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A B S T R A C T

Deep neural networks (DNNs) can be trained to predict soil moisture dynamics, which is crucial for effective 
irrigation scheduling. However, a lack of interpretability in these networks constrains their efficacy in grasping 
the nuanced patterns prevalent in soil moisture time series data. This study is the first attempt known to the 
authors that develop interpretable DNNs to predict soil moisture fluctuations expressed as soil water tension 
across three root zone depths and prediction horizons. The Neural Hierarchical Interpolation for Time Series (N- 
HiTS) and Neural Basis Expansion Analysis Time Series (N-BEATS) models were used in this research. Historical 
soil water tension data collected at the University of Georgia’s C. M. Stripling Irrigation Research Park (SIRP) and 
in Blackville, South Carolina, were used to train and test the models. The results were benchmarked with the 
Long-Short-Term Memory (LSTM) to compare the models with a traditional, recurrent neural network. All the 
algorithms were coupled with a probabilistic multi-quantile loss function to quantify the uncertainty associated 
with predictions. Analysis suggested that the N-HiTS and N-BEATS models outperformed the LSTM across two 
testbeds by maintaining accuracy over the extended horizons and depths. The prediction uncertainty was more 
controlled for N-HiTS and N-BEATS with narrower uncertainty bands across horizons and soil depths, while 
LSTM exhibited widening intervals. We demonstrate how the proposed architecture can be augmented with 
uncertainty quantification to provide probabilistic soil water tension predictions that are interpretable without 
considerable loss in accuracy.

1. Introduction

The amount of water used in agriculture has increased significantly 
and continues to increase in comparison to a few decades ago (de 
Fraiture & Wichelns, 2010). The fact that over 70 % of anthropogenic 
water withdrawals are attributed to agriculture indicates the global 
scope of agricultural water usage (Sauer et al., 2010). Additionally, 
about 20 % of the global agricultural area is irrigated, contributing 
roughly 40 % of the world’s agricultural yield (Alexandratos and 
Bruinsma, 2012). Producing enough food to feed a growing population 
in an environment where urbanization, population expansion, and 
increased food demands are competing for limited water resources is a 
primary issue in agriculture (Pereira, 2017). Consequently, the funda-
mental water resources that agriculture relies on are threatened by 

overexploitation and inadequate water management. Given the ongoing 
population growth and the limited area to increase suitable cropland, 
irrigation becomes increasingly vital to meet the expected global food 
demands (Wichelns & Oster, 2006).

Adequate irrigation scheduling is critical to attain good yields and 
profits, limits the environmental impacts of irrigation, and increases 
water use efficiency (Pereira, 2017; Zafarmomen et al., 2024). Irrigation 
scheduling is a process that determines the appropriate amount of crop 
water demand at the right time. The evapotranspiration and water 
balance-based approach, soil moisture status monitoring, quantification 
of plant water status, and modeling are among the commonly practiced 
irrigation scheduling approaches (Gu et al., 2020). Plant available water 
is the amount of water held within the root zone and is available for 
plant uptake (Jensen & Allen, 2016). Changes in soil moisture in the root 
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zone directly affect the plants’ available water and regulate their water 
uptake and growth (Cai et al., 2019). Soil moisture is thus an important 
gauge for crop water stress and plays a significant role in irrigation 
decision-making (Feki et al., 2018). In addition to maintaining plant 
growth, soil moisture is a crucial element in the water cycle of soil–-
plant-atmosphere continuum systems (Schlesinger & Jasechko, 2014). 
Promoting sustainable irrigation management practices to increase crop 
yield begins with an accurate prediction of soil water dynamics in the 
root zone. Consequently, accurate prediction of soil moisture is impor-
tant to bridge the gap between crop irrigation demand and water 
availability.

Conventionally, the spatial–temporal variability of soil moisture is 
predicted by using physically based models. Models such as HYDRUS 
(Šimůnek et al., 1998), Root Zone Water Quality Model (RZWQM2;Ma 
et al., 2001) and Soil-Water-Atmosphere-Plant (SWAP; van Dam et al., 
1997) are among the extensively used physically based models for root 
zone soil moisture prediction. Although physical models are recognized 
for their explainability, their performance is hampered by the numerous 
model parameters, introducing model uncertainty, defective represen-
tation of land-surface processes and their high computational power (Li 
et al., 2022). With the advancement of computing power, neural 
network models have gathered momentum in soil moisture prediction. 
Notable algorithms include Multilayer Perceptron (MLP; Rosenblatt, 
1958), Support Vector Machine (SVM; Cortes & Vapnik, 1995), Random 
Forest (RF, Breiman, 2001) and Artificial Neural Networks (ANN; 
Rosenblatt, 1958). Studies that compared neural networks and physi-
cally based models demonstrated that the former can accurately esti-
mate soil moisture without prior information on physical parameters 
such as soil texture and hydraulic characteristics (Gumiere et al. 2020; Li 
et al. 2020).

Deep Neural Network (DNN) is the state-of-the-art data-driven 
method that has made substantial strides in time series modeling of 
numerous study fields (LeCun et al., 2015; Umutoni and Samadi, 2024). 
Unlike conventional data-driven models, DNN possesses deeper net-
works that use different convolutions to represent the data in a hierar-
chical manner (Kamilaris & Prenafeta-Boldú, 2018). Furthermore, the 
backpropagation algorithm enables DNN to learn complex data struc-
tures, enabling algorithms to fine-tune model parameters of each layer 
in retrospect (LeCun et al., 2015). Due to DNN’s superior prediction 
ability, these algorithms have been significantly applied in soil moisture 
prediction. Cai et al. (2019) were among the first scholars who used a 
deep learning regression network (DNNR) to predict soil moisture. Their 
results showed that DNNR can achieve better performance compared to 
MLP, outperforming the latter in terms of generalization and scalability 
capabilities. Shortly after, Yu et al. (2021) coupled a Convolutional 
Neural Network (CNN) with a Gated Recurrent Unit (GRU) to predict 
soil moisture at various depths of the maize root zone for effective 
irrigation planning. Recently, Zhao et al. (2023) used a hybrid Bidirec-
tional Gated Recurrent Unit (BiGRU) and Long Short-Term Memory 
(LSTM) model to predict soil moisture focusing on learning the sea-
sonality and trends in the time series data, resulting in a strong model 
generalization ability. Other research endeavors have attempted to 
predict soil moisture at a global or regional scale using remote sensing 
data, all exhibiting skillful performance and significant accuracy (see 
Zhang et al., 2017; Lee et al., 2019; Liu et al., 2022; Roberts et al., 2022, 
among others).

Although DNN has enabled substantial improvement in soil moisture 
forecasting, most DNN algorithms still struggle to provide accurate long- 
horizon forecasts. Furthermore, soil moisture dynamics are influenced 
by several factors such as precipitation, irrigation, evapotranspiration, 
and soil texture. The nonlinear interactions among these variables pre-
sent distinctive challenges for accurate soil moisture prediction by 
traditional neural networks (Cai et al., 2019; Wang et al., 2023). Two 
common challenges faced are the predictions’ variability and the in-
crease in computing complexity as the forecasting horizon increases 
(Challu et al., 2023). For example, the memory and computational 

power of fully connected layers increase fourfold with respect to the 
forecasting horizon length. To address these challenges, Oreshkin et al. 
(2020) introduced the Neural Basis Expansion Analysis for interpretable 
Time Series forecasting (N-BEATS) based on the concept of backward 
and forward residual links to learn time series representations without 
relying on external feature engineering or domain knowledge. Building 
on the concept of N-BEATS, Challu et al. (2023) invented Neural Hier-
archical Interpolation for Time Series Forecasting (N-HiTS), a new 
neural network architecture designed to reduce the memory and 
computational power of neural networks without affecting their ability 
to model long-term dependencies. Both algorithms were structured to 
generate interpretable predictions (Saberian et al., 2024).

This study is the first attempt known to the authors that implemented 
N-HiTS and N-BEATS to predict soil moisture fluctuations expressed as 
soil water tension across three root zone depths and prediction horizons, 
enabling both long-term forecasting and interpretability in irrigation 
contexts. The scope of this research is to develop fully connected N- 
BEATS and N-HiTS architectures by enhancing their input decomposi-
tion via multi-rate soil water tension data sampling and a synthesis of 
the outputs via multi-scale interpolation. Interpretability of predictions 
is addressed by leveraging the backward and forward residual links of N- 
HiTS and N-BEATS to explicitly decompose the soil water tension data 
into trends and seasonality. This enhanced the clarity of short-to-long- 
term variations and enabled the models to generate more explainable 
predictions. We benchmarked these advanced algorithms with LSTM to 
compare the results with a recurrent time series prediction model. In 
addition, the uncertainty associated with soil moisture predictions is 
quantified using a multi-quantile loss function to diminish the error 
associated with the prediction. The soil water tension prediction work-
flow has been emphasized with the multi-horizon and depth prediction 
strategy in all these approaches. We tested the models across two test-
beds with different soil profiles using multiple years of sensor data. Our 
extensive experiments show the importance of the proposed algorithms 
and validate significant improvements in the accuracy and computa-
tional complexity of the proposed algorithms.

The goal of this research was to develop interpretable DNN models 
for soil water tension prediction across multiple soil depths and pre-
diction horizons. The specific objectives to accomplish this goal were to: 

(i) Improve sub-daily prediction of soil water tension across multiple 
root zone depths by leveraging the interpretability properties of 
the state-of-the-art N-HiTS and N-BEATS models,

(ii) Evaluate the performance of N-HiTS and N-BEATS with respect to 
LSTM in terms of predictive accuracy and performance,

(iii) Provide probabilistic soil water tension predictions at multiple 
depths and horizons to complement deterministic estimation for 
informed irrigation decisions-making.

Our contributions are summarized below: 

1. Interpretability: We generated soil water tension predictions by 
lowering the dimensionality of DNN’s prediction, extracting key low- 
dimensional features from the high-dimensional outputs, and 
harmonizing their time scale with the final output using multiple- 
scale hierarchical interpolation. This innovative approach is not 
exclusive to our model and can be applied to other algorithmic 
frameworks. The proposed algorithms can be also retrained and 
applied to other regions and climates.

