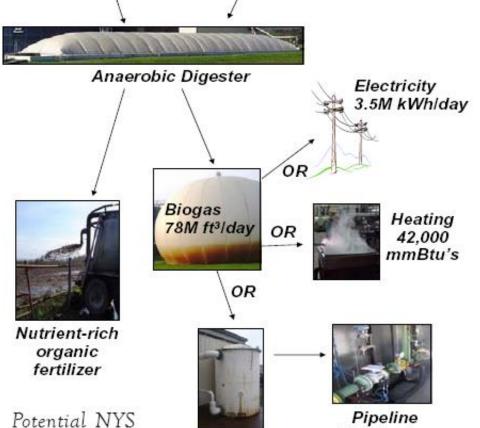


www.manuremanagement.cornell.edu

On-Farm AD: Linking Agriculture, Community and Industry toward a Sustainable Future

7.1M lbs of solids from dairy manure


Biogas Estimates

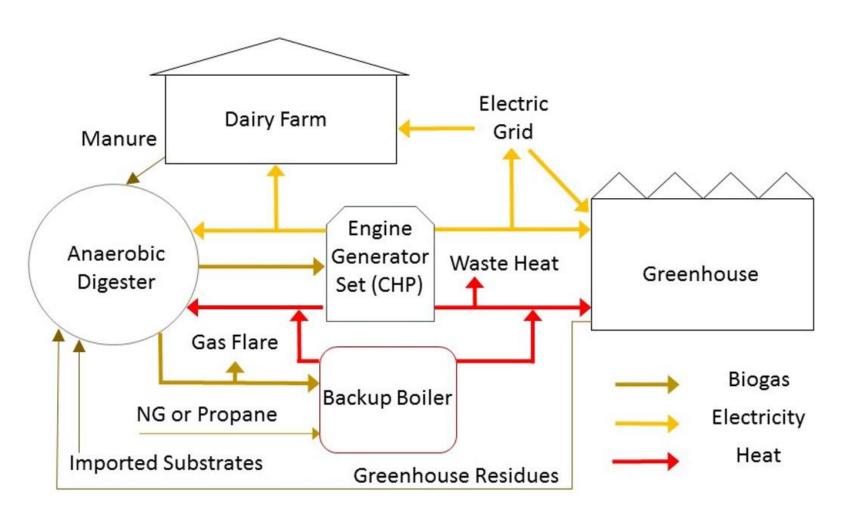
Food waste and other biomass 0-50% weight of manure

Distribution

40,000 mmBtu's

Gas clean-up

AD: Heat Production


- Some (few) farms use recovered heat in a beneficial manner...
- Waste heat usage represents a valuable opportunity for farms

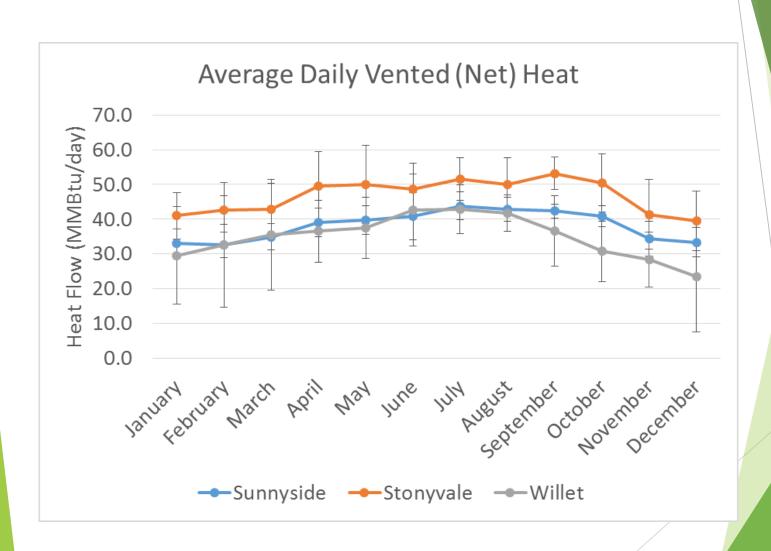
- As much as 75% of the produced heat is wasted
- Excess heat is typically dumped to the ambient using large radiators

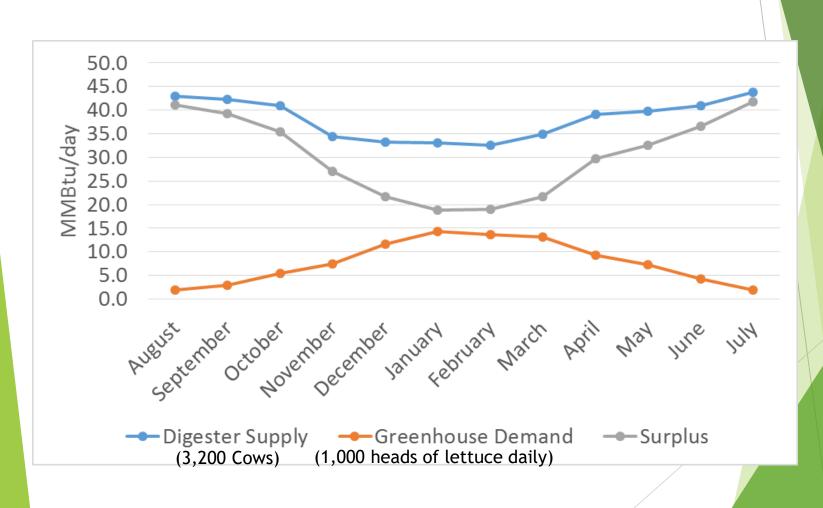
Phase I - Project Goals:

