

Mineralization and CO₂ Dynamics of Spent Coffee Grounds Over Two Different Incubation Periods

Amanda L. Birnbaum^{1*}, Ryan Earp², Joseph A. Burke³, Garrett Flores³, Benjamin Wherley³, Julie A. Howe³, and David W. Reed¹ ¹Horticultural Sciences, Texas A&M University; ²Plant and Soil Science, Oklahoma State University; ³Soil and Crop Sciences, Texas A&M University; *abirnbaum@tamu.edu

INTRODUCTION

Thousands of tons of spent coffee grounds (SCG) are sent to landfills each year, and with the recent growth in cold-brew coffee production (Figure 1) this is expected to increase. Waste utilization is a key component to sustainable agriculture and creating a circular economy. The use of SCG in agriculture can improve soil properties and plant growth by increasing organic matter and nutrients. In this experiment we investigated the use of non-composted and composted SCG (CSCG) as a source of ammonium and nitrate.

When CSCG were used to amend sand root zones (Figure 2), water holding capacity, shoot growth, and leaf tissue N content were greater compared to peat moss and sand alone (Flores et al.,

OBJECTIVE

Determine the mineralization and respiration rate of composted and non-composted SCG after an

Fig. 1: Dumpsters of SCG generated from cold- brew coffee production

2020).

20% fine CSCG 20% peat moss + 20% coarse CSCG + sand + sand sand Fig. 2: CSCG increased vigor, water holding capacity, shoot growth, and leaf N, compared incubation period of 70 and 100 days.


METHODOLOGY

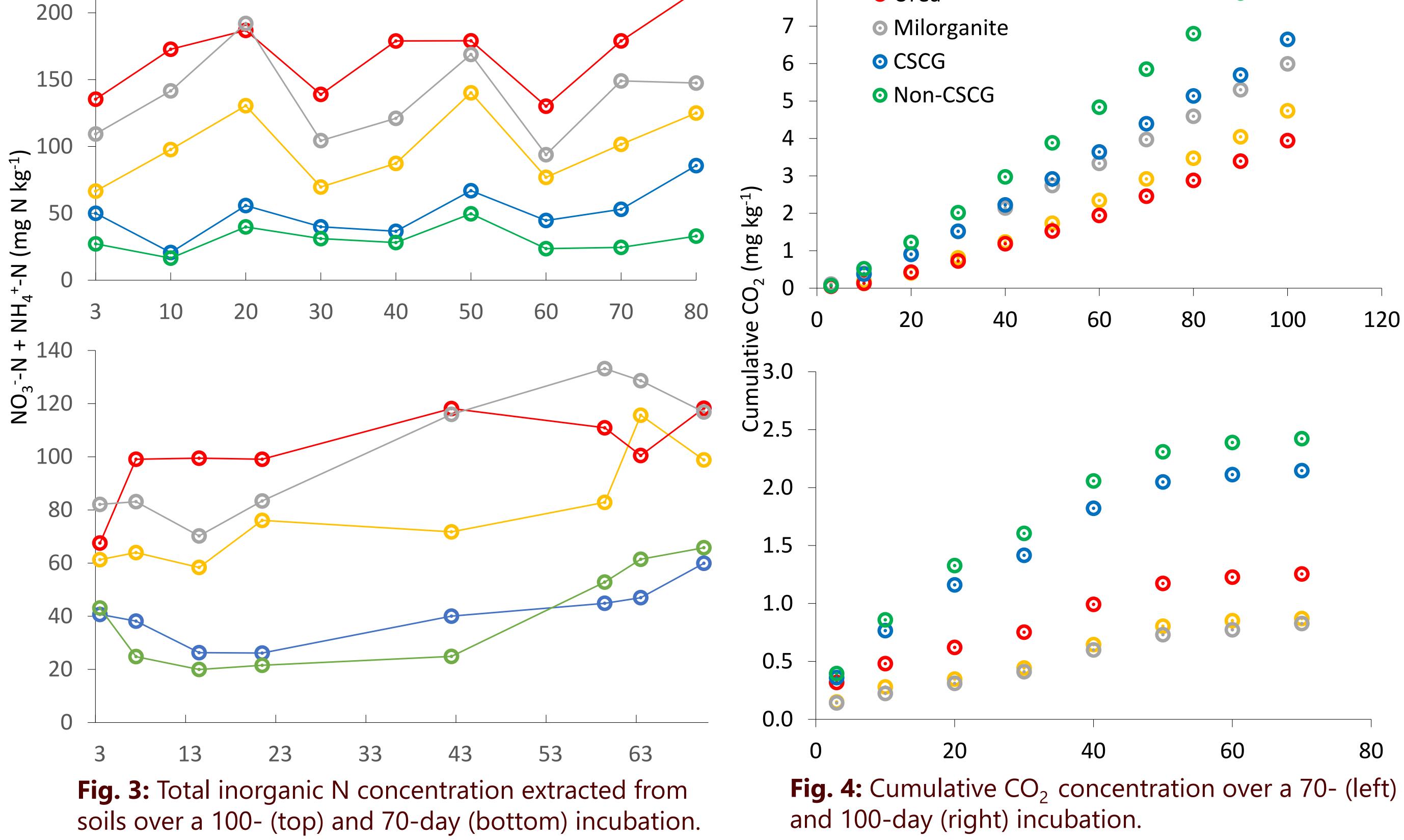
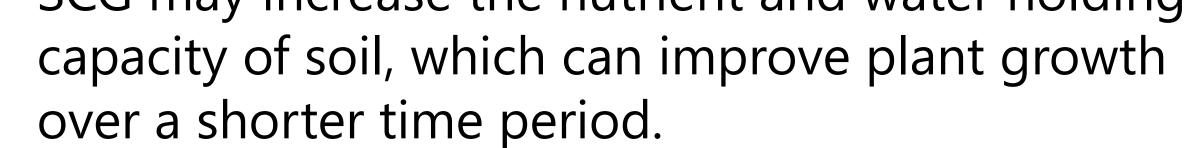