2. Benchmarking with LSTM: We compared our approaches with 
LSTM as a benchmark model, using different error metrics to perform 
a thorough comparative analysis, examining the weaknesses and 
strengths of each approach. This comparison provided valuable in-
sights into the strengths and weaknesses of our proposed algorithms 
and identified opportunities for improvement.

3. Uncertainty Quantification: We computed the loss based on pre-
dictions at multiple quantile levels using the multi-quantile loss 
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function (MQL) to capture the possible range of each model’s pre-
dictions and provide a more comprehensive assessment of error and 
uncertainty across simulation horizons. Moreover, we employed 

several uncertainty quantification evaluation methods to improve 
the models’ probabilistic predictions and support their viability in 
irrigation decision making.

Fig. 1. The structure of LSTM model. Xt-1, Xt and Xt+1 are input soil water tension, Ct-1, Ct, Ct+1 are memory cells, and ht-1, ht, and ht+1 are hidden layers. The tanh 
function is used to regulate the values in the cell state.

Fig. 2. The workflow of N-BEATS architecture includes stack input, block input, backcast and forecast components. Each block consists of layers of FC network with 
ReLu non-linearities. It uses the backward θb and forward θf expansion coefficients to generate the backcast and forecast. Multiple blocks form a stack, and forecasts 
from stacks are summed up hierarchically to produce the overall model forecast.
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2. Materials and methods

2.1. Data collection and preprocessing

Following a rainfall or irrigation event, soil pores become saturated 
with water. As drainage begins, gravity causes water in macro-pores to 
drain quickly. Over time, the remaining soil moisture is contained only 
in smaller pores by capillary and surface tension forces. Soil water 
tension represents the force required to extract water from these micro 
soil pores and indicates the status of soil moisture content. The drier the 
soil, the higher the soil water tension and energy needed to extract soil 
moisture, making it difficult for plants to absorb water. Monitoring soil 
water tension helps determine when the soil moisture content has 
reached a set threshold that warrants irrigation. The magnitude of soil 
water tension with respect to the soil moisture content varies by soil 
type; their relationship is described by soil water characteristics curves 
originally developed by Buckingham (1907) and Gardner (1920). Soil 
water tension data from two irrigation sites located in Georgia (GA) and 
South Carolina (SC), collected for irrigation scheduling purposes, were 
used in this study. The description of each site is provided below, and the 
data is available upon request.

2.1.1. Irrigated field in GA
Data used for this site was collected in a study conducted at the 

University of Georgia’s Stripling Irrigation Research Park (SIRP) located 
near Camilla, GA in a 4-ha research field. The field was divided into 
three blocks of 27 plots each. Each plot was 14.5 × 14. 5 m (48 × 48 ft or 
48 ft long × 16 rows wide). Data was collected in eight middle rows in 
each plot, and the four rows on either side of the middle eight were 
buffers. The soil is classified as a Lucy Loamy Sand with an available 
water holding capacity of 0. 08 cm/cm with 0 to 5 % slope. Soil texture 
varies marginally across the field, with 83 % Sand, 10 % Silt and 7 % 
Clay in the South block to 86 % Sand, 8 % Silt, and 6 % Clay in the North 
block. The field was irrigated with a variable rate-enabled lateral irri-
gation system. Three Watermark soil moisture sensors were placed in 
each plot at 0.15, 0.3 and 0.46 m of soil depth, respectively, to monitor 
soil moisture using matric potential type soil moisture sensors during 
each growing season from 2019 to 2021.

2.1.2. Irrigated field in SC
The second study site is a center pivot irrigated farmer’s field located 

in Blackville, Barnwell County, SC. The field’s soil texture is a combi-
nation of loamy and sandy soil. A soil moisture probe consisting of 
Watermark sensors collecting soil water tension data every 30 min 
during the cotton growing season was placed in the field to monitor 
changes in soil matric potential at 0.15, 0.3, and 0.6 m of soil depth from 
2020 to 2022.

2.1.3. Data preprocessing
The soil water tension data were collected hourly and half-hourly for 

the GA and SC fields, respectively. Data cleaning involved graphically 
inspecting the plots of soil water tension variations in time and removing 
outliers or data points recorded when sensors were not operating 
correctly. Furthermore, the data collected in SC were converted to an 
hourly scale by taking the average value of the data collected every 30 
min.

2.2. DNN algorithms

We used two interpretable DNN algorithms (N-BEATS and N-HiTS) 
and benchmarked them with LSTM. Each of these algorithms is dis-
cussed in detail below.

2.2.1. LSTM
LSTM, introduced by Hochreiter and Schmidhuber (1997), is a 

recurrent neural network (RNN) designed to effectively handle 

sequential data by using gates to selectively remember or forget infor-
mation across multiple time steps. Unlike traditional RNNs, LSTMs have 
a more advanced structure consisting of a hidden state that acts as short- 
term memory and an additional cell state that functions as long-term 
memory. Fig. 1 depicts the structure of an LSTM network.

2.2.2. N-BEATS
N-BEATS is a DNN architecture created for forecasting one-variable 

time series (Oreshkin et al., 2020). The architecture of this algorithm 
is based on a stack of fully connected layers arranged in blocks, each 
responsible for capturing different aspects of the time series data. Each 
block l takes its distinctive input Xl and produces two vector outputs. 
The backcast X̂l which is the best estimate of Xl following the boundaries 
on the functions that the block can use to estimate signals, and forward 
forecast the length of horizon (H)ŷl. The network architecture is illus-
trated in Fig. 2. The first block receives the overall model input as Xl 
while the input Xl of the subsequent blocks are residual outputs of the 
previous blocks.

Within each block there are two separate parts. The first part is a 
fully connected network that yields the forward θf

l and the backward θb
l 

predictors of expansion coefficients. The second part includes the 
backward gb

l and the forward gf
l basis layers that take the corresponding 

forward θf
l and backward θb

l expansion coefficients, transform them 
internally based on the set of basic functions, and produce the backcast 
X̂l and the forecast ŷl outputs.

A fixed number of blocks are organized into sequential stacks 
interconnected using a novel double residual topology. Each connection 
consists of two residual branches, one operating on the backcast pre-
diction and the other on the forecast. This structure allows blocks to 
focus on learning part of the input data that previous blocks have not yet 
learned. The forecast output of each block is hierarchically aggregated, 
from the stack to the overall network level, to obtain the global forecast 
as indicated in Fig. 2. The benefit of this architecture is that the partial 
backcast and forecast can be observed gradually during the simulation 
process, which facilitates the identification of each stack’s contribution 
and enables the overall results to be interpreted.

In addition to the basic design of N-BEATS inherently allowing model 
interpretability, interpretability is further imposed by adding structure 
to the basis layers at the stack level. This is done by decomposing the 
input data into trends and seasons using some constraints on gb

s,l and gf
s,l 

to account for the slowly changing pattern in the data for trend, and the 
recurrent rise and fall fluctuations for seasons present in the input data.

The following group of equations describe the modeling processes. 
Equation (1) explains the process occurring in the first part of the l-th 
block. 

hl,1 = FCl,1(Xl), hl,2 = FCl,2
(
hl,1

)
, hl,3 = FCl,3

(
hl,2

)
, hl,4 = FCl,4

(
hl,3

)

θb
l = LINEARb

l
(
hl,4

)
, θf

l = LINEARf
l

(
hl,4

)
(1) 

where FC is a fully connected network with ReLu non-linearity and 
LINEAR is a linear projection layer.

The second part of the network maps expansion coefficients θf
l and θb

l 
to outputs via basis layers as shown in the equations below (Equation 2). 

ŷl = gf
l

(
θf

l

)
and X̂l = gb

l
(
θb

l
)

(2) 

2.2.3. N-HiTS
N-HiTS is another type of DNN developed specifically for long-term 

horizon forecasting (Challu et al., 2023). It improves N-BEATS’s 
framework by adding hierarchical interpolation approaches to increase 
the forecast accuracy for long-term forecasting tasks. The algorithm uses 
multi-rate sampling of the input data and multi-scale synthesis of the 
forecast, giving a hierarchical construction of the forecast and greatly 
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lowering the computational power while improving the forecasting ac-
curacy. Similar to N-BEATS, N-HiTS uses a modular block structure but 
with supplementary features for hierarchical interpolation. Each block 
has feed-forward neurons, known as MLP, predicting forward and 
backward coefficients of the basic functions, whereby each basis func-
tion learns specific data characteristics. The backcast output is used to 
process and clean the inputs of the following blocks, while the forecasts 
are added to determine the final prediction results. The blocks are 
organized into groups known as stacks that specialize in learning spe-
cific data characteristics using distinct basis functions to iteratively fine- 
tune the forecasts. The structure of the algorithm is depicted in Fig. 3.

A kernel size kl is used on a MaxPool layer at the input of each block l 
to assist the algorithm in analyzing components of the input data with an 
explicit scale. Larger kl omit highly frequent components of the block’s 
input to impose it to concentrate on studying the less frequent content. 
This process, known as multi-rate sampling, allows each block to 
specialize in learning a specific input signal. Given block l input yt− L:t,l 

(where the input to the first block l = 1 is the overall model input, 
yt− L:t,1 ≡ yt− L:t,l), this operation is expressed in Equation (3). 

y(p)
yt− L:t,l

= MaxPool
(

yt− L:t,l, kl

)
(3) 

After subsampling, block l takes the input and regresses nonlinearly 
the forward θf

l and backward θb
l interpolation coefficients of MLP that 

learns the hidden vector hl ∈ RNh , which is then transformed linearly as 
shown by Equation (4): 

hl = MLPl

(
y(p)

yt− L:t,l

)

θf
l = LINEARf (hl)θb

l = LINEARb(hl) (4) 

The coefficients are then used to generate the backcast ỹt− L:t,l and 
forecast ŷt+1:t+H,l outputs of the block.