- Develop user friendly computer programs to:
 - Predict the surplus heat and electricity available from digesters of user specified size, design and operational characteristics. Cornell Anaerobic Digester Simulation Tool
 - Predict the required heat and electricity for a greenhouse of user specified size, design and operational characteristics. Cornell Greenhouse Simulation Tool
 - Use the output from the AD computer program, and determine the size of greenhouse that could be supported by the specified digester, or the portion of the energy usage of a specified greenhouse that could be digester supported.

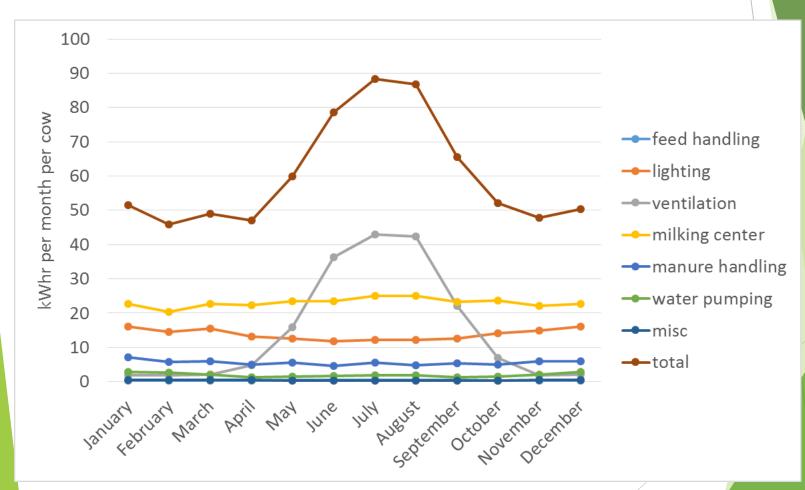
Cornell AD/GH Synergy Simulation Tool

Monitoring Surplus Heat Of Digesters

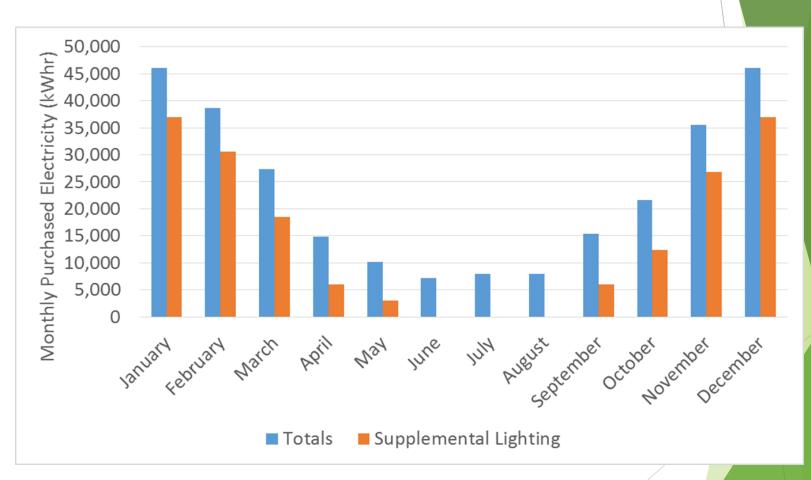



Thanks to:

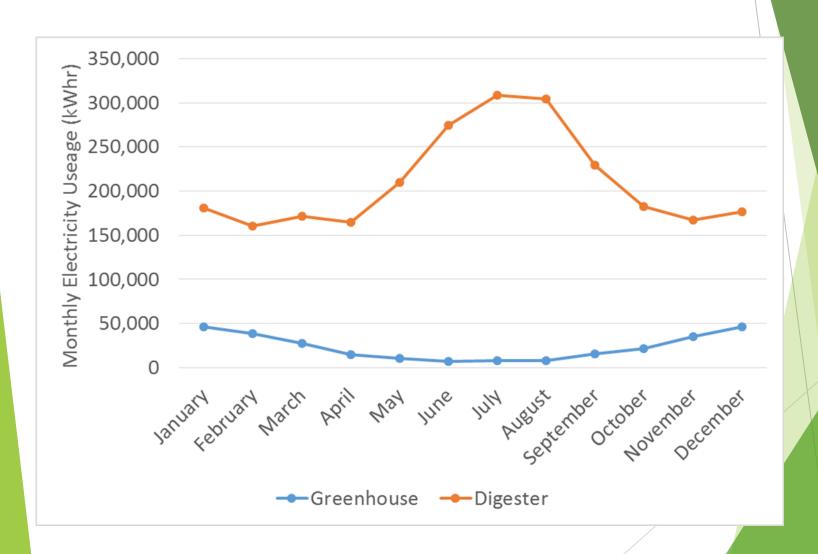
- Dairies
 - ► Synergy Dairy (Covington, NY)
 - ► Stonyvale Farm (Exeter, ME)
 - ► Sunnyside Dairy (Venice, NY)
 - ► Willet Dairy (Locke, NY)
- Commercial Greenhouses
 - ► Challenge Industries (Ithaca, NY)
 - ▶ Durham Foods (Port Perry, ON)