- Non-composted SCG, composted SCG, Milorganite (5-2-0), and urea (46-0-0) fertilizers were mixed into 50 g of a fine-sandy loam field soil at 9.8 g N m⁻²
- Microcosms were held at 25°C for 100 days and sampled every 10 days for
 - Soil NH_4^+ -N and NO_3^- -N (Keeney and Nelson, 1982)
 - CO₂ (Franzluebbers et al., 2000)
 - Total inorganic N is the sum of $NH_4^+-N + NO_3^--N$

Table 1: Chemical properties
 of non-CSCG, CSCG, and soil used in the 70- and 100-day incubations. Inorganic N represents ammonium-N + nitrate-N.

to peat moss and sand alone

	Non- composted SCG	•	Composted SCG (100 d)	Soil
% N	2.2	2.9	3.9	0.1
% organic C	51	49	46	1.3
C:N	23:1	14:1	13:1	13:1
рН	5.5	4.7	5.3	4.7


periods, adding no N to the system (Figure 3).

- There was some mineralization of the SCG in the 70day incubation beginning at day 43.
- Greater CO₂ respiration was observed with SCG suggesting active microbial activity is required for the breakdown of SCG relative to other treatments (Figure 4).
- The milorganite and CSCG had very similar CO₂ respiration in the 100-day incubation, but not in the 70-day incubation.
- Incubations differed, which may be due to variability in the SCG or soil.

CONCLUSIONS

- SCG may serve as a long-term fertilizer due to the time it takes to mineralize.
- SCG may increase the nutrient and water holding

80 **Fig. 4:** Cumulative CO₂ concentration over a 70- (left)

Acknowledgements: This project is funded by a USDA Sustainable Agriculture Research and Education (SARE) graduate student grant.