Furthermore, N-HiTS uses a temporal interpolation technique to 
avoid a drastic increase in the computational cost in multi-horizon 
forecasting tasks. This approach uses an expressiveness ratio rl to ex-
press the dimensionality of the interpolation coefficients and regulate 
the number of parameters for each output time unit. Hierarchical 
interpolation is achieved by distributing these expressiveness ratios 
across blocks in a way that matches the multi-rate sampling. This 
explicit control over prediction granularity using the rl ensures that 
forecasts are smooth and interpretable. The overall forecast is obtained 
by aggregating the interpolations generated at different time-scale hi-
erarchy levels. Multi-rate signal sampling and temporal interpolation for 
forecast construction are unique techniques that make N-HiTS more 
transparent and interpretable.

2.3. Model performance measures

In this study, the simulation results were evaluated using the Nash- 
Sutcliffe Efficiency coefficient (NSE; Nash & Sutcliffe, 1970), Root 
Mean Squared Error (RMSE), and Mean Absolute Error (MAE), and 
graphically visualized to assess their performance across depths and 
horizons. An NSE value equivalent to 1 shows a perfect agreement be-
tween observed and modeled soil water tension. On the other hand, an 
NSE value of 0 indicates that the predictive ability of the model is as 
good as the mean of the time series data (Nash & Sutcliffe, 1970). RMSE 
is also commonly used when evaluating the quality of a model’s pre-
diction. RMSE values vary from 0 to infinity; the lower the RMSE value, 
the better the model performance is (Jamil & Akhtar, 2017). MAE is 
another error estimation measure that is calculated as the arithmetic 
average of the difference between predictions and observations 

Fig. 3. The workflow of N-HiTS architecture consists of blocks composed of multiple MLPs with ReLu activation functions and a max-pooling layer. Blocks are 
connected using the double residual mechanism, allowing each block to output a backcast and a forecast. Several blocks form a stack, and the outputs of stacks are 
averaged to generate the overall model prediction.
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(Hyndman & Koehler, 2006). Like RMSE, MAE ranges between 0 and 
infinity, lower values show good model performance.

To estimate the uncertainty associated with the deterministic pre-
dictions, the MQL function was used. MQL computes the mean quantile 
loss (QL) across a specific set of quantiles based on the residue value by 
introducing distinct penalties for under-predicted and over-predicted 
values depending on the quantile level considered. The probability 
levels included in our analysis were 50, 75, 90, 95, and 99, corre-
sponding to the 0.5, 0.75, 0.90, 0.95, and 0.99 quantiles, respectively. 
For each quantile, the models produced lower, median, and upper pre-
dictions of soil water tension values, iteratively learning to improve the 
prediction performance at each quantile level (Equations (5) and (6)). 

QL
(

yT , ŷ
(q)
T

)
=

1
H

∑t+H

T=t+1

[
(1 − q)

(
ŷ(q)

T − yT

)
+ q

(
yT − ŷ(q)

T

) ]
(5) 

MQL
(

yT ,
[
ŷ(q1)

T ,⋯, ŷ(qn)
T

] )
=

1
n
∑

QL
(

yT , ŷ
(qi)
T

)
(6) 

where q refers to the predicted quantile, yT is the observed value at time 
T, ŷ(q)

T is the corresponding prediction for a given quantile, and H is the 
forecast horizon.

Without applying any smoothing or post-processing of probabilistic 
results, the performance of each model’s uncertainty estimates was 
assessed using the P- and R-factors. The P-factor measures the percent-
age of observed data points that fall within the 95 percent prediction 
uncertainty (95 PPU), Equation (7), revealing how effective a model is in 
providing predictions that align with the observed value and measuring 
the uncertainty associated with those predictions. The P-factor ranges 
between 0 and 100 %; the higher it is, the better the model fits and the 
lower the uncertainty. The R-factor evaluates the width of the uncer-
tainty band around the predictions relative to the variability of the 
observed data. A lower R-factor reflects a narrower uncertainty band, 
indicating a higher model precision, while a higher R-factor indicates a 
wider uncertainty band, implying greater uncertainty in model pre-
dictions. Furthermore, we employed these metrics to determine the 
difference in models’ predictions convergence and accuracy at the 50, 

75, 90, and 99 % uncertainty bands. The P- and R-factors are computed 
using Equations (8) and (9). 

95 PPU =
[
ŷ(0.05)

T , ŷ(0.95)
T

]
(7) 

P − factor =
Observations bracketed by 95 PPU

Number of observations
× 100 (8) 

R − factor =
1
k
∑k

i=1(XU − XL)

σx
(9) 

where k is the number of observations, XU and XL are the upper and 
lower limits of the uncertainty band, respectively, and σx is the standard 
deviation of observed data.

Additionally, we used the Continuous Ranked Probability Score 
(CRPS) metric (Equation (10)) to assess the accuracy of the probabilistic 
predictions of the 95 PPU against measured soil water tension. The 
closer the score is to zero, the more accurate the probabilistic pre-
dictions are. 

CRPS(F, x) =
∫ x

− ∞
F(y)2dy+

∫ +∞

x
(F(y) − 1)2dy (10) 

F( y) is the Cumulative Distribution Function (CDF) of the predictions’ 
distribution, while x is the actual soil water tension value at a specific 
time and depth

CDFs were used to assess the cumulative probability of the residuals 
of each model and evaluate the variability and spread. The steepness of 
the CDF curve shows the variability of the residuals; a steeper CDF curve 
implies that the errors are clustered around zero, while the spread in-
dicates the extent of the errors. Mathematically, CDF is expressed in 
Equation (11). 

F(x) = P(X ≤ x) (11) 

where, F(x) is the probability that X (residual) is less than or equal to x 
(any possible value of X)

The methodological framework followed in this study is summarized 

Fig. 4. The workflow of the proposed methodologies.
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in Fig. 4. The soil water tension prediction models were executed on a 
NVIDIA V100 GPU and implemented using the NeuralForecast open- 
source library (Olivares et al., 2022). As illustrated in Fig. 4, we first 
split the three-year soil water tension data collected in both sites into the 
training (80 %) and testing (20 %) sets, which were then used as input 
for each model. Based on this ratio, the data from the two test beds were 
incorporated into LSTM, N-BEATS and N-HiTS. All algorithms were 
coupled with the MQL function to estimate the uncertainty associated 
with the predictions. In this research, deterministic results were evalu-
ated using the NSE, RMSE and MAE metrics, while probabilistic pre-
dictions were assessed using the P and R-factors and CRPS.

3. Results and discussion

Three years of sub-daily soil water tension data were collected during 
the growing seasons. The datasets were split chronologically into 
training and testing sets, with two years of data used for training and the 
remaining year for testing the developed models. The training sets, years 
2019 and 2020 for GA and 2020 and 2021 for SC, comprised 5576 and 
5589 data points, respectively. The testing sets, year 2021 and 2022 for 
GA and SC, consisted of 3369 and 2677 hourly data points, respectively. 
The training sets were used to train the models to find the best parameter 
set that minimizes the error between observations and predictions, 
while a validation set consisting of the last seven prediction windows for 
each horizon was used to monitor the validation loss during training. 
The testing sets were used to evaluate the models’ performance on un-
seen data. Furthermore, we used LSTM as a benchmark model to 
compare the accuracy of N-HiTS and N-BEATS models against a recur-
rent algorithm with a mechanism to avoid the vanishing gradient 
problem and learn temporal dependencies in data. Below, we discussed 
the hyperparameter tuning, simulation results and uncertainty quanti-
fication for each testbed.

3.1. Hyperparameter tuning

We employed a systematic trial-and-error method to find the best 
parameter set for each model. The tuned hyperparameters include batch 
size, number of blocks per stack, number of stacks, and the optimizer, 

Table 1 
Optimized hyperparameter values.

Hyperparameter LSTM N-HiTS N-BEATS

Scaler type minmax minmax minmax
Epochs 10,000 3000 3000
Batch size 32 32 32
Lookback window (h) 7 7 7
Number of layers 1 1 1
Number of stacks Not applicable 3 3
Number of blocks per stack Not applicable 1 1
Number of units in each hidden layer 64 512 512
Dropout rate 0.2 0.2 0.0
Activation function tanh ReLU ReLU
Optimizer Adam Adam Adam

Fig. 5. The training against the validation loss of each model for the 12 h horizon at 0.15 m depth.
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along with other parameters listed in Table 1. The network weights were 
continuously updated to reduce errors and bias in the simulation. Initial 
weights of the network were set to random values, and a gradient-based 
Adam optimizer was used to adjust the network weights. Early stopping 
with a patience of 100 epochs was applied for N-HiTS and N-BEATS to 
avoid overfitting, while a patience of 500 epochs was used for LSTM. 
After the model training reached a certain limit, increasing the number 
of iterations was no longer significant for improving the performance, as 
illustrated in Fig. 5. The influence of hidden layers on model precision 
has always been a key problem in DNN performance because they can 
influence error on the nodes to which their output is connected. The 
minimal error reflects better network stability, while a higher error re-
flects poor stability. The optimal number of hidden layers was estimated 
by a trial-and-error method, which cost time but was more efficient in 
reaching high accuracy. The time used to train the LSTM, N-HiTS, and N- 
BEATS models was on average 82, 43, and 28 s, respectively.

3.2. GA irrigated field case study

3.2.1. Soil water tension simulation at 0.15 m depth
The soil water tension prediction at 0.15 m soil depth with 1 h in-

crements is graphically depicted in Fig. 6. The simulation results indi-
cated that the trained N-BEATS and N-HiTS models closely followed the 
general trend of the measured data, which was indicated by their ability 
to capture both the seasonality and trend effectively. Both models pro-
vided skillful predictions compared to LSTM as the benchmark model. In 

addition, both N-HiTS and N-BEATS successfully predicted water stress 
conditions, particularly in August and September, when irrigation de-
mands were high. The performance metrics of each model (see Table 2), 
further supported the prediction capabilities of N-BEATS and N-HiTS 
compared to the benchmark LSTM. N-BEATS and N-HiTS relatively 
better performance is attributed to their structural design, which is 
equipped with mechanisms to explicitly structure the input data into 
distinct temporal patterns to account for seasonality and trends. Based 
on the performance error evaluation, N-HiTS presented the least error 
between the measured and predicted values. N-HiTS slightly out-
performed N-BEATS because of its multi-rate sampling and hierarchical 
interpolation properties that enhance the model’s ability to tackle multi- 
scale temporal patterns efficiently.