Anaerobic Digester Surplus Heat

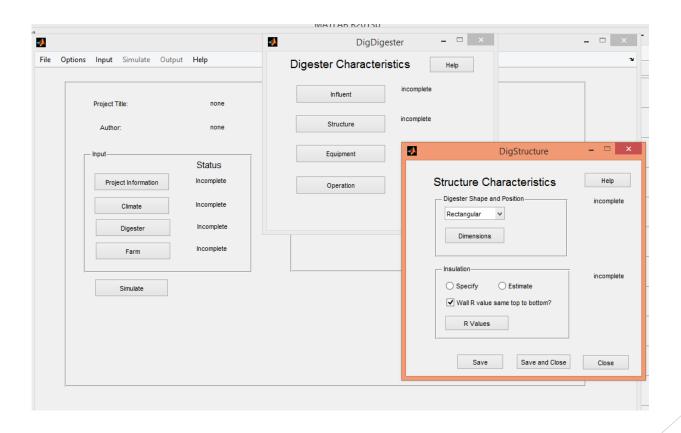
Out of Sync Heat Production and Consumption

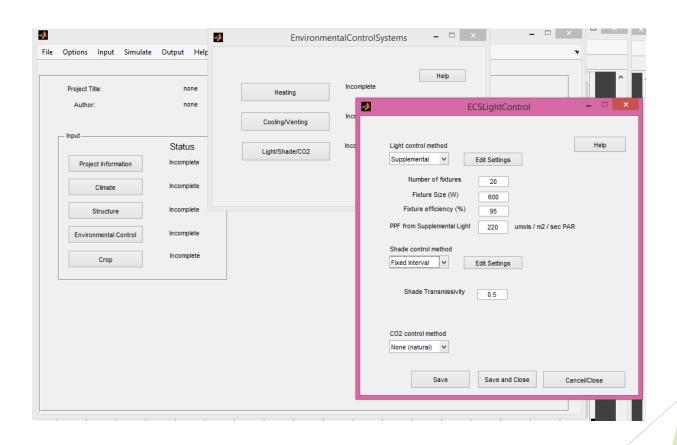


New York Freestall Barn Dairy Monthly Electricity Use

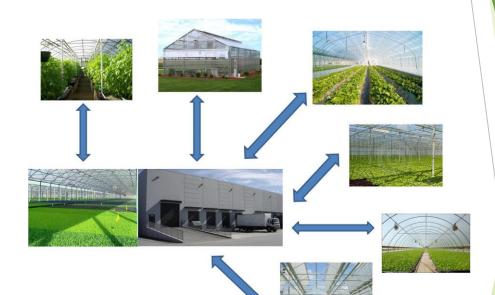


Source: Adapted from Peterson, Northeast Agriculture Technology Corporation 2014


NY Greenhouse Yearly Electricity Usage


Complementary Electricity Use

Digester Simulation Computer Program



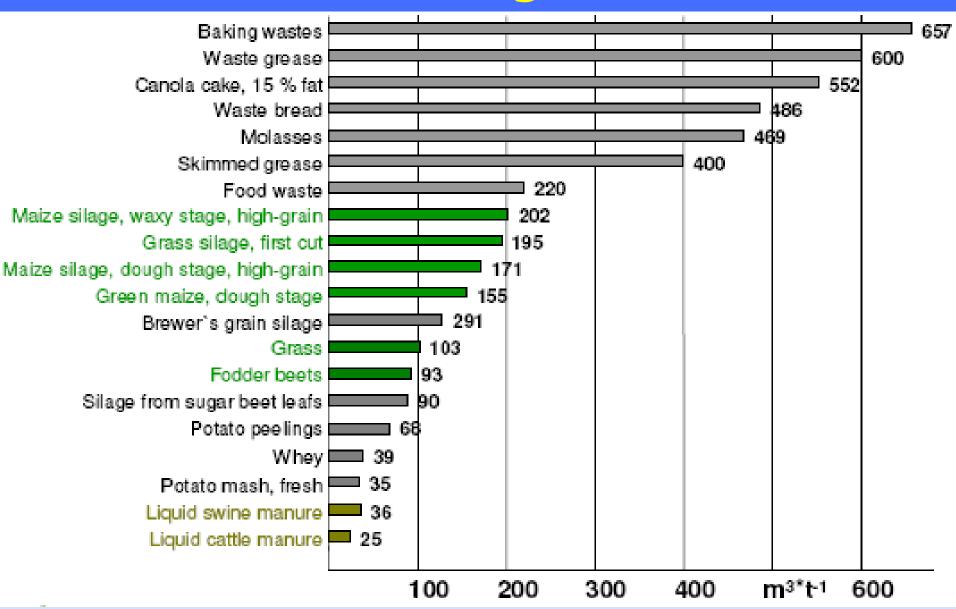
Greenhouse Simulation Computer Program

Farm Size	Co Digestion ²	Greenhouse Size	Value of Heat ³	Value of Electricity ⁴	Benefit ⁵
(LCE¹)		(ft²)	(\$/year)	(\$/year)	(\$/year)
500	none	580	\$9,975	\$1,650	\$11,625
	10% whey	720	\$11,548	\$2,100	\$13,648
	25% whey	1,325	\$17,035	\$3,900	\$20,935
	5% FOG	1,125	\$15,107	\$3,300	\$18,407
	10% FOG	1,500	\$18,874	\$4,350	\$23,224
1,000	none	3,250	\$23,170	\$9,600	\$32,770
	10% whey	4,000	\$26,500	\$11,700	\$38,200
	25% whey	6,750	\$31,865	\$19,800	\$51,665
	5% FOG	6,000	\$29,479	\$17,550	\$47,029
	10% FOG	7,500	\$34,316	\$21,900	\$56,216
1,500	none	7,875	\$35,344	\$22,950	\$58,294
	10% whey	9,375	\$39,613	\$27,450	\$67,063
	25% whey	15,500	\$49,345	\$45,300	\$94,645
	5% FOG	13,000	\$43,712	\$37,950	\$81,662
	10% FOG	16,500	\$51,725	\$48,300	\$100,025
2,000	none	14,500	\$46,967	\$42,450	\$89,417
	10% whey	16,500	\$51,725	\$48,300	\$100,025
	25% whey	20,000	\$60,224	\$58,350	\$118,574
	5% FOG	19,000	\$57,424	\$55,500	\$112,924
	10% FOG	21,000	\$62,879	\$61,350	\$124,229
3,000	none	21,000	\$62,879	\$61,350	\$124,229
	10% whey	28,125	\$69,628	\$82,200	\$151,828
