This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2019-38640-29879 through the North Central Region SARE program under project number YENC20-145. USDA is an equal opportunity employer and service provider. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

2 Hydroponic nutrient solutions

Juan C. Cabrera

Field Specialist in Horticulture

Email: jcabrera-garcia@missouri.edu

Phone: (573)-686-8064

United States Department of Agriculture S National Institute of Food and Agriculture

Topics

1. Introduction

- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

Water + Fertilizers = Nutrient solution

A great nutritional program begins with good water quality.

The purpose of the nutritional program is to:

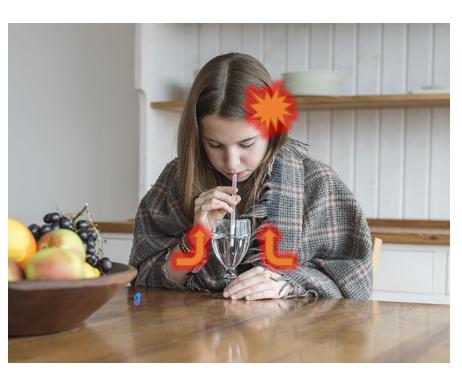
- ✓ Provide all essential elements.
- ✓ Provide the necessary quantity for the optimum plant development.
- ✓ Promote nutrient availability and absorption.

 \rightarrow pH management.

Comfort zones

- Chill weather
- Nice view
- Cozy
- Warm cup of coffee

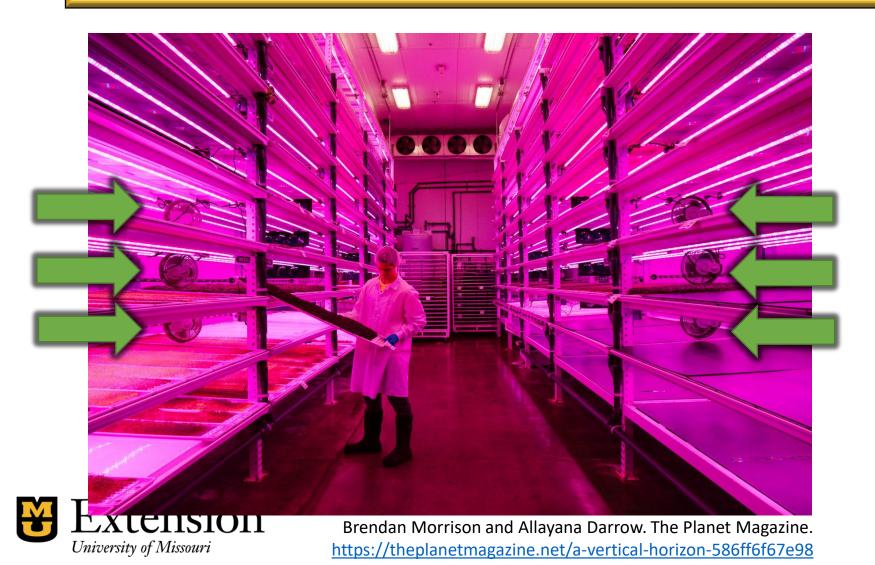
PLANTS ALSO HAVE COMFORT ZONES!



Keeping plants in their comfort zone

- 1. Provide adequate amounts of essential nutrients
 - Prepare nutrient solution
 - Electrical conductivity (EC)
- 2. Monitor and adjust the pH of the nutrient solution
 - Affects availability and absorption of nutrients
- 3. Manage the water temperature and dissolved oxygen
- 4. Adequate lighting
- 5. Air flow

