Can NIR spectroscopy predict potential mineralizable nitrogen! ﬁ
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 PMN prediction using NIR was low at plot- and
landscape scale.

« 10-fold CV produced higher model accuracy than
Leave-One-Out CV.

* NIR reliably predicted stable soil properties (clay
content) but not dynamic soil properties (PMN and
Cmin).

. Introduction

* Potential mineralizable nitrogen (PMN) is the solil’s
capacity to convert organic forms of nitrogen (N) to
plant available forms.

 Lab PMN assays are time consuming and not readily
available to growers.

* Near-infrared (NIR) spectroscopy Is proposed as a
rapid, low-cost alternative for estimating soll
properties.

2. Objective

« Can hand-held NIR spectrometer predict PMN across
different spatial scales?
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Figure 2: Maps showing study sites
across 4 EPAs (n = 254) in Malawi
(A) and across 6 counties (n = 240)
In Michigan (B). Soils from Malawi
PLSR Model are marginal, and Michigan solls are
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Figurel: Analysis workflow

4. Results
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Figure 3: Distribution of PMN across Malawi (landscape- Figure 4: Partial Least Square Regression (PLSR) model performance for
scale) and Michigan (plot-scale). Michigan soils had Malawi (landscape-scale) and Michigan (plot-scale) based on 10-fold and
greater PMN values and variability than Malawi soills. leave-one-out (LOO) cross validation method. 10-fold CV consistently
Vertical dashed lines show mean PMN values produced greater R2 compared to LOO-CV
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