	25% whey	43,750	\$84,545	\$127,800	\$212,345
	5% FOG	33,750	\$73,909	\$98,700	\$172,609
	10% FOG	50,000	\$89,050	\$146,100	\$235,150

Food Hub Operations Model

Transport seedlings to finish their finish their growth at smaller, distributed operations, located to take advantage of inexpensive heat and power.

Dairy Manure Derived Biogas: Raw Composition


- Methane (CH₄); 55 to 68 percent → 60%
- Carbon Dioxide (CO₂); 32 to 45 percent → 40%
- Hydrogen Sulfide (H₂S); 1,500 5,000 ppm
- Ammonia (NH₃); 0 − 300 ppm
- Water Vapor (H₂0); saturated gas: ~4%

Biogas Yields for Sizing Clean-up System

- Cow manure only anaerobic digester systems: 60 to 100 ft³ biogas per lactating cow equivalent on a volatile solids basis (LCE_{vs basis})
- Co-digestion anaerobic digester systems: 2 – 3x cow manure only systems on a LCE_{VS basis} or more
- For existing systems, use gas meter data to size

Potential Biogas Yields

Source: Mathias Effenberger, 2006

Landfill Biogas: Raw Composition

Dairy Manure Derived Biogas Components plus various other contaminates such as:

- **≻**Siloxanes
- >CFCs
- >S-compounds
- **≻**Oxygen
- **≻**Nitrogen

Important Considerations

- End use of biogas/rng and its requirements
- Requirements can drive clean up system method selected
- Clean up systems require energy: electricity and sometimes heat
- CAPEX and OPEX

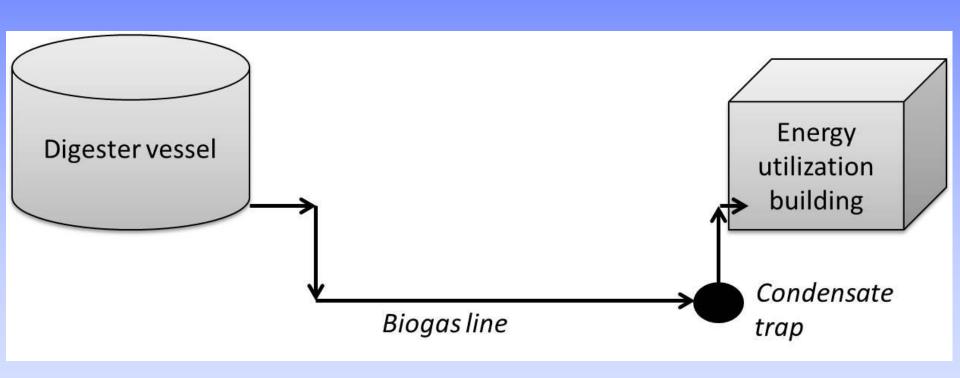
Important Considerations

- Sometimes no cleanup is cheapest option
- Some methods need redundancy
- Most appropriate solution may include multiple methods arranged in series