Results obtained after increasing the horizon to 6 h showed that the 
tested models were still robust with N-HiTS providing the best perfor-
mance across all three metrics, as indicated in Table 2. The NSE value 
associated with N-HiTS prediction was very good, indicating the ability 
of this algorithm to predict soil water tension variabilities over time. N- 
BEATS results suggested that the prediction horizon minimally affected 
the model as the error metrics slightly altered. The benchmark model, on 
the other hand, is substantially affected by the increase in time horizon 
as indicated by a 5.44 % drop in NSE value. The decline in performance 
is mainly observed for peak values where the model overestimated the 
magnitude of soil water tension. The reduced performance of the 
benchmark model exemplifies its limited ability to capture long-term 
dependencies in time series like N-HiTS and N-BEATS despite being 

Fig. 6. Soil water tension simulations across different time horizons at 0.15 m soil depth. The grey shaded area indicates 95 PPU.
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powerful for sequential data.
At the 12 h horizon, LSTM results showed a sharp decline in NSE 

value and significant increase in RMSE and MAE error metrics (see 
Table 2). This reflects the fact that LSTM struggled to explain variability 
in the measured data and showed increased deviation from the actual 
values over longer horizons. Compared to the benchmark model, the 
accuracy of N-HiTS and N-BEATS decreased slightly at the 12 h horizon, 
whereby the NSE declined by 0.1 % and 1.08 % for N-HiTS and N- 
BEATS, respectively. Both models followed the measured data pattern 
closely despite some noticeable over- or underestimation values. While 
N-HiTS and N-BEATS performed better than LSTM, they also struggled 
to accurately capture soil water tension values that rose to extremes. 
This is arguably due to the limited occurrence of such peak values, which 
does not provide the models with enough information to be trained on. 
Nevertheless, both N-BEATS and N-HiTS exhibited compelling predic-
tion results, demonstrating their ability to predict different ranges of soil 
water tension values at 0.15 m. This underscores their ability to signal 
water depletion in the root zone, indicating that irrigation is needed.

In addition, 95 PPUs were quantified for each model. The shaded 
gray area in Fig. 6 illustrates 95 PPU and delineates the boundary within 
which the measured values are expected to fall 95 % of the time. The 
goal is to have 95 PPU as narrow as possible while capturing most 
observational data. A wider interval indicates more significant uncer-
tainty in predictions, while the narrower uncertainty band implies that 
the model is more certain about the accuracy of its prediction. During 
periods of instant change, such as around peak values, all models pre-
sented wider prediction intervals, showing greater uncertainty in pre-
dicting extreme soil water tension values. This can be expected as 
accurately predicting rapidly changing conditions is challenging. LSTM 
exhibited good predictions of measured values while intermittently 
providing a wider 95 PPU, indicating satisfactory responsiveness with 
some sensitivity to data fluctuations. N-HiTS, on the other hand, main-
tained a closer fit to the measured data and had narrower intervals, 
suggesting that it was more robust to sudden changes in measured data. 
95 PPU associated with the N-BEATS simulation showed a similar 
convergence to that of N-HiTS. Table 2 presents the P-factor and R-factor 
indices used to quantify the confidence level in predictions. Overall, N- 
HiTS and N-BEATS models captured 82.72 % and 80.58 % of 

observational data, respectively, while the benchmark model performed 
better regarding bracketing observations with a higher P-factor (90.87 
%). The obtained R-factor values that compare the average width of the 
prediction interval to the variability of the observed data indicate that 
LSTM has a higher R-factor than N-HiTS and N-BEATS, as noted in the 
broader intervals around peak values illustrated in Fig. 6. On the con-
trary, N-HiTS and N-BEATS, with their narrower R-factor, showed more 
confidence in soil water tension prediction despite failing to capture 
some extreme values like LSTM. The comparatively better probabilistic 
performance of N-HiTS and N-BEATS was further demonstrated by their 
lower CRPS values across all horizons compared to those of LSTM 
(Fig. 7).

The uncertainty band for the 6 h horizon was significantly broader 
than that of 1 h for LSTM throughout the simulation period. The higher 
P-factor for LSTM compared to N-HiTS and N-BEATS suggests (see 
Table 2) that the uncertainty band enclosed most of the observed values, 
as supported by Fig. 6. Despite presenting a less smooth uncertainty 
band, N-HiTS and N-BEATS appeared more confident in their pre-
dictions as they maintained a narrow uncertainty band throughout the 
simulation period. Even though both N-HiTS and N-BEATS provided 
similar uncertainty estimates, N-HiTS provided the best overall perfor-
mance, exhibited by its ability to capture variability in the data.

The 95 PPU estimation at the 12 h horizon indicated that the 
benchmark model scored the highest P-factor bracketing more measured 
data points in the confidence interval compared to N-HiTS and N-BEATS 
(Fig. 6). However, LSTM’s highest R-factor indicated a wider interval 
and less prediction confidence. It is important to note that N-HiTS and N- 
BEATS uncertainty bands were quite similar; both models exhibited a 
high uncertainty, although the extent of their uncertainty bands slightly 
differs. Overall, N-BEATS appeared more confident in their predictions, 
as indicated by the narrower uncertainty band and a lower R-factor. N- 
HiTS, however, remained the best performer as it generally showed a 
better performance across the other error metrics.

A comparison of the prediction performance of three models using 
the CDF of residuals (Fig. 8) indicated that the benchmark LSTM model 
presented a wider spread of residuals when the horizon increased, as 
evidenced by the gradual increase in the spread of the curves. For the 1 h 
horizon, all models showed slightly similar results when the residuals 

Table 2 
Evaluation metrics of prediction at 1, 6, and 12 h horizons across three soil depths in GA. Best performances are shown in bold.

Model Soil depth Horizon NSE (%) RMSE MAE P-factor (%) R-factor CRPS

N-HiTS 0.15 m 1 h 92.15 4.3 1.22 82.72 0.21 1.58
N-BEATS 90.85 4.79 1.32 80.58 0.2 1.64
LSTM 91.41 4.64 1.35 90.87 0.37 1.77
N-HiTS 6 h 91.59 4.60 1.58 78.67 0.39 1.61
N-BEATS 91.41 4.65 1.64 79.26 0.34 1.48
LSTM 85.97 5.94 1.59 92.37 0.91 2.41
N-HiTS 12 h 92.05 4.5 1.52 86.55 0.41 1.56
N-BEATS 89.77 5.1 1.9 83.73 0.38 1.67
LSTM 82.13 6.75 1.92 91.37 0.9 3.00
N-HiTS 0.3 m 1 h 98.57 0.79 0.42 72.23 0.29 0.59
N-BEATS 98.53 0.8 0.43 57.28 0.18 0.45
LSTM 98.52 0.80 0.47 72.04 0.19 0.45
N-HiTS 6 h 98.61 0.78 0.44 84.54 0.28 0.42
N-BEATS 98.7 0.75 0.42 81.21 0.29 0.41
LSTM 98.33 0.85 0.52 85.71 0.36 0.54
N-HiTS 12 h 98.57 0.79 0.44 84.34 0.30 0.45
N-BEATS 98.32 0.85 0.49 81.93 0.32 0.43
LSTM 98.11 0.90 0.56 86.14 0.96 1.12
N-HiTS 0.46 m 1 h 97.3 0.70 0.24 72.04 0.17 0.2
N-BEATS 98.35 0.55 0.22 58.64 0.12 0.18
LSTM 97.75 0.64 0.30 93.01 0.27 0.27
N-HiTS 6 h 98.27 0.20 0.55 83.37 0.19 0.18
N-BEATS 98.27 0.20 0.55 80.04 0.18 0.18
LSTM 96.02 0.46 0.83 96.09 1.28 0.77
N-HiTS 12 h 98.40 0.51 0.19 89.16 0.28 0.21
N-BEATS 98.15 0.55 0.21 84.74 0.25 0.21
LSTM 97.07 0.69 0.28 93.17 3.00 1.47
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fell within the same range. As the prediction horizon extended to 6 h, the 
LSTM’s residuals’ spread increased further, indicating a deterioration in 
performance, while N-HiTS and N-BEATS displayed a moderate spread 
of residuals.

At the 12 h horizon, the CDF of LSTM was notably wider where the 
residuals span from –70 to 75 kPa. N-HiTS and N-BEATS were less 
affected by the increase in horizons. However, at this stage, the differ-
ence between the two is more noticeable as N-BEATS overestimated 

Fig. 7. Uncertainty quantification performance across depths and horizons.
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more observed values. Overall, the benchmark model showed significant 
performance deterioration as the horizon increased; N-BEATS per-
formed reasonably well, but its accuracy decreased with the increasing 
horizon as evidenced by wider CDF spreads, particularly at 12 h of the 
horizon. N-HiTS is the least affected model, demonstrating a constant 95 

PPU performance across all horizons as characterized by low residuals.

3.2.2. Soil water tension simulation at 0.3 m depth
In addition to predicting soil water tension at 0.15 m soil depth, 

predictions were also performed for 0.3 m to evaluate how the models 

Fig. 8. The CDF curves of residuals across different time horizons at 0.15 m soil depth. The x-axis represents the residual of soil water tension prediction versus the 
cumulative probability of observing a value less than or equal to soil water tension data on the y-axis.

Fig. 9. Soil water tension simulations across different time horizons at 0.3 m soil depth. The grey shaded area indicates 95 PPU. As shown, 95 PPU associated with 
LSTM is large, indicating that this model did not converge to a stationary simulation over time.
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perform for different horizons across the root zone. Results illustrated in 
Fig. 9 revealed that all models were barely affected by this increase, 
whereby they effectively captured variations from peak to low and 
medium values. At 1 h horizon, the NSE values (see Table 2) were above 
98 %, demonstrating a skillful performance of all models in capturing 
the variability in the measured data. As the horizon increased, all models 

maintained good NSE values. Furthermore, noticeable changes were 
observed in the prediction of peak values, where the models slightly 
overestimated the peak values, especially at the 12 h horizon. However, 
the model’s performance was more skillful at 0.3 m compared to 0.15 m. 
This can be explained by the fact that soil water tension at greater depths 
usually experiences less variability compared to shallower depths. This 

Fig. 10. The CDF curves of residuals across different time horizons at 0.3 m soil depth. LSTM demonstrated an increased residual spread at longer horizons.