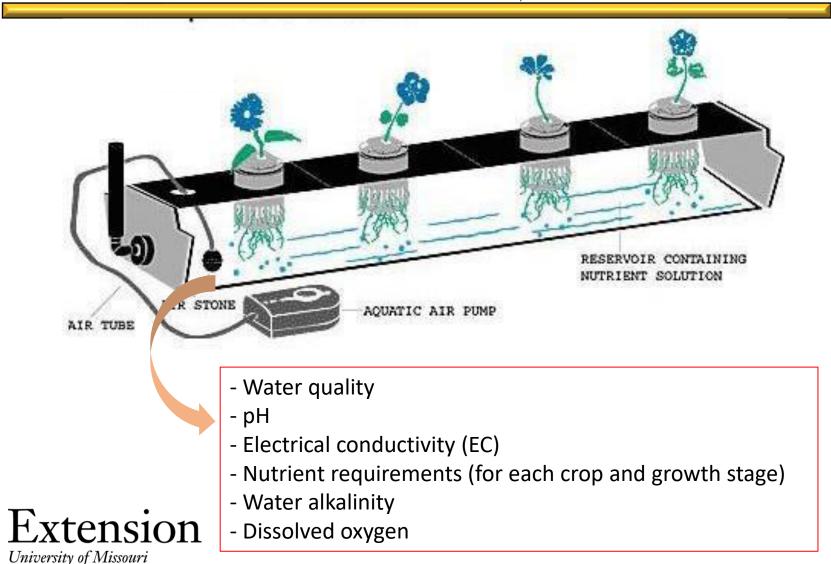
Air flow and water absorption



This Photo by Unknown Author is licensed under CC BY-NC-ND

This Photo by Unknown Author is licensed under CC BY-SA

Air flow and water absorption



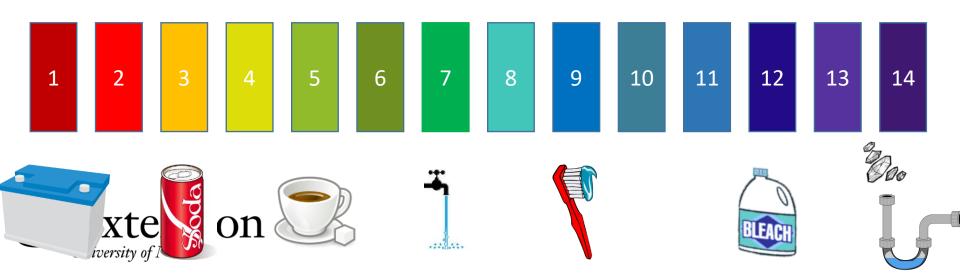
Topics

- 1. Introduction
- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

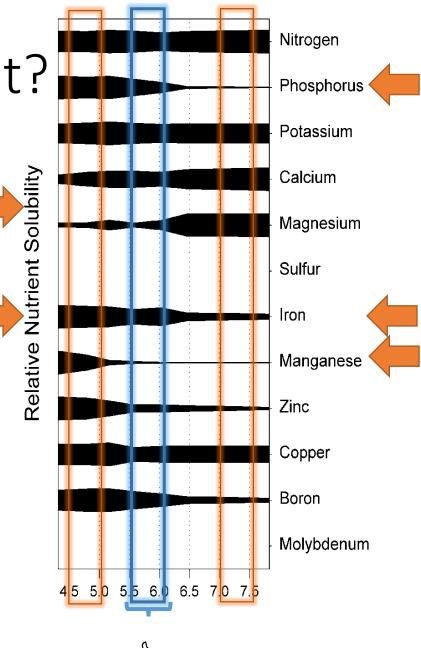
Factors that affect the nutrient solution

EMW-400 : Water Irrigation Suitability

Ň


Components		Results		Target Ranges	Acceptable
		mg/L	meq	(mg/L)	(mg/L)
MAJOR CATIONS	5				
Potassium	K	3.73	0.10		<100
Calcium	Ca	11.22	0.56	25 - 75	<150
Magnesium	Mg	3.23	0.27	10 - 30	<50
Sodium	Na	40.54	1.76	0 - 20	<50
MAJOR ANIONS					
Phosphate	PO4	0.71	0.02		<90
Sulfate	SO4	18.97	0.39	0 - 120	<240
Chloride	CI	41.00	1.14	0 - 20	<140
HCO3 Alkalinity	HCO3	45.87	0.75		
CO3 Alkalinity	CO3	0.00	ND		
Ammonium Nitrog	jenNH4-N	ND			<10
Nitrate Nitrogen	NO3-N	ND			<75
рН	pН	7.10		5.50 - 7	4-10
Soluble Salts	EC	0.26		0.20 - 0.80	0-1.5
Total Alkalinity	CaCO3	37.60		40 - 160	0-400
Iron	Fe	0.16		< 1	<4
Manganese	Mn	0.01		< 1	<2
Boron	В	0.04		< 0.10	<0.5
Copper	Cu	0.06		< 0.10	<0.2
Zinc	Zn	0.05		< 0.50	<1
Molybdenum	Мо	0.02		< 0.10	<0.2
Aluminum	AI	0.16			

рΗ


What is pH?