Biogas clean-up/upgrading

–Level 1 of 3: Moisture removal

–Level 2 of 3: Hydrogen sulfide removal


–Level 3 of 3: Carbon dioxide removal

Biogas Cleanup — Level 1 of 3

Moisture removal for local use/pipeline transport

Level 1 - Moisture Removal: Passive Condensation

Level 1 - Moisture Removal: Refrigeration

Heat exchangers used to cool biogas to desired dew point

 Biogas pressurized to increase further dryness

Condensate removed from system and disposed of as wastewater

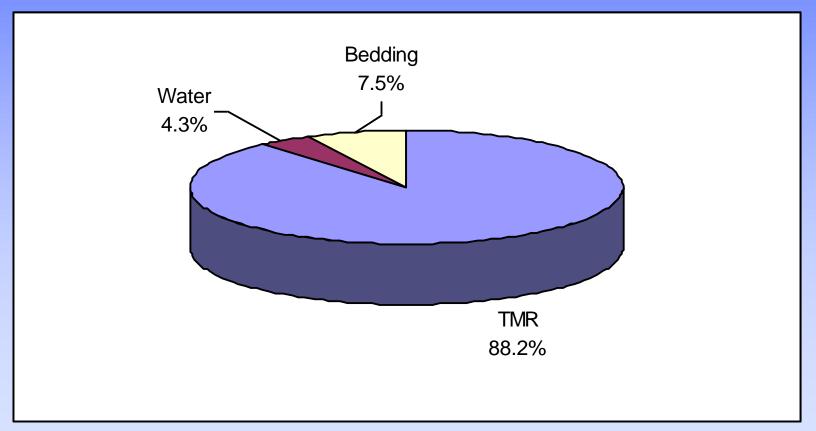
Level 1 - Moisture Removal: Adsorption

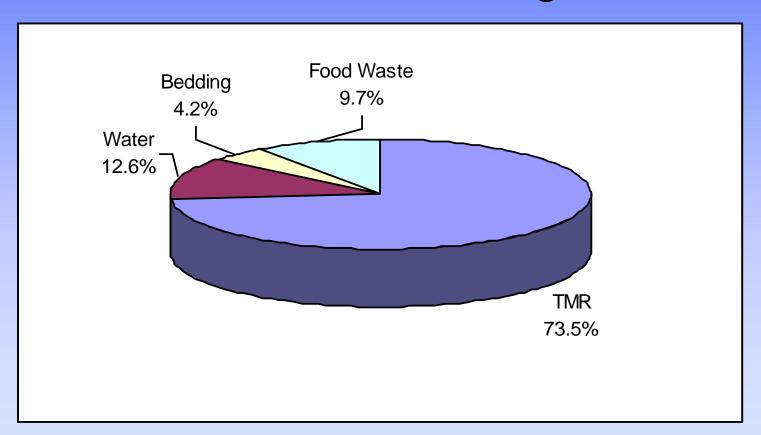
Adsorption agents used to capture moisture

 Silica gel or aluminum oxide used when biogas used for vehicle fuel

 Two vessels are used for continuous treatment

Biogas Cleanup – Level 2 of 3


H₂S and moisture (sometimes) reduction for on-site combustion


Level 2 - Hydrogen Sulfide

Sources of Sulfur on Farms Not Importing Food Waste for Co-digestion

Level 2 - Hydrogen Sulfide

Sources of Sulfur on Farms Importing Food Waste for Co-digestion

Level 2 - Hydrogen Sulfide

Max. Concentration for Various Biogas End Uses

Designated End Use	Max. [H ₂ S], ppm		
Boiler	1,000		
Engine-Generator	500		
Vehicle Fuel	23		
Pipeline Injection	4		
Fuel Cell	1		

Source: Electrigaz Report, 2008

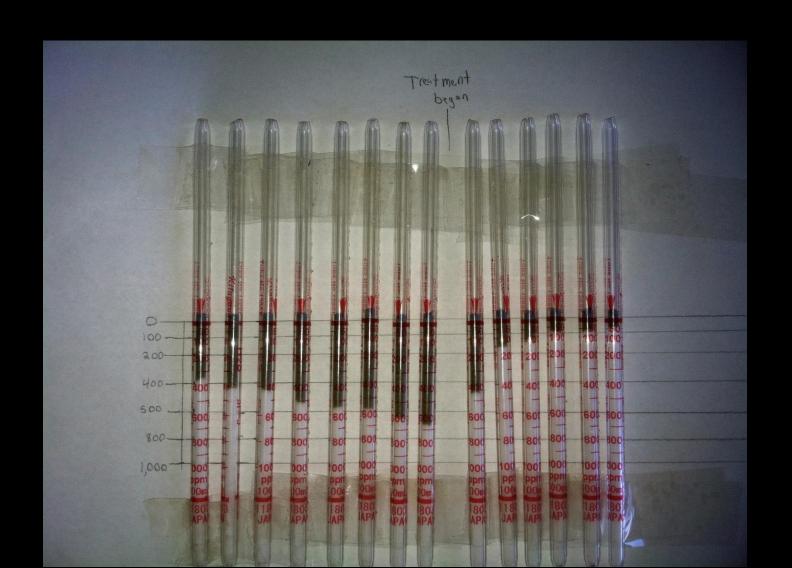
Level 2 - Biogas Hydrogen Sulfide Reduction Options