Fig. 11. Soil water tension simulations across different time horizons at 0.46 m soil depth. The grey shaded area indicates 95 PPU. As illustrated, the 95 PPU 
associated with LSTM simulation didn’t converge with a stationary prediction across prediction horizons.
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resulted in smoother trends in soil water tension that the models can 
easily predict, compared to the drastic changes observed at 0.15 m. 
These outcomes explain the higher performance exhibited by all the 
models at 0.3 m depth.

Analysis of uncertainty results at 1 h horizon showed that LSTM and 
N-HiTS performed a 72% P-factor, which is a reasonably high perfor-
mance compared to N-BEATS. The 0.19 R-factor value for LSTM indi-
cated that this recurrent network was quite confident in its predictions, 
although LSTM confidence was slightly reduced when there was a rapid 
fluctuation in soil water tension values. N-HiTS, on the other hand, 
presented a marginally wider prediction interval than the benchmark 
model (R-factor equal to 0.29. The wider intervals are particularly 
apparent around the sudden increase or decrease in soil water tension. 
N-BEATS presented the narrowest prediction intervals with an R-factor 
of 0.18, showing higher confidence in its predictions, but to the detri-
ment of not capturing all variability, given its low P-factor. Therefore, 
although N-BEATS was precise, its lower convergence caused challenges 
for this algorithm. Arguably, N-HiTS was the most reliable model, 
harmonizing both prediction accuracy and uncertainty convergence 
effectively.

At the 6 h horizon, the P-factor values of N-HiTS, N-BEATS and the 
benchmark model increased considerably, and the models captured 
more observations using 95 PPU than the 1 h horizon. Typically, the 
uncertainty bands become more expansive as the horizon rises because 
the model has a longer time frame to provide predictions, thus intro-
ducing more uncertainties. Therefore, the broader bands obtained at the 
6 h horizon indicated that the models are less confident in their pre-
dictive capabilities due to the accumulation of significant errors over 
time, especially around sudden transitions from low to high values or 
vice versa.

Uncertainty estimation results at the 12 h horizon indicated a wider 
uncertainty band for LSTM compared to the 1 h and 6 h horizons. 
Although the uncertainty band still encapsulated most of the observa-
tional data, a wide 95 PPU indicated that LSTM showed less certainty in 
soil moisture predictions as the horizon increased. On the other hand, 
the 95 PPU bands of N-HiTS and N-BEATS models broadened moder-
ately. N-HiTS bracketed more observed data than N-BEATS, as sup-
ported by a higher P-factor, although both models exhibited a relatively 
equal R-factor. Conversely, the benchmark model showed a greater R- 
factor (0.96) compared to the other two models. This implies that 
although this algorithm encapsulates most of the measured data it is less 
capable of providing accurate predictions at higher horizons. Overall, 
for uncertainty estimation across multiple horizons, N-HiTS provided a 
more consistent and reliable 95 PPU with a balance between the R-factor 
and P-factor, encapsulating most of the observed data. Similarly, N- 
BEATS offered a robust 95 PPU, although this model showed slightly 

less convergence than N-HiTS.
An analysis of the distribution of errors by each model for each ho-

rizon was undertaken based on CDF curves, illustrated in Fig. 10. As 
shown, significant errors fell around 0 in the 1 h horizon, suggesting 
good modeling accuracy with relatively small errors. On the x-axis, the 
CDF spread to about 8 kPa, indicating a slight underprediction of 
observed values. At 6 h, the curve reduced its steepness, extending more 
broadly around 0. This indicates the fact that the residuals and vari-
ability in data amplified as the horizon increased. At 12 h, the curve 
slightly shifts to the right and shows a consistent increase in residuals 
extending to about 8 kPa. At the 1 h horizon, the N-HiTS curve behaved 
similarly to LSTM, with a slight tendency towards higher residuals. This 
suggests the fact that a neural hierarchical interpolation approach pre-
sented slightly more variability compared to LSTM at this prediction 
horizon. The N-BEATS curve also indicated a similar trend but with a 
broader range of errors at 1 h horizon compared to N-HiTS and LSTM. At 
the 6 h horizon, the N-HiTS model exhibited a more pronounced shift, 
indicating a significant increase in errors compared to the shorter ho-
rizon. A similar pattern is observed for the N-BEATS model, with a 
rightward shift in the CDF at 6 h compared to the 1 h horizon. In the 12 h 
horizon, N-HiTS residual errors spread to about 9, similar to the N- 
BEATS model.

3.2.3. Soil water tension simulation at 0.46 m depth
In addition to predicting soil water tension at 0.15 m and 0.3 m, this 

variable was also predicted at 0.46 m, taking the 1 h, 6 h and 12 h as 
prediction horizons. Fig. 11 shows the predicted and observed soil water 
tension on each horizon. The N-BEATS model performed well across the 
three horizons, indicating insignificant depreciation in its predictive 
capabilities as the horizons increased. Similarly, the N-HiTS model 
yielded good results for all three horizons, displaying a slight decrease in 
its prediction accuracy with an increase in the horizon but showcasing 
compelling prediction capabilities as the prediction was closely aligned 
with the observation. The performance metrics in Table 2, indicate that 
N-BEATS and N-HiTS performed similarly at the 6 h horizon where both 
models produced equivalent NSE, RMSE, and MSE values. In addition, 
these algorithms also performed equally in the 1 h and 12 h horizons. 
Conversely, the performance of the benchmark model gradually 
decreased, as underscored by the discrepancies between the measured 
and predicted soil water tension with increasing horizon (Fig. 11).

The uncertainty in models’ predictions was comprehensively 
assessed across all horizons as illustrated in Fig. 11. For the 1 h horizon, 
the uncertainty band for N-HiTS adequately bracketed about 72 % of the 
observed. Among all models, N-BEATS encapsulated the lowest per-
centage of the measured data (58.64 %) but presented the narrowest 
uncertainty band. On the contrary, LSTM provided the highest P-factor 

Fig. 12. The CDF curves show residuals across different time horizons at 0.46 m soil depth. As shown, the residual error curve of LSTM is slightly different than the 
other two models.
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(93.13 %), bracketing more observed values within 95 PPU compared to 
N-HiTS and N-BEATS. By achieving a considerably higher P-factor and a 
slightly higher R-factor, the benchmark model outperformed N-HiTS 
and N-BEATS at the 1 h horizon. The recurrent network skillfully 
maintained a balance between capturing more than 90 % of the mea-
surements while maintaining a relatively good R-factor.

For the 6 h horizon, a moderate increase in the uncertainty bands of 
N-HiTS and N-BEATS was observed. On the contrary, LSTM’s uncer-
tainty band increased significantly compared to the 1 h horizon; this 
reveals less certainty of the benchmark model for the 6 h horizon. 
Overall, N-HiTS and N-BEATS were less affected by the transition from 
shorter to longer horizons as indicated by R-factor, while LSTM allowed 
more variability with a rise in R-factor from 0.27 to 1.28.

At the 12 h horizon, LSTM’s uncertainty band increased considerably 
compared to N-HiTS and N-BEATS, particularly during high soil water 
tension values. For N-HiTS, the uncertainty band widened during 
rapidly changing soil water tension values. Unlike N-HiTS, N-BEATS 
maintained a closer fit to the measured values, as reflected by its lowest 
R-factor. Regarding data convergence, N-BEATS bracketed the smallest 

percentage of observed data and showed slightly less convergence than 
N-HiTS and the benchmark model. The benchmark model proved 
excellent in bracketing most observations by maintaining a good to 
excellent P-factor. However, LSTM’s R-factor increased from 1.28 at 6 h 
to 3.00 at 12 h, reducing confidence in the predictions as horizon size 
increased. A noticeable rise in R-factor suggested that LSTM might be 
less reliable for long-term predictions due to the rapid depreciation of its 
accuracy across longer horizons. On the contrary, N-HiTS and N-BEATS 
offered robust and reliable predictions with a lower R-factor across all 
horizons. In other words, their predictions were closely clustered around 
the observed data, and their high P-factor reflected their ability to 
capture a considerable percentage of data points while maintaining a 
narrow uncertainty band.

The CDF curves of all models were plotted to explicitly determine 
changes in the performance of each model at different horizons. Fig. 12
indicates that at the 1 h horizon, the simulation results of N-HiTS, N- 
BEATS and the benchmark models were closely aligned while their re-
siduals clustered around zero. However, the benchmark model pre-
sented a somewhat steeper slope, implying a minor variance in error 

Table 3 
Uncertainty estimation metrics across different depths and horizons for different confidence intervals. The best performances are shown in bold.

