and continuously monitored in the milking parlor and in a tunnel ventilated barn and their concentrations have <u>specific</u> daily dynamics that might be associated with farm operations

Multiple sensor platform

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• One-minute sampling rate

Air component	Characteristics	Unit	Sensor type	Range
Gas	Carbon monoxide	ppm	Photoacoustic NDIR	2-1000 ppm
	Carbon dioxide	ppm	Electrochemical	400-2000 ppm
	Methane	ppm	Metal oxide	2-5000 ppm
Chemicals	Ammonia	ppm	Electrochemical	0.5-50 ppm
	Volatile Organic Compounds	ppm	Electrochemical	5-800 ppm
Particulates	Particulate Matter 2.5	ug/m ³	Optical	max 5000
Physical	Temperature	°C	Electrical	-10 to 80
	Relative Humidity	%	Resistive	0 to 100
	THI = (1.8 × T + 32) – [(0.55 – 0.0055 × RH) × (1.8 × T – 26)]	Units	-	-

Study design

- Study farm
 - 6,000 lactating Holstein cows
 - Northern Colorado, USA
 - Milking 3x day
 - Sand bedding free-stall (FS)
 - Rotary milking parlor (MP)

COLORADO STATE UNIVERSITY

Study design

- Study farm
 - 6,000 lactating Holstein cows
 - Northern Colorado, USA
 - Milking 3x day
 - Sand bedding free-stall (FS)
 - Rotary milking parlor (MP)
- Sensor installation
 - Center of milking parlor
 - Barn 13 ft from the ground
 - August-December 2023

COLORADO STATE UNIVERSITY

Study design

- Study Barn
 - ~2000 lactating cows
 - 5 pens of 400/heads
 - Fresh and mid-lactation cows
 - Feeding Schedule:
 - Morning 6 10 am
 - Afternoon 2 3 pm
 - Night 10 11 pm

COLORADO STATE UNIVERSITY

Statistical analysis

- ~70,000 readings were averaged by hour by date per location
- Hours LSM estimates were compared between the parlor and the barn using proc mixed.
 - Covariates:
 - Location
 - Hour
 - Date
 - Hour*Location

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

• Overall LSM (SEM) by location (MP: milking parlor)

Variable	LSM (SEM)			Maximum Level		Hour of day	
	MP	Barn	P-value	MP	Barn	MP	Barn
Ammonia	-	6.3 (3.8)	-	-	7.8 (0.2)	-	23h
Carbon monoxide	1.1 (0.1)	0.4 (0.1)	<0.01	1.8 (0.4)	2.5 (0.3)	15h	10h
Carbon dioxide	609.9 (1.9)	655.5 (1.9)	<0.01	642.6 (9.2)	729.9 (9.3)	0h	1h
Methane	10.2 (0.2)	10.1 (0.2)	0.5	27.1 (0.8)	15.5 (0.8)	13h	7h
Particulate mater 2.5	5.2 (0.06)	3.1 (0.07)	<0.01	7.4 (0.3)	5.3 (0.2)	17h	15h
тні	55.6 (0.05)	55.5 (0.04)	0.5	56.3 (0.2)	60 (0.18)	16h	14h
Volatile Organic Coumpounds	143.2 (1.4)	150.9 (1.3)	<0.01	246.0 (6.5)	400.7 (6.5)	5h	7h

Results AQ dynamics

• Barn methane

Mean	STD	Max	Min
10	2.63	14.98	5.9

Natural air levels: 1800 ppb (1.8 ppm)

COLORADO STATE UNIVERSITY

Results AQ dynamics

• MP methane

COLORADO STATE UNIVERSITY

AQ dynamics Ammonia

• Not detected in the milking parlor

Average	STD	Maximum	Minimum
6.73	2.1	9.56	3.52

Natural air levels: 1-5 ppb (0.001-0.005 ppm) Soil levels: 1-5 ppm¹

>10 ppm associated with animal health risks²

COLORADO STATE UNIVERSITY

Results

- Ammonia and THI
- Cross-correlation analysis?
- Effects of ventilation

Wind speed in housing barns

COLORADO STATE UNIVERSITY

Carbon dioxide

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE

←Barn **★**Milking parlor

Location*Hour P < 0.0001

Carbon dioxide

- CO₂ levels seem to be high
 - 350 450 ppm: outdoor air
 - 450-600 ppm: well ventilated indoor air
 - 600-800 ppm: Acceptable but increased ventilation might be needed
 - 800 >1000 ppm: Poor ventilation, health risks
- What are the risks of chronic exposure?

AQ dynamics PM 2.5

Tunnel-ventilated barn

Average	STD	Maximum	Minimum
4.2	4.8	30.7	1.6

 EPA National AQ standard for 24 h PM 2.5 = 12 ug/m^{3*}

COLORADO STATE UNIVERSITY

Relationship between PM 2.5 and THI in the milking parlor

Ammonia and Barn milk yield

- Effects of AQ on production
- Ongoing work
 - Animal welfare (cow comfort, resting behavior)
 - Animal health
- Objective:
 - Assess the relationship between maximum ammonia concentrations and group milk yield

Ammonia and Barn milk yield

Detrend ammonia data

Daily ammonia change

Daily ∆ Ammonia
Group milk yield
1000 lb./d milk yield
ammonia by 2%

Increases in ammonia do not affect group milk yield

COLORADO STATE UNIVERSITY

Daily ammonia change

- Can we use ammonia monitoring as a proxy of protein intake efficiency?
- How ammonia affects individual welfare?

COLORADO STATE UNIVERSITY

Farm activities & air component levels

- Visited the farm twice a week (7:30 to 10:00 am)
- 15 days of observation (24 august to 12 oct)
- Morning activities list:
 - ✓ Moving the cows to the parlor
 - ✓ Cleaning the barn
 - ✓ Feeding the cows
 - ✓ Cleaning the manure
 - ✓ Movement of different vehicles

Farm activities & air component levels

COLORADO STATE UNIVERSITY

Limitations

- Significant sensor degradation after 5 months
- ~10% out of detection range
- Location limited to power outlets
- "Insects attack"
- Lack of calibration protocols

Conclusions

- Key air pollutants can be detected with this technology
- Patterns of AQ were observed and could be attributed to specific operations

Future research

- Estimate sensor reliability & optimal sensor allocation
- Forced ventilation vs. natural ventilation
- Impact of specific farm activities
- Targeted interventions
 - Cleaning, curtains, bedding management.
- Defining air quality standards
 - Production
 - Animal welfare \rightarrow Behavior cow comfort
 - Animal health

Acknowledgements

- Students
 - Afrin Jannat, PhD student
 - Alexa Phillips, Undergraduate
- Dept. Atmospheric Sciences
 - Dr. Jeff Collett
 - Dr. Amy Sullivan

- Dairy producers
- Funder and supporters

Western Sustainable Agriculture Research and Education

🔿 ieqmax

COLORADO STATE UNIVERSITY

Subscribe to Our Newsletter!

dmanri@colostate.edu

COLORADO STATE UNIVERSITY

SUSTAINABLE SOLUTIONS FOR ANIMAL AGRICULTURE Listen to the AgNext Podcast!