- Represented by a scale that ranges from 1 to 14.
- Is a measure of the concentration of hydrogen ions (H+).
- At pH 7 the solution is said to be neutral, below 7 it becomes more acidic and above 7 it becomes basic.

Why is pH important?

- Solubility (availability) of nutrients.
- Plant health (specificity):
- Excessive \rightarrow toxicity
- Insuficiency \rightarrow deficiency

Optimum pH

Reco	mmei		nutrie Inges	nt sol	ution
5.4	5.6	5.8	6.0	6.2	6.4
Lettuce					
Spinach					
	Par	sley			
			Basil		
				Rose	mary

Electrical conductivity (EC)

What is Electrical Conductivity (EC)?

- EC is used to measure a solution's ability to conduct electricity.
- A solution with high salt concentration will conduct more electricity. (Remember salts exist as ions in water).

More dissolved nutrients=More electricity flow!

=Higher EC

TOO MUCH CAN BE TOXIC TO PLANTS

(EC units: 1 mS/cm = 1000 μS/cm = 1dS/m=1 mmhos/cm = 1000 μmhos/cm)

Why is EC important?

- EC used as an indicator of the total salt concentration in solution. It doesn't provide information of which salts.
- Ions that contribute to EC:
- In water: Ca⁺⁺, Mg⁺⁺, SO₄⁻, Na⁺, Cl, HCO₃-
 - In fertilizers: NO₃⁻, NH₄⁺, PO₄, K⁺, Ca⁺⁺, Mg⁺⁺, SO₄, Cl⁻

Problem lons

Element	Critical level ppm (mg/L)
Sodium (Na ⁺)	< 50
Chlorine (Cl ⁻)	< 70
Sulfates (SO4 ⁻)	< 90
Boron (B)	< 0.5
Fluor (F)	< 1.0
Calcium (Ca++)	< 150
Magnesium (Mg ⁺⁺)	< 75

Directions for Use

Solecting the correct fortilizer program — The demical composition of the impation solutions applied to crops has a major influence on the numerical available to barts in the long term. First, send a sample of your impation water to The Service Insting Lab. Instructure will indicate your ABC Water Type (1-4)⁺ that can be matched with a similar indicater that appares on the fixed te alex has of Service Water Soleki Firsting fortilizer based on this water type will ensure you experience the best results from your fortilizer program.

Solecting the correct concentration – The context furtilese concentrations for a particular growing operation will depend on a number of lactors including, fixeding frequency, cop type, rogs stage, growing multia, pot siae, laudning faction and environmental conditions. Generally, tertilion should be applied at concentrations messaway to sustain optimal net zone anishest levels and quality plant growing. Continuous flexing provides a more uniform plant nutrition program and is incommended our periodic feeding. See Table of the graneral encommendation for core types.

TABLE 1 Recommended Feeding Rates						
Crop Type	Constant Liquid Feeding ppm N	Periodic Feeding ppm N				
Bedding Plants	50 - 150	150 - 250				
Containerized Woody Plants	50 - 100	200 - 350				
Flowering Pot Crops	200 - 300	300 - 450				
Potted Foliage	150-200	250 - 300				
Plugs (All Types)	50-125	175-225				
Landscapel/hitlenet	200 - 200	400 - 600				

Mixing Concentrated Stock Tanks – Most growers make up concentrate solutions in a stock tank and use an injector system to achieve the correct final concentration. For best results:

TABLE2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate						
Target Fertilizer Concentration	Inje	ector Ra	tios	EC mmhosion of Target		
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution		
50	0.5	3.2	6.4	0.32		
100	1	6.4	12.9	0.63		
200	1.9	12.9	25.7	1.26		
200	2.0	40.2	29.6	1.00		

larget Fertilizer Concentration	Injecto	r Ratios
ppm N) After Dilution	1:100	1:200
50	124.4	62.2
100	62.2	31.1
200	31.1	15.6
300	20.7	10.4

3. Select your Injector Ratio Setting.

(a.)Table #2 - the value stated is the correct weight of fertilizer necessary to make one

gallon of concentrate. (To Make More Than 1 Gallon: Multiply the value times the number of gallons of concentrate you wish to mix – i.e., stock tank valueme.) (b. Table 45 – the value stated is the volume (in californi of water received to discolve

one 25 pound bag of fertilizer. 5. Fill the concentrate tank to approximately 1/3 tank volume. (Note: if possible use

warm water to more quickly dissolve the fertilizer.)