Model Soil depth Horizon P-factor R-factor P-factor R-factor P-factor R-factor P-factor R-factor

Confidence interval 50 75 90 99
N-HiTS 0.15 m 1 h 26.41 0.07 42.14 0.11 57.28 0.17 80.58 0.34
N-BEATS 26.99 0.09 40.00 0.12 50.29 0.16 56.12 0.31

LSTM 59.61 0.1 73.59 0.17 77.28 0.2 98.06 1.35
N-HiTS 6 h 36.79 0.1 56.36 0.22 71.62 0.33 90.61 0.57

N-BEATS 35.81 0.08 55.77 0.18 73.39 0.27 91.98 0.54 

LSTM 56.56 0.08 69.28 0.16 87.87 0.48 96.09 1.62 

N-HiTS 12 h 43.37 0.09 67.87 0.17 80.52 0.32 93.37 0.65

N-BEATS 35.94 0.1 57.83 0.19 79.12 0.32 93.98 0.63

LSTM 31.53 0.11 70.48 0.20 89.16 0.67 97.99 1.8
N-HiTS 0.3 m 1 h 29.71 0.13 42.72 0.18 58.06 0.25 79.42 0.47
N-BEATS 28.16 0.07 38.06 0.1 48.74 0.14 70.10 0.23

LSTM 20.19 0.04 52.43 0.01 65.05 0.14 95.73 1.28

N-HiTS 6 h 30.14 0.07 55.58 0.12 73.19 0.21 89.04 0.49 

N-BEATS 34.05 0.06 54.99 0.13 72.21 0.2 90.22 0.42

LSTM 29.75 0.07 52.05 0.12 82.97 0.27 97.06 1.56

N-HiTS 12 h 43.98 0.07 61.45 0.13 75.10 0.24 91.16 0.5 

N-BEATS 38.55 0.07 60.84 0.13 74.30 0.22 89.56 0.46 

LSTM 22.89 0.06 51.81 0.12 64.86 0.21 92.17 1.83

N-HiTS 0.46 m 1 h 25.83 0.04 42.33 0.07 62.14 0.13 87.57 0.33

N-BEATS 25.83 0.05 39.42 0.07 51.07 0.1 73.79 0.2

LSTM 64.85 0.11 89.71 0.21 92.43 0.29 96.50 3.46

N-HiTS 6 h 40.31 0.05 59.69 0.1 76.71 0.15 94.72 0.34

N-BEATS 35.03 0.04 56.16 0.09 72.80 0.14 93.15 0.31

LSTM 20.55 0.09 74.36 0.22 92.56 0.36 99.22 3.72

N-HiTS 12 h 36.14 0.05 59.64 0.1 79.52 0.2 94.98 0.47 

N-BEATS 36.95 0.05 57.03 0.1 76.10 0.2 95.38 0.48

LSTM 30.12 0.04 74.90 0.12 84.14 0.3 85.74 4.01
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estimation compared to the other two models. At the 6 h horizon, the 
CDF curves maintained a steep ascent but spread slightly wider than the 
1 h horizon. LSTM’s curve differed somewhat from those of N-HiTS and 
N-BEATS, indicating that this algorithm was unable to capture trends as 
effectively as the other two models. As the horizon extended to 12 h, the 
benchmark model showed a more significant decline in performance 
compared to N-HiTS and N-BEATS. N-BEATS and N-HiTS performed 
equally, with minimal difference between the spread of their respective 
errors.

Furthermore, analysis of the uncertainty at various 95PPU intervals 
revealed key insights into the capabilities of all models to balance 
convergence and accuracy. According to the results, N-HiTS and N- 
BEATS maintained lower R-factor values than LSTM across all the 
95PPU (see Table 3). LSTM, on the other hand, presented better 
convergence across most depths and horizons, encompassing most of the 
observations within its uncertainty boundaries. However, this resulted 
in a drastic rise in R-factor values, leading to considerably wide intervals 
that reduced accuracy. While N-HiTS and N-BEATS increased their 
respective uncertainty bands to improve convergence, they sustained a 
better steadiness between convergence and accuracy by exhibiting R- 
factor values significantly lower than LSTM, particularly at the 12 h 
horizon. N-BEATS and N-HiTS demonstrated their capabilities to 
maintain accurate predictions across depths and prediction horizons. 
This led to effective simulation of low and high soil water tension values 
(see Fig. 13, Fig. 14, and Fig. 15). On the contrary, the broad uncertainty 
bands indicated that LSTM is conservative in its predictions as the 
timeframe increases by overestimating the soil water tension.

The differences in the exhibited performance stem from the 

distinctive architectural design of N-HiTS and N-BEATS. N-HiTS 
generally performed better than N-BEATS at longer horizons, mainly 
due to its unique multi-rate sampling technique. This approach breaks 
down complex temporal patterns in the data into fine-grained, more 
predictable patterns that capture fluctuations more efficiently. 
Depending on the kernel size, each stack in N-HiTS is tailored to learn 
either high or low frequency data components. These structural differ-
ences make N-HiTS particularly effective when soil water tension shows 
high variability. On the other hand, N-BEATS is better suited for 
modeling soil water tension of repetitive patterns such as trends and 
seasonality.

Furthermore, both N-HiTS and N-BEATS consist of multiple layers of 
stacks and blocks, producing a backcast and forecast at each timestep. 
The backcast indicates parts of the input data that are effectively learned 
by a block and uncovers remaining features that the following blocks 
should emphasize to minimize residuals. Therefore, only a portion of the 
data that antecedent blocks have not effectively captured is passed on to 
the next. This process enhances both models’ prediction capability, 
allowing them to adapt to fluctuations in data across different depths 
and horizons by limiting the aggregation of errors. In contrast, LSTM 
uses a recursive prediction approach, where each prediction is fed as 
input to the next time-step. As a result, errors propagate through the 
network across timesteps, culminating in compounded inaccuracies and 
reduced prediction accuracy as horizon increases. This error accumu-
lation contributes to the wider uncertainty bands observed for LSTM, 
particularly in long-term predictions.

Fig. 13. The 50 %, 75 %, 90 %, 95 %, and 99 % uncertainty bands across different time horizons at 0.15 m soil depth. As shown, lower soil water tension values are 
better bracketed by lower uncertainty bands (i.e., 50 % and 75 %) while higher values are mostly bracketed by > 90 % uncertainty bands.
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3.3. SC irrigated field case study

3.3.1. Soil water tension simulation at 0.15 m depth
In addition to testing N-HiTS and N-BEATS on their capabilities to 

predict soil water tension at different time horizons for a field in GA, 
they were also tested using data from an irrigated field in SC. Fig. 16
presents the simulated against predicted soil water tension for the 1 h, 6 
h, and 12 h horizons at 0.15 m of soil depth. At the 1 h horizon, N-HiTS 
and N-BEATS performed equally, as indicated by their respective per-
formance metrics. Both models outperformed the benchmark model as 
shown in Table 4. At the 6 h horizon, the benchmark model was the most 
affected by the increase in the horizon as reflected by increasing RMSE 
and MAE values from 2.68 to 3.85 and 1.23 to 1.98, respectively. On the 
other hand, the RMSE and MAE values of the N-HiTS model for the 6 h 
horizon increased by 0.47 and 0.14, respectively, while those of N- 
BEATS increased by 0.72 and 0.19. Similarly to the 6 h horizon, N-HiTS 
and N-BEATS outperformed LSTM at the 12 h horizon, maintaining their 
NSE values at 99 % while LSTM’s NSE value reduced to 96 %. This result 
indicates a notably higher performance of N-HiTS and N-BEATS 
compared to the benchmark model. The accurate prediction of various 
soil water tension ranges, particularly extreme values, demonstrates the 
capabilities of N-HiTS and N-BEATS models in supporting irrigation 
decisions based on soil moisture dynamics.

The 95 PPU at 0.15 m soil depth for the 1 h time horizon indicated 
that the LSTM model produced a broader uncertainty band compared to 
N-HiTS and N-BEATS. This was most noticeable around periods of 
sudden changes such as transitions from low to high soil water tension in 
September. N-HiTS and N-BEATS, on the other hand, presented a very 

narrow uncertainty band during the same period. They also provided the 
highest P-factor of 92 %, and a narrower R-factor, outperforming the 
benchmark model. At the 6 h horizon, both N-HiTS and N-BEATS models 
maintained their accuracy despite the increase of time horizon, as 
underscored by the extent of their respective uncertainty bands and 
metrics (Fig. 16). On the other hand, LSTM’s uncertainty band further 
widened. This suggested that the benchmark model was less confident in 
soil water tension prediction as the horizon increased. At the 12 h ho-
rizon, there was a noticeable increase in the uncertainty bands of N-HiTS 
and N-BEATS. These two models showed less confidence in their pre-
dictions on this horizon due to more uncertainty being introduced over 
time. However, both models maintained a closer fit to the observed data. 
Conversely, the accuracy of the benchmark model declined significantly 
compared to N-HiTS and N-BEATS. The narrow confidence bands 
around N-HiTS and N-BEATS predictions showcased their reliability for 
long-term prediction compared to the benchmark model, particularly in 
the events of rapid soil–water tension changes, where LSTM appeared to 
fail at maintaining a narrower uncertainty band. Furthermore, the 
comparison of CRPS metrics demonstrated that LSTM’s predictions 
differ more significantly from measured values than those of N-HiTS and 
N-BEATS (see Fig. 17).

The CDF plots of residuals across the 1 h, 6 h, and 12 h horizons 
(Fig. 18) demonstrated the reliability of N-BEATS and N-HiTS models in 
predicting soil water tension at 0.15 m of soil depth. As the horizon 
increased from 1 h to 12 h, a slight expansion of the residual spread was 
observed for both models. The benchmark model displayed a less 
concentrated residual distribution, evidenced by a more gradual curve 
that spreads across a more extensive residual range. This implies that 

Fig. 14. The 50 %, 75 %, 90 %, 95 %, and 99 % uncertainty bands across different time horizons at 0.3 m soil depth. As illustrated, all uncertainty bands showed 
significant fluctuations, revealing high variability in observational data.
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LSTM tended to produce more significant errors than N-HiTS and N- 
BEATS. As a result, the benchmark model exhibited lower reliability, as 
indicated by a wider spread of residuals around zero. N-HiTS and N- 
BEATS models exhibited a steep curve closely centered around zero 
residuals, indicating that the prediction errors were insignificant. This 
sharp ascent around zero suggested that N-HiTS and N-BEATS provided 
highly accurate predictions with minimal error spread, maintaining 
consistency across all horizons.

3.3.2. Soil water tension simulation at 0.3 m depth
Soil water tension predictions at 0.3 m depth across different models 

indicated that all algorithms produced predictions that align well with 
measured values. For the 1 h horizon, N-HiTS and N-BEATS presented 
near-optimum NSE scores of 99.71 % and 99.73 %, respectively, and 
maintained a low RMSE and MAE. High P-factor and low R-factors 

reflect a narrow uncertainty band, implying high confidence of N-HiTS 
and N-BEATS in predicting soil water tension (see Fig. 19). In compar-
ison, the benchmark model achieved a lower NSE with higher RMSE and 
MAE metrics, indicating more significant prediction errors.