- Digester Influent Additives
 - Iron Chloride Dosing
 - Ferric Hydroxide Dosing
- Biogas: Physical/Chemical
 - Iron Sponge
 - Activated Carbon
- Biogas: Microbial
 - Biological Fixation

Digester Influent Additive: *Iron Chloride (FeCl₂)*

- Liquid form Injected directly into digester by an automated dosing unit
- Good for high initial [H₂S] as a first stage of a multistage H₂S removal process
- Comparatively low CAPEX
- Comparatively high OPEX due to chemical cost

Digester Influent Additive: <u>Ferric Hydroxide - Fe (OH)</u>₃

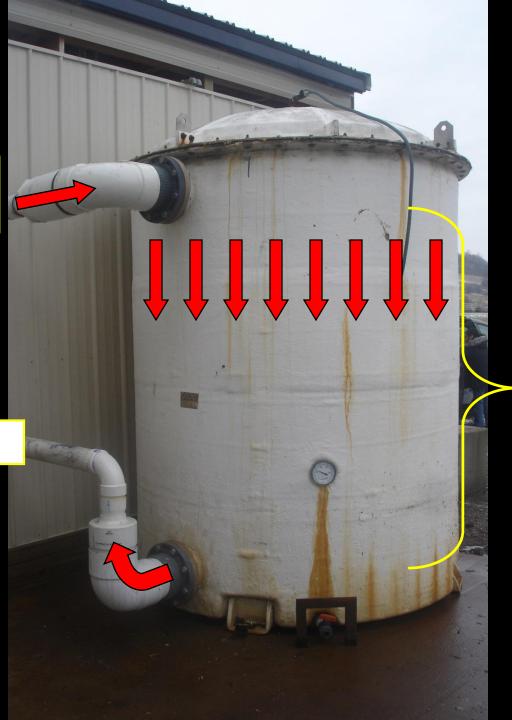

- Granular, powder, and liquid forms
- Application rate nonlinear, depends on [H₂S] and digester size
- Use started (2013) by NE farm with very good results (3.5 bags/day)
- Google Search reveals price \$600 -\$1,500/tonne

Ferric Hydroxide NE Dairy Farm AD

Ferric Hydroxide - Results

Chemical Removal of H₂S: <u>Iron Sponge</u>

- Chemical reaction bonds sulfur to iron oxide
- Reaction occurs at ambient temperatures
- Must be in alkaline conditions, pH > 7.5 w/ 8-10 preferred; caustic soda added as needed
- Temperature < 110F

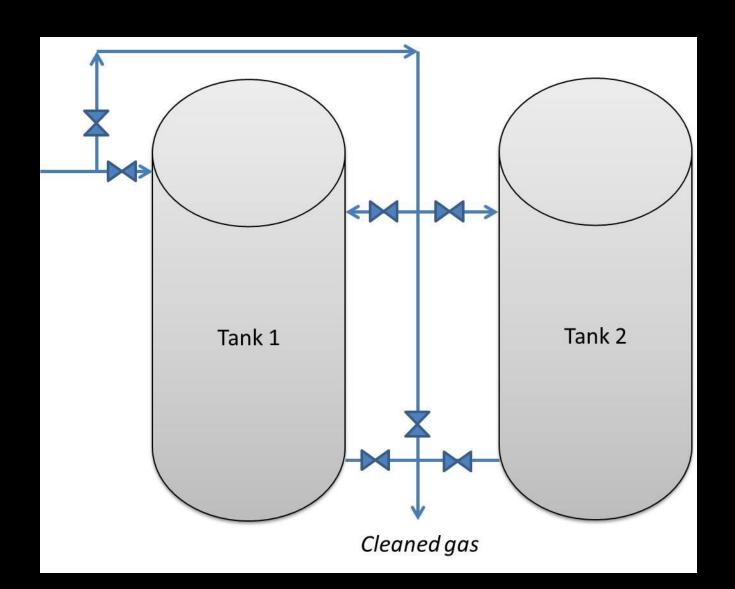

Chemical Removal of H₂S: *Iron Sponge* (con't)

- Each pound of Fe₂0₃ can remove 0.56 lbs.
 sulfide
- Iron oxide is impregnate in wood bark: 15 lbs. Fe₂0₃ per bushel of bark (1 bushel in-place = 1 cu. ft.)