Add mineral acid only if necessary (addition may be required with alkalinity levels greater than 250 mg/L calcium carbonate).

Add fertilizer and stir vigorously.
 Top off the tank volume with water

8. Iop off the tank volume with wate

EP99150

or Watering Can	s, Spray Tanks (No Inji	ictors)
	Amount of	
Grams	water (gallons)	ppm N
5.8	1	320
17.3	2	480
276.7	25	614
	Grams 5.8 17.3	Grams + water (gallons) 5.8 1 17.3 2

Product Properties						
Potential Acidity	Conductivity of 100 ppm	Maximum Solubility				
390 lbs. calcium carbonate equivalent per ton	0.63	4 Ibs/gal				

Fertilizer Compatibility – All Peters Exol fertilizers are tack mic compatible with each other However, not all Peters Professional and Peters Exol water soldade fertilizer products are compatible. There can be problems when blending caldium containing fertilizers with suffack acid or sulfate containing fertilizers such as STE.M.¹⁰⁰, Epons salts (magnetism salted), Refer to Events Compatibility Information envolves.

Salability – Product components are completely water soluble. However, a number of factures will determine how fact the ferfilizer will dissuble (i.a, desired concentration, temperature of irrigation water, aplitation, time, irrigation water quality, the ferfilizer head and compatibility that is determined under islaal lab conditions – It is physically impossible to maintain solubility physe this value.

Water Soluble Fertilizer Appearance — This product is composed from a number of components, varying in size. Some of the product se uniform in appearance while others quite heterogeneous. The tracer dye color intensity and distribution may appear variable in the bag. However, once the product is diluted in a stock tank the colorant level should be consistent.

Monitoring — The Events Testing Laboratory is a reliable source for testing water, growing media or Sissa, hijecter monitoring and maintenane will help to mass that you are feeding at optimal levels. Weekly on-site measurements of kertilizer solution and crops media. Eca and pit can be a valuable tool in managing your core, A follow-exp program of complexe media analysis (and fossue is problem-solving situations), should be initiated to optimize your antitistical program.

Need More Information – To fine-tune your fertilizer selection to your individual growing conditions, you can contact as experienced Events horticultural professional or you can refer to the www.PetersABC.com website to access the PetersABC Selection System ".

azanteed Analysis F18 tal nitrogen (M
7.3% ammoniacal nitrogen 12.6% nitsate nitrogen 1.1% unse nitrogen
12.6% nitrate nitrogen 1.1% una nitrogen
1 1% urea nitronen
1.1% urea nitrogen sallable Phosphate (P2O5)
sailable Phosphate (P2O5)
hole notach (C10)
xon (B)
opper (Cu)
0.0262% water soluble copper (Cul
on (Fe)
0.1050% chelated iron (Fe)
anganese (Mn)
0.0525% water soluble manganese (Mn)
olybdenum (Mo). 0.0105
olybdenum (Mo)
0.0525% water soluble zinc (Zn)
erived from: ammonium nitrate, ammonium phosphate, potassium nitrate, urea phospha

boric acid, copper sulfate, iron EDTA, manganese sulfate, animonium molybdate, zinc sulfate Information regarding the contents and levels of metals in this product is available on the internet at **http://www.aapfco.org/metals.htm**

WARNING: This fertilizer contains more than .001% molybdenum (Mo). The application of

fertilizing materials containing molybdenum (Mo) may result in forage crops containing levels of molybdenum (Mo) which are toxic to ruminant animals.

SAFFTY INSTRUCTIONS

Gu

To

Sei

Bo Co Iro Ma

FOR SAFETY INSTRUCTIONS, REFER TO THE MATERIAL SAFETY DATA SHEET, OR CALL 1-800-492-8255 or 314-983-7500.

NARNING: May be harmful if swallowed or inhaled. May cause irritation.

Avoid contact with eyes, skin and clothing.
 Wash thoroughly after handling.
 Avoid breathing dust.
 Do not swallow.