In addition, N-HiTS and N-BEATS performed well as the time horizon 
increased to 6 h, as shown in Fig. 19. Both models maintained a strong 
performance, with NSE scores of 99.36 % and 99.41 % and minor in-
creases in RMSE and MAE, indicating that these models retained accu-
racy over extended horizons. Their P-factors also remained high, 
although slightly lower than the 1 h horizon. The benchmark model, on 
the other hand, experienced a notable decline in accuracy with an NSE of 
92.61 % and much higher RMSE and MAE.

For the 12 h horizon, N-HiTS and N-BEATS continued to show strong 
predictive power with NSE scores of 99.28 % and 99.00 %, respectively. 
Although, their uncertainty bands widened slightly, as indicated by a 

Fig. 15. The uncertainty bands of 50 %, 75 %, 90 %, 95 % and 99 % across different time horizons at 0.46 m soil depth. As shown, there is more agreement among 
different uncertainty bands, particularly during peak soil water tension predictions.
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moderate R-factor. On the contrary, the benchmark model’s perfor-
mance decreased significantly, with an NSE of 93.09 % and much higher 
RMSE and MAE values, indicating significant deviation from observed 
values. Furthermore, N-HiTS and N-BEATS predictions aligned closely 
with the observed values across all horizons (see Fig. 19) while the 
benchmark model showed a noticeable lag and a wider uncertainty 
band, particularly at 6 and 12 h horizons. Overall, N-HiTS and N-BEATS 
demonstrated improved performance at 0.3 m soil depth, making these 
models more suitable for long-term soil water tension predictions than 

LSTM.
The CDF plots of the residuals produced by the models are illustrated 

in Fig. 20. These results indicated that the performance and accuracy of 
models differed as the time horizon increased. At the 1 h horizon, the 
CDF curves of N-HiTS and N-BEATS models approached zero rapidly and 
centered around zero residuals, indicating that these two models pro-
vided a limited number of underpredicted values and that a high per-
centage of errors was close to zero. The models, however, showed a wide 
spread of positive residuals. For example, at 6 h and 12 h horizons, the 

Fig. 16. Soil water tension simulations across different time horizons at 0.15 m soil depth. The grey shaded area indicates 95 PPU. As shown, the 95 PPU of N-HiTS 
and N-BEATS are skillfully optimized, while the 95 PPU associated with LSTM did not converge with a stationary state, particularly for the 6 h and 12 h horizons.

Table 4 
Performance metrics for soil water tension prediction for irrigated field in SC. The best performances are shown in bold.

Model Soil depth Horizon NSE (%) RMSE MAE P-factor (%) R-factor CRPS

N-HiTS 0.15 m 1 h 99.90 0.69 0.26 92.22 0.075 0.3
N-BEATS 99.91 0.68 0.26 92.00 0.05 0.25
LSTM 98.54 2.68 1.23 90.29 0.21 1.1
N-HiTS 6 h 99.72 1.16 0.40 82.46 0.06 0.35
N-BEATS 99.60 1.40 0.45 84.19 0.09 0.39
LSTM 96.95 3.85 1.98 86.04 0.40 1.51
N-HiTS 12 h 99.85 0.85 0.35 89.80 0.08 0.34
N-BEATS 99.83 0.91 0.37 90.30 0.07 0.33
LSTM 96.95 3.84 2.02 91.70 0.5 1.51
N-HiTS 0.3 m 1 h 99.71 1.45 0.279 91.72 0.06 0.28
N-BEATS 99.73 1.41 0.274 93.43 0.06 0.28
LSTM 96.57 5.03 2.44 82.89 0.56 2.18
N-HiTS 6 h 99.36 2.17 0.41 87.44 0.07 0.35
N-BEATS 99.41 2.1 0.41 82.46 0.07 0.39
LSTM 92.61 7.4 3.38 57.46 0.46 1.51
N-HiTS 12 h 99.28 2.3 0.49 84.50 0.14 0.66
N-BEATS 99.00 2.71 0.64 78.42 0.10 0.63
LSTM 93.09 7.13 3.56 86.51 0.65 3.98
N-HiTS 0.6 m 1 h 99.72 0.69 0.30 89.02 0.07 0.25
N-BEATS 99.71 0.70 0.31 90.07 0.08 0.26
LSTM 95.30 2.81 1.83 87.42 0.36 1.33
N-HiTS 6 h 99.67 0.7 0.32 79.82 0.05 0.27
N-BEATS 99.66 0.7 0.32 84.30 0.06 0.27
LSTM 93.24 2.81 1.89 89.52 0.45 1.48
N-HiTS 12 h 99.64 0.79 0.35 85.65 0.09 0.3
N-BEATS 99.59 0.85 0.36 84.79 0.08 0.28
LSTM 91.56 3.84 1.69 90.76 0.64 1.73
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curves spread further, particularly on the negative side of residuals. This 
highlights that as the horizon increased, the accuracy reduced, thus the 
observed rise in the percentage of underpredicted values. However, the 
curves maintained their steepness. This consistency implies that N-HiTS 

and N-BEATS provided acceptable accuracy and reliability despite the 
extension of the prediction time frame. On the contrary, the benchmark 
model showed a gentle curve with errors extending over an extensive 
range of values. This implies that LSTM tended to generate predictions 

Fig. 17. Uncertainty quantification performance across different depths and horizons.
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that significantly overpredict or underpredict the actual values.

3.3.3. Soil water tension simulation at 0.6 m depth
The result of soil water tension prediction at the 0.6 m soil depth 

revealed different performance trends for the N-HiTS and N-BEATS 

compared to LSTM across three horizons (see Fig. 21). At the 1 h hori-
zon, both N-HiTS and N-BEATS demonstrated very high predictive ac-
curacy, with NSE values above 99.7 % and low RMSE and MAE values. 
These results indicated excellent short-term performance, where both 
models accurately tracked the measured data. The LSTM model, in 

Fig. 18. The CDF curves of residuals across different time horizons at 0.15 m soil depth.

Fig. 19. Soil water tension simulations across different time horizons at 0.3 m soil depth. The grey shaded area indicates 95PPU.

Fig. 20. The CDF curves of residuals across different time horizons at 0.3 m soil depth.
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contrast, showed comparatively lower accuracy with an NSE of 95.3 % 
and higher error metrics (RMSE of 2.81 and MAE of 1.83), suggesting a 
slightly lower precision of the benchmark model in capturing short-term 
fluctuations at this soil depth. At the 6 h horizon, N-HiTS and N-BEATS 
maintained strong performance with NSE values slightly lower than the 
1 h horizon (around 99.6 %) and minor increases in RMSE and MAE, 
indicating robustness over extended horizons. LSTM’s performance 
further declined, with a lower NSE of 93.24 % and higher RMSE and 
MAE, highlighting relatively reduced predictive reliability over time.

At the 12 h horizon, N-HiTS and N-BEATS continued to outperform 
LSTM, although with a slight increase in RMSE and MAE, reflecting a 
decreased precision as the prediction horizon progressed. At this hori-
zon, N-HiTS achieved the highest accuracy with NSE of 99.64 %. 
Meanwhile, the benchmark model exhibited the highest RMSE, MAE, 
and the lowest NSE (91.56 %) values. Overall, the N-HiTS and N-BEATS 
models demonstrated improved predictive accuracy and stability across 
all horizons, particularly in short-term horizons. At the same time, 
LSTM’s performance diminished rapidly across the 6 h and 12 h 
horizons.

The 95PPU plots of N-BEATS and N-HiTS models indicated that the 

accuracy and reliability of predictions were inclined to vary significantly 
at 0.6 m soil depth across 1 h, 6 h, and 12 h horizons. This is underscored 
by both the closeness of the predictions to measured values and the 
extent of the uncertainty bands shown in Fig. 21. The 1 h horizon 
generally showed narrower uncertainty bands for all models, suggesting 
higher reliability and confidence in short-term predictions. This aligns 
with high NSE values (around 99 %) and low RMSE and MAE, particu-
larly for N-BEATS and N-HiTS models.

As the prediction horizon extended to 6 h and 12 h, the 95PPU 
widened slightly, reflecting an expected reduction in predictive accu-
racy and confidence of the models over time. This trend was most 
noticeable in the LSTM model, particularly at the 12 h horizon, and was 
marked by the increased confidence interval width. Despite the decline 
in predictive power, both N-HiTS and N-BEATS models maintained 
relatively high accuracy and reliability even at the 12 h horizon, with 
narrower bands and lower RMSE and MAE values than the benchmark 
model. This performance stability over longer horizons made N-HiTS 
and N-BEATS favorable for soil water tension prediction, as accuracy 
over an increasing prediction time window is critical to avoid over- or 
under-irrigation.

Fig. 21. Soil water tension simulations across different time horizons at 0.3 m soil depth. The grey shaded area indicates 95PPU. As shown, the 95PPU associated 
with LSTM widened as the prediction horizon increased.

Fig. 22. The CDF curves of residuals across different time horizons at 0.6 m soil depth.

L. Umutoni et al.                                                                                                                                                                                                                                Computers and Electronics in Agriculture 237 (2025) 110614 

21 



Fig. 23. The 50 %, 75 %, 90 %, 95 % and 99 % uncertainty bands across different time horizons at 0.15 m soil depth.

Fig. 24. The 50 %, 75 %, 90 %, 95 %, and 99 % uncertainty bands across different time horizons at 0.3 m soil depth. The uncertainty bands of N-HiTS and N-BEATS 
models showed more fluctuations for the 12 h horizon while LSTM uncertainty bands showed poor convergence.
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The CDF plots of residuals for soil water tension prediction at 0.6 m 
show how the errors accumulated as the prediction horizon increased. 
As shown in Fig. 22, the CDF curves indicate a steeper ascent near zero 
for both N-HiTS and N-BEATS models, implying that these models ten-
ded to have a high probability of producing minor errors. The error of 
the two models was also tight, spanning from about − 5 to 5 kPa across 
all horizons. This indicates better accuracy, confidence in predictions 
and the robustness achieved by the two models over extended prediction 
horizons, as their increase had a minor effect on the performance. 
Additionally, the CDF curves of N-HiTS and N-BEATS models were 
closely aligned, indicating similar performance across all horizons. The 
benchmark model, on the other hand, showed a broader spread of re-
sidual spanning from about − 15 to 14 kPa for 1 h to − 21 to 17 kPa for 
the 12 h horizons. The CDF curve also gradually reached one cumulative 
probability, implying that LSTM produced more variable and less pre-
cise predictions than N-HiTS and N-BEATS.