$$3H_2S + Fe_2O_3 + H_2O \rightarrow 4H_2O + Fe_2O_3$$

 $[H_2S]_{in} = 1k \text{ to}$ 4k ppm

 $[H_2S]_{out} = 50 \text{ ppm}$


 $\frac{\Delta p:}{2 - 3"}$ we initially

8 - 10" over time

Iron Sponge – MSU AD System

Two Tank System for Biogas Clean-up

Iron Sponge Scrubbers – Janesville WWTP, Janesville, WI

Chemical Removal of H₂S: Activated Carbon

- Activated carbon impregnated with potassium iodine or sulfuric acid
- Air injected into biogas to promote carbon adsorption of H₂S
- Carbon also regenerated with injected air
- H₂S → elemental S

Microbial Removal of Biogas H₂S *Biological Fixation*

- 2 to 4% air injected into biogas
- Operative microbes grow on surfaces
- Reductions to 60 200 ppm
- Reduces NH₃ as well
- Final [0₂] 0.5 to 1.8% by volume with also Some N due to the injection process

Microbial Removal of H₂S *Biological Fixation*

$$H_2S + 0.5 O_2 \rightarrow S + H_2O$$

(Partial Oxidation)

$$H_2S + 2O_2 + 2OH \rightarrow SO_4 + 2H_2O$$
(Total Oxidation)

Thiobacillus sp.

Microbial Removal of Biogas H₂S *Biological Fixation*

Two Possible Locations:

Digester Biogas Head Space

Separate Vessel



Microbiological Scrubber – Synergy Farm, Covington, NY

Total Annual Cost or Benefit

ΣTotal Annual Costs – (ΣAnnual Cost Savings + ΣAnnual Revenues)

If a <u>positive No</u>., then the system is an economic <u>cost</u> to the farm

If a <u>negative No</u>., then the system is *likely* an economic <u>benefit</u> to the farm

Biogas Cleanup – Level 3 of 3

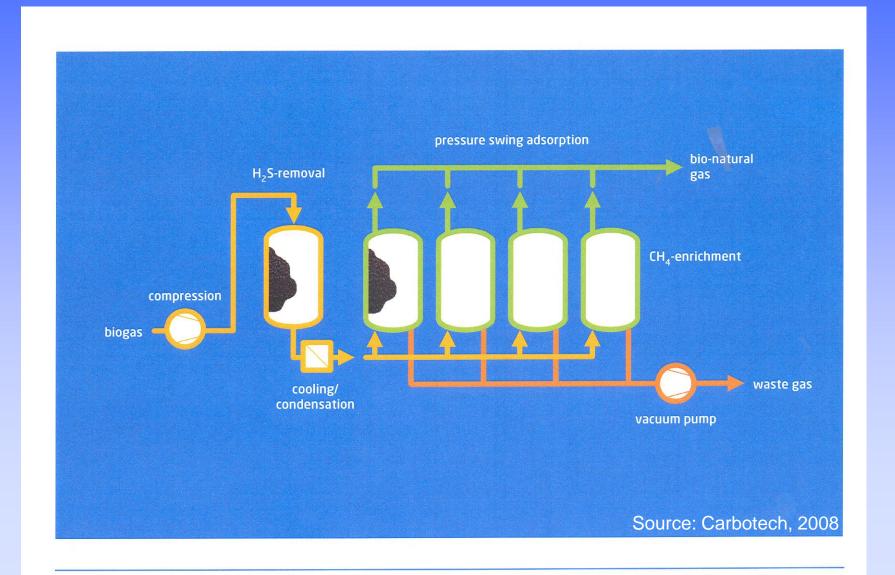
 H_2S , H_2O , CO_2 , & NH_3 removal for pipeline injection or transportation fuel \rightarrow "biomethane" or often called "Renewable Natural Gas (RNG)"

Level 3 - Carbon Dioxide (CO₂) Removal — Options

- 1. Regenerative Water Wash
- 2. Regenerative Amine Wash (Amine)
- 3. Pressure Swing Adsorption (PSA)
- 4. Membrane Separation


5. Cryogenic Distillation

Physical Removal of CO₂: Pressure Swing Adsorption (PSA)


 CO₂ is absorbed by means of adsorption materials (molecular sieve)

 This system is used extensively in Germany and Sweeden

Biogas Clean Up - PSA

Biogas Clean Up - PSA

PSA

No process water

No wastewater treatment

No chemicals

Removal of H₂O to dew point -90°C

PSA

N₂ and O₂ removal

 Hydrocarbon, VOC, and Silicon Compounds removed

Flexible system, containerized

PSA


Efficient; 97% CH₄ capture

Off-the-self components

Very low maintenance

Biogas Clean Up - PSA

(COTCHINCHTOH SCWASC STAIT IT OF BATTLE WAS CE)

Biomethane Energy Content

100% CH₄

- LHV = 896 Btu's/scf
- HHV = 960 Btu's/scf

Wobbe Index:

- Used to compare the combustion energy output of different composition fuel gases in an appliance
- An indicator of the interchangeability of gaseous fuels