First Aid: In case of contact, immediately flush with plenty of water for at least 15 minutes. Call a physician; flush skin with water. Wash clothing before reuse.

Spills and Dispose if it gilled, aborb with an intert nencombastille maturial and smoot for disposal. Dispose of all washe in accordance with applicable government regulations. Strenge: Opened hags should be sub-click clickeal dee partially used products may take on moistave from the atmosphere and may subsequently softme or harden in the bag. As long as bags are properly re-sealed, this should in no way diminis nutriter cantent of the moistave from the strengther re-sealer. This should in no way diminis nutriter cantent of the moistave from the strengther re-sealer. This should in no way diminis nutriter cantent of the moistave from the strengther re-sealer. This should in no way diminis nutriter cantent of the strengther strengther that the strengther store strengther str

For PROFESSIONAL USE ONLY. KEEP OUT OF REACH OF CHILDREN.

DISCLAIMER AND LIMITATION OF LIABILITY IMPORTANT NOTICE FROM EVERRIS NA INC. ("Everris"). PLEASE READ BEFORE USE.

By using this product, user or buyer accepts the conditions, disclaimer of warranties and limitations of liability. Read the entire directions for use, conditions of warranties and limitations of liability before using this product. If terms are not acceptable, return the

unopened product container at erec for full inflund. CONDITIONS: The product has been reasorable to penvide reconsary data to support its uses liade on the label. The detections for use of this product are believed to be adequate and the user or bayer must always. Show the label directions carefully and exercise judgment and cardion when using this product under their growing conditions. However, it is impossible to a terminab all risks associated with the use of this product. Corp julgy, inefficientwess, unstaffactory or substandard results or other universed of consequences any result because of such factors as waterias conditions, presence or absence of ether materials, or the manere of use or application, all or which are beyond the control of Events. All such risks shall be assumed by the user or bayes.

WARRANT: This product corresponds to all claims and descriptions set forth on the label and, subject to the conditions set furth abone, is searcoarding if for use or any suppose for which it is interded. Events receptions that the right and seneedses of the user or buyer are subject to the powersions of the applicable state law, but makes no other warranties or representations, express or implied, of merchantability or of flowess for a particular purpose or otherwise, but actual buyerd the scataments makes on their warranties or subject to the powersion of the applicable state law, but while law. Buyer and the servers is authorized to make any warranties layend those contained herein or to modily the warrantics contained thermits. Subject to the user's or bayer's rights and remedies under the applicable state law, Events fockales any failability whattower for special, incidental or consequential damages sworthing from the user or harding of this product.

LIMITATIONS OF LIABILITY: Subject to the user's or boyen's rights and mendios under the applicable state law, the exclusive remedy of the user or boyen and the liability of Evenis or its affiliants, for any and all losses, hjuries or damages resulting freen the use or handling of this product, whether is contract, warranty tork, neighprox, sticit lability or otherwise, whall not exceed the purchase prior pairbally the user or boyen to the quarking the involved or at Evenis's election, the negleacement of the product Subject to the user's require levels in the use or handling of this product must be commenced within one (1) year free the date the product was puchased.

To request additional information, please contact your Evenis Distributor or call Evenis Customer Service at 1.800-492-8255 or 314-983-7500.

Testing Lab: 1-877-467-8522

everris. Manufactured for Events NA Inc. PO Box 3310 Define. 0H 43016

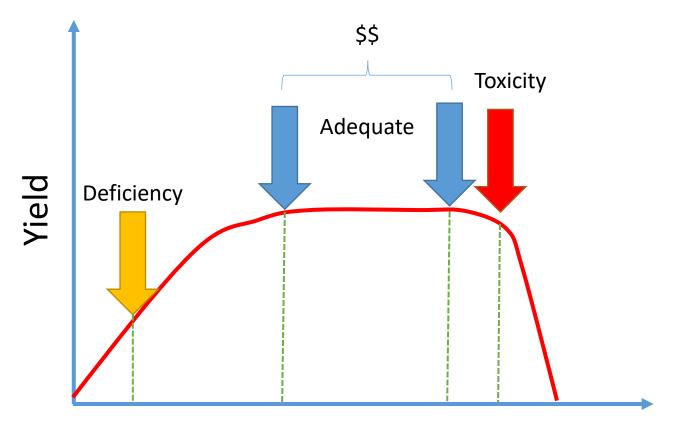
