Table 1: Economic values (\$USD) associated with inputs and yield for each treatment. | | | | Value (\$USD ha-1) | Value (\$USD MT-1) | |--------------|-----------|-------------|--------------------|--------------------| | Input Costs | Seed | | | | | - | | Corn | 247.11 | | | | | Sorghum | 24.71 | | | | | Sunflower | 39.54 | | | | | Soybean | | | | | Herbicide | | | | | | | Dual | 67.06 | | | | | Acuron | 88.96 | | | | Machinery | | | | | | | Single pass | 26.19 | | | | Fuel | | | | | | | Cost per MT | | 3.93 | | Gross Return | | | | | | | Forage | | | | | | | Dry matter | | 90.00 | Table 2: Variable costs (\$USD ha-1) are shown for each crop treatment as means. Different letters indicated significant difference between crop treatment input costs (Tukey's HSD, P < 0.05). | Crop Treatment | Variable costs | Return over variable | Yield | |--------------------------------|----------------|----------------------|---------------| | | (\$USD ha-1) | costs (\$USD ha-1) | (kg ha-1) | | Corn | \$486.82 a | \$576.33 ab | 11,812.78 a | | Sorghum | \$256.48 d | \$725.09 a | 10,906.34 ab | | Corn/Sorghum | \$385.01 b | \$393.40 bcd | 8,648.93 bcd | | Soybean | \$393.11 b | \$38.91 e | 4,800.18 e | | Sunflower | \$246.55 d | \$167.94 de | 4,605.50 e | | Soybean/Sunflower | \$326.78 c | \$255.63 cde | 6,471.31 de | | Corn/Soybean | \$471.56 a | \$449.88 bc | 10,238.24 abc | | Corn/Sorghum/Soybean/Sunflower | \$368.51 bc | \$301.07 cd | 7,439.85 cde | Table 3: Means \pm SE of ground beetles caught in 48hr pitfall traps. | No. | | | | | | • | | | | | | | | |---------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | Crop | Pterostichus | Poecilus | Pterostichus | Amara | Chlaenius | Notrophilus | | Pterostichus | Poecilus | Harpalus | Harpalus | Other/ | | | Species | melanarius | chalcites | spp. | arena | tricolor | acquaticus | Amara spp | mutus | lucublodus | affinis | spp | Unknown | Total | | 1 | 0.925 ± 0.26 | 0.025 ± 0.025 | 0.450 ± 0.19 | 0.025 ± 0.03 | 0.075 ± 0.06 | 0.175 ± 0.08 | 0 | 0.025 ± 0.03 | 0.025 ± 0.03 | 0 | 0 | 0.100 ± 0.05 | 1.825 ± 0.33 | | 2 | 0.633 ± 0.16 | 0.033 ± 0.033 | 0.133 ± 0.13 | 0 | 0.033 ± 0.03 | 0.100 ± 0.06 | 0.033 ± 0.03 | 0.033 ± 0.03 | 0 | 0.033 ± 0.03 | 0 | 0.033 ± 0.03 | 1.067 ± 0.21 | | 4 | 0.700 ± 0.50 | 0±0 | 0.200 ± 0.13 | 0 | 0 | 0.200 ± 0.13 | 0 | 0 | 0 | 0 | 0.100 ± 0.10 | 0 | 1.200 ± 0.49 | | | | | | | | | | | | | | | | | Both | 0.75 ± 0.23 | 0 | 0.083 ± 0.06 | 0 | 0.042 ± 0.04 | 0.167 ± 0.08 | 0.042 ± 0.04 | 0 | 0 | 0 | 0.042 ± 0.04 | 0 | 1.125 ± 0.25 | | Broad | 0.5 ±0.16 | 0 | 0.600 ± 0.27 | 0 | 0 | 0.200 ± 0.09 | 0 | 0.033 ± 0.03 | 0 | 0.033 ± 0.04 | 0 | 0.133 ± 0.06 | 1.500 ± 0.32 | | Grass | 1.154 ± 0.39 | 0.077 ± 0.05 | 0.154 ± 0.11 | 0.038 ± 0.04 | 0.115 ± 0.08 | 0.077 ± 0.08 | 0 | 0.038 ± 0.04 | 0.038 ± 0.04 | 0 | 0 | 0.038 ± 0.04 | 1.731 ± 0.41 | Table 4: Means \pm SE are shown for total number of arthropods and number of predators collected from pitfall traps after 48hrs. | conected from pitian trap | 15 alter 401115. | T | |---------------------------|----------------------------|---------------------------| | | Total Number of Arthropods | Total Number of Predators | | Year | | | | 2019 | 34.0 | 16.2 | | 2020 | 19.3 | 16.3 | | Number Crop Species | | | | 1 | 28.7 | 18.4 | | 2 | 22.4 | 14.6 | | 4 | 31.2 | 12.7 | | Functional Group | | | | Both | 30.1 | 15.8 | | Broad | 24.1 | 16.3 | | Grass | 26.4 | 16.7 | | Herbicide | | | | Control | 29.9 | 17.5 | | Applied | 23.4 | 15.1 | Figure 1: Forage yields are shown for all functional groups as a response to number of crop species grown together. One- species monocultures and two and four species polycultures are shown as a scatter plot to illustrate means and variation. Figure 2: Forage yields are shown as means separated by functional groups (different colored circles) for each variation of the number of crop species grown together. Figure 3: Abundances of both grass and broadleaf weeds are shown as means \pm standard error at both 4 and 8 weeks after planting for the different number of crop species. Figure 4: Average biomass is shown by week for grass and broadleaf weeds and hebicide split plots. Figure 5: Weed biomasses (g per m2) are shown for both grass and broadleaf weeds at 4 and 8 weeks. Figure 6: Means \pm SE are shown for the number of pigweed and foxtail seeds consumed from weed seed sentinel prey traps. Figure 7: Means \pm SE are shown for the number of pigweed and foxtail seeds consumed from weed seed sentinel prey traps for number of crop species. Only pigweed consumption was significantly different. Figure 8: Weed biomass (top) and weed abundances (bottom) for both grass and broadleaf weeds are shown for proportion corn (i.e., 0.4 corresponds to 4 corn plants, 6 soybean plants).