Evaluation of Field Nursery Practices for Oyster Seed Cultivation in Delaware Bay

Lisa Calvo

February 10, Shellfish Growers' Forum Haskin Shellfish Research Laboratory Rutgers University

Objective: Evaluate the performance of various field methods for growing out 2-4 mm oyster seed in this particularly challenging environment

Experimental design

- Three factors
 - Cage
 - Deployment method
 - Stocking density
- Crossed
- Field methods compared to seed grown in upwellers

Two Cage Types

- SEAPA with sock
- Low Pro with seed bag

Deployment • On-Bottom

Floating

Two stocking densities

- 1000 ml (8000 oysters)
- 250 ml (2000 oysters)

Evaluation Measures

- Equipment wear/loss
- Fouling
- Oyster Growth
- Oyster Survival
- Shell Shape

Timeline

- 2 mm diploid LOLA was seed deployed on June 24, 2018
- Assessed in July, August, and September
- Each month seed split and redeployed at standardized volume 1:4 for light and heavy stocking densities

Shell Height

	Significant effect
JUL	Deployment, Density x Cage
AUG	Cage, Deployment, Cage x Deployment, All
SEPT	Density, Cage, Deployment, Cage x Density, All

F	a	n
_	<u> </u>	

	Significant effect
JUL	Density, Cage, Deployment, Cage x Deployment, All
AUG	Density, Deployment
SEPT	Density, Deployment

Cup

	Significant effect
JUL	Deployment, All
AUG	Deployment, Density x Deployment, Cage x Deployment
SEPT	Deployment, Density x Deployment

Height – Best Outcome

• Floating, Light Density, SEAPA

Fan – Best Outcome

• Floating, Light Density, SEAPA

Heritability of Curl-back Abnormality **

- Produced two generations of offspring from oysters with curl-back trait and from those with normal curvature
- The effect of selection between selected and control cohorts was significant indicating the trait is heritable

Control

Curl-back

**Mike Whiteside, 2019

Genetic selection visualized by plotting individuals in a theoretical morphospace based on a logarithmic spiral model (McGhee 1999)

Fouling

- Fouling was not an issue during the first 4 weeks
- Non of the evaluated growout methods prevented fouling or outperformed other treatments in respect to fouling

Survival

- Losses associated with escape and mudding
- At 12 weeks mortality averaged 16%
- Higher mortality in floating than in onbottom cages

Summary

- All methods were effective for the field nursery of seed, survival averaged 84%
- Overall, seed gr
- own in floating cages grew faster than seed grown onbottom
- All methods out-performed upweller nursery systems in respect to growth rate
- Shell shape was influenced by cage type, deployment method, and sometimes density
- Fan index tended to be higher in seed grown in floating cages, while cup index tended to be higher in seed held in on-bottom SEAPA cages
- Seed grown in floating cages had a higher proportion of non-normal hinges than those grown on-bottom
- SEAPA socks were more resistant to wear than seed bags
- Careful attention was necessary to control fouling

Acknowledgements

- This work was made possible through a grant from NESARE, Project FNE18-888
- Thanks to Daphne Munroe who served as Technical Advisor on the project.
- Joe O'Rielly and Diane Driessen assisted with the experiment and data collection.
- Sarah Borsetti, Jason Morson, and Jenny Shinn provided assistance with statistical software.
- We are grateful for the support and assistance of these programs and individuals.

NORTHEAST

Sustainable Agriculture Research & Education

 $CAPE MAY \cdot NEW JERSEY$