WI = higher heating value/(square root of gas SG)

Average Cost of Biogas Upgrading

Vendor	Biogas Flow (cfm)	Year	Cost (\$/MMBtu)	Technology
Metener	118	2006	6.22	Water Wash
Molecular Gate	142	2008	7.08	PSA
Carbotech	148	2008	10.73	PSA
QuestAir 1 Stage	142	2008	6.73	RPSA
QuestAir 2 Stages	142	2008	7.54	RPSA

Source: Electrigaz Report, 2008

Biogas as Liquid Fuel Replacement

Biogas Thermal Energy Value and Diesel Volume Equivalents

Farm	CH ₄	CH₄	Annual Heating	Diesel Eq.
I allii	(%)	(lbs./day)	Value (mmBtu/yr.)	(gal/yr.)
AA Dairy	57	900	7,068,663,000	50,781
New Hope View	58	1,837	14,427,926,590	103,649
Ridge Line	65	3,663	28,769,458,410	206,677
Noblehurst Cell 1 and 2	56	1,069	8,396,000,830	60,316
Patterson	56	3,894	30,583,748,580	219,711
Sunny Knoll	64	1,691	13,281,232,370	95,411

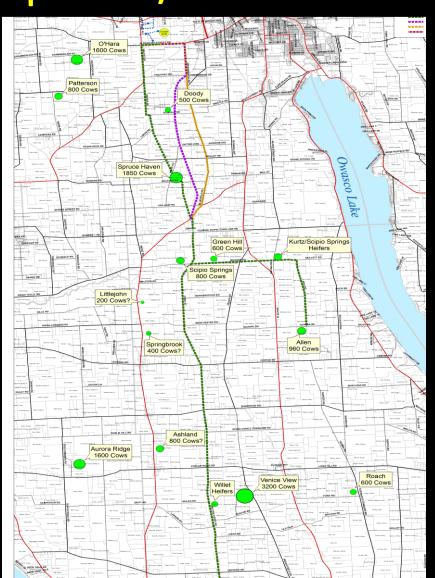
2007 – Dairy Manure Derived Biogas Injection to Natural Gas Pipelines in US

- Few locations attempting this; ID, WI
- Natural gas companies (NGC) very interested
- 17 NGC project investors funded a project in 2007 to develop a US <u>guideline</u> for <u>dairy-based</u> biogas injection

US <u>Guideline</u> for Dairy-Based Biogas Injection (continued)

Biogas testing for:

- ✓ Basic composition
- ✓ Dissolved metals
- ✓ Dust
- ✓ Microbes MIC
- ✓ Others


US <u>Guideline</u> for Dairy-Based Biogas Injection (continued)

Biogas testing for:

- ✓ Basic composition
- ✓ Dissolved metals
- ✓ Dust
- ✓ Microbes MIC
- ✓ Others

Guideline Completed 8/2008

2005-2010 Cayuga Renewable Energy, LLC AD/Pipeline/End Use Project

₹2020 GOAL!

40% of MANURE GOES TO DIGESTERS.

OPOWERS 32,000 HOMES

OMAINTAINS 18,000 JOBS

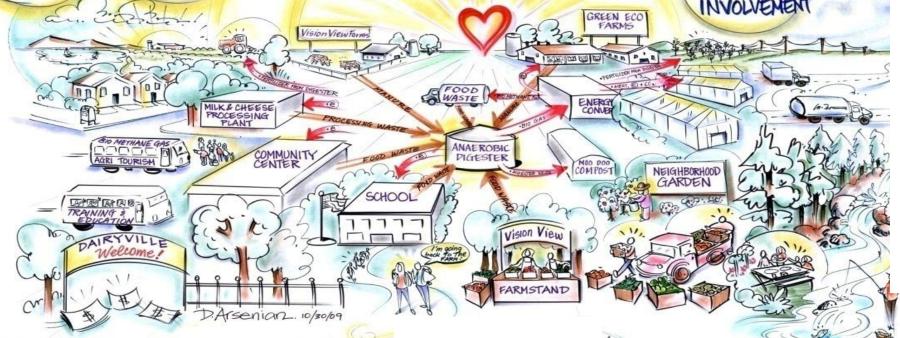
O 100,000 CARS OFF HE ROAD IN CARBON EMISSIONS:

PRODUCED BY FARM IS CONSUMED LOCALLY PERFECT GOAL!

100% OF FOOD & FARM WASTE GOES TO RENEWABLE ENERGY. EMISSIONS.

MUNITY

COMMUNITY AS AN ECO SYSTEM


HABITAT

PROTECTION

*VISION

STRENGTHENING THE POLE OF FARMS AS THE HEART OF THE COMMUNITY ECOLOGY QUALITY

SIGNIFICANT COMMUNITY INVOLVEMENT

Why are you here? Perhaps...

- ✓ For networking opportunities
- ✓ To share knowledge
- ✓ Looking for new opportunities
- ✓ Representing products/services for sale
- ✓ To learn
- ✓ Seeking a business opportunity