In addition to the 95 PPU uncertainty analysis, the performance of N- 
HiTS and N-BEATS at 50, 75, 90 and 99 % were assessed across depths 
and horizons (see Fig. 23, Fig. 24 and Fig. 25). P-factor and R-factor 
values showed that both models provided compelling predictions. 
Although LSTM provided comparative results, its probabilistic pre-
dictions across depth and horizons were less accurate.

Table 5 indicated that N-HiTS and N-BEATS outperformed LSTM 
regarding prediction accuracy, exhibiting narrow uncertainty bands. 
However, as we observed in GA’s results, the two models showed lower 
convergence than LSTM.

4. Limitations of this research

The study emphasizes the use of two advanced neural forecasting 
models, N-HiTS and N-BEATS, and compares them with the traditional 
LSTM model based on the learned trends and seasonality embedded in 
the observed data. We acknowledge that this research, while thorough, 
is not without limitations. Here we highlight potential areas for 
improvement in future studies.

First, noisy sensor data can introduce erratic fluctuations, resulting 
in inaccurate predictions and poor model performance. Similarly, sig-
nificant data gaps can limit the models’ capabilities to capture relevant 
temporal features, consequently affecting modeling predictive potential. 
Second, if models are not well-calibrated, uncertainty results may lead 
to overestimation or underestimation of confidence intervals in the 
probabilistic fashion. Ensuring proper model calibration is, therefore, 
crucial to obtain more accurate and reliable predictions. Third, while 
weather and crop-specific variables regulate soil–water dynamics, this 
study focused on exploring the univariate capabilities of N-HiTS and N- 
BEATS. However, evaluating their sensitivity to different additional 
input variables such as precipitation and evapotranspiration could 
provide insights into the most influential features and support model 
interpretability.

Fourth, soil water tension varies across climatic regions and soil and 
crop types. In this study, the developed algorithms were trained and 
tested on data collected during cotton growing seasons under relatively 
homogeneous climatic conditions. Their generalization capabilities 
across distinct climates and cropping systems are yet to be determined. 
Therefore, their deployment in new agricultural environments would 
necessitate model retraining to adapt to site-specific climatic and agro-
nomic conditions. Fifth, the deep learning architecture of N-HiTS and N- 
BEATS fundamentally demands significant computational resources. 
The training and testing typically require access to powerful CPUs and 
GPUs to achieve reasonable processing times. Therefore, N-HiTS and N- 
BEATS deployment in real time agricultural settings with computa-
tionally constrained systems may hinder timely predictions and irriga-
tion decisions.

5. Conclusion and future works

This study employed two modern DNN models, N-HiTS and N- 
BEATS, to predict soil water tension across multiple depths at 1 h, 6 h 
and 12 h horizons and benchmarked them with LSTM. Additionally, we 
assessed the uncertainties associated with soil water tension predictions 

Fig. 25. The 50 %, 75 %, 90 %, 95 % and 99 % uncertainty bands across different time horizons at 0.6 m soil depth. The uncertainty bands are more consistent on 
this horizon.
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at multiple uncertainty levels. N-HiTS and N-BEATS models provided 
comparable results and emerged as more accurate than the benchmark 
model, particularly for long-term predictions. Our findings demon-
strated that N-HiTS and N-BEATS’ outstanding performances were 
driven by their state-of-the-art modular structures and advanced 
modeling mechanisms. N-HiTS leveraged multi-rate data sampling and 
hierarchical interpolation approaches to account for the seasonality, 
trends and variability in data, while N-BEATS used distinct blocks that 
explicitly modeled the trend and seasonality in the data. This decom-
position of input data into trends and seasons and the intermediate 
predictions at the stack level provided insights into the models’ pre-
diction process. Additionally, both models employed their double re-
sidual mechanism to significantly minimize the prediction errors, 
especially for long-term probabilistic predictions. Overall, the results 
indicated that N-BEATS performed better in short-term prediction. This 
can be further attributed in part to N-BEATS’ ability to carry out a form 

of meta-optimization, which shows efficient fine-tuning of hyper-
parameters over prediction horizons.

Accurate soil water tension predictions are crucial in optimizing 
irrigation water use, particularly in water-scarce regions. By providing 
accurate predictions, N-HiTS and N-BEATS can assist growers and irri-
gation specialists in making more informed irrigation decisions. The 
results can also help with irrigation planning, leading to more efficient 
and sustainable farming practices. In addition, this study lays the 
groundwork for data-driven irrigation decision making. However, 
additional studies are needed to examine the individual algorithms in 
different soil water dynamics (e.g., dry vs wet conditions), climatic re-
gions, and cropping conditions. Furthermore, including additional input 
features that affect soil water tension, such as weather and crop-specific 
variables, can provide a better understanding of the sensitivity of the 
models to different input variables. This will improve our perception of 
the key neural network shortcomings and limitations.

Table 5 
Uncertainty estimation metrics across different depths and horizons for different confidence intervals. The best performances are shown in bold.

Model Soil depth Horizon P-factor R-factor P-factor R-factor P-factor R-factor P-factor R-factor

Confidence interval 50 75 90 99
N-HiTS 0.15 m 1 h 40.01 0.01 60.10 0.03 71.14 0.05 97.02 0.32

N-BEATS 36.15 0.015 75.11 0.025 88.52 0.04 96.85 0.30

LSTM 23.12 0.07 40.12 0.12 84.60 0.16 92.60 0.45

N-HiTS 6 h 44.73 0.01 57.79 0.03 79.26 0.05 92.43 0.13

N-BEATS 52.13 0.02 64.91 0.04 82.96 0.07 93.78 0.15

LSTM 15.02 0.04 36.94 0.12 57.79 0.27 88.85 0.38

N-HiTS 12 h 49.61 0.02 73.88 0.04 85.20 0.06 96.47 0.14

N-BEATS 50.45 0.02 68.72 0.04 85.71 0.06 94.73 0.12

LSTM 15.02 0.04 36.94 0.12 57.79 0.27 88.85 0.38

N-HiTS 0.3 m 1 h 55.52 0.01 55.19 0.018 89.07 0.03 99.06 0.24

N-BEATS 60.32 0.01 75.39 0.02 88.91 0.03 98.68 0.25

LSTM 76.55 0.096 80.74 0.19 81.24 0.28 82.67 0.6

N-HiTS 6 h 49.94 0.02 67.66 0.03 81.17 0.06 96.19 0.14

N-BEATS 45.12 0.02 63.73 0.04 65.30 0.06 94.90 0.13

LSTM 52.30 0.12 72.87 0.22 55.16 0.37 84.42 0.9

N-HiTS 12 h 43.05 0.03 63.09 0.06 78.42 0.10 94.89 0.28

N-BEATS 34.50 0.03 55.86 0.05 77.44 0.08 93.28 0.22

LSTM 73.42 0.14 80.37 0.33 85.99 0.54 86.62 1.18

N-HiTS 0.6 m 1 h 57.78 0.02 74.67 0.038 84.49 0.05 97.30 0.26

N-BEATS 59.38 0.024 75.39 0.04 86.70 0.06 97.13 0.27

LSTM 13.36 0.05 28.15 0.17 32.84 0.2 91.00 0.65

N-HiTS 6 h 28.20 0.019 42.26 0.033 79.37 0.05 92.49 0.19

N-BEATS 30.94 0.018 45.24 0.033 79.88 0.05 91.48 0.16

LSTM 69.56 0.16 78.59 0.28 87.50 0.37 89.41 0.76

N-HiTS 12 h 28.20 0.019 42.26 0.03 79.37 0.05 92.49 0.19

N-BEATS 30.94 0.018 45.24 0.03 79.88 0.05 91.48 0.16

LSTM 69.56 0.16 78.59 0.28 87.50 0.37 89.41 0.76
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To summarize, the presented results are promising for both test beds 
across multiple horizons. As we continue to make progress in DNN ap-
plications, we expect to advance our understanding of modeling be-
haviors across different spatio-temporal scales, enhance our ability to 
improve DNN efficiency for short-term to long-term soil water tension 
predictions, and leverage advanced approaches such as Bayesian 
frameworks (e.g., Samadi et al., 2020; Tabas and Samadi, 2022) to un-
derstand how uncertainty propagates across space and time and 
modeling structures. The research presented herein is intended to pro-
vide a basis for neural applications in soil water tension prediction 
across growing seasons. However, additional studies are needed to 
examine the individual algorithms in different soil water tension con-
ditions (e.g., dry vs wet) and check the behavior of the algorithms and 
the uncertainty propagation over time to understand key DNN short-
comings and limitations. The present work tends to contribute sub-
stantially to the field of neural irrigation hydrology, particularly to 
accelerate the design and optimization of new DNN algorithms, offering 
a substantial improvement in irrigation demand calculation. Future 
work could expand on this research by assessing how N-HiTS and N- 
BEATS models would perform against physical soil moisture models 
such as HYDRUS or SWAP. Furthermore, one could develop a hybrid 
physics-informed model that leverages the strengths of physically based 
models with DNNs that can help understand how water flow in the soil, 
governed by the soil hydraulic functions, can be computed in a data- 
driven fashion.

Acknowledging a growing enthusiasm for DNN applications in pre-
cision agriculture, we expect progress on multiple fronts: (i) a better 
uncertainty algorithm to quantify both data and modeling uncertainties 
in soil water tension prediction, (ii) a more sophisticated DNN model 
such as those that leverage self-attention mechanism to identify relevant 
patterns across different periods in the time series, and (iii) a better 
benchmarking model including traditional soil moisture models to 
enhance robustness and promote transferability of neural network re-
sults to new climatic and soil conditions. The present work tends to 
contribute substantially to the field of neural irrigation hydrology, 
particularly to accelerate the design and optimization of new DNN al-
gorithms, offering a substantial improvement in irrigation demand 
calculation.
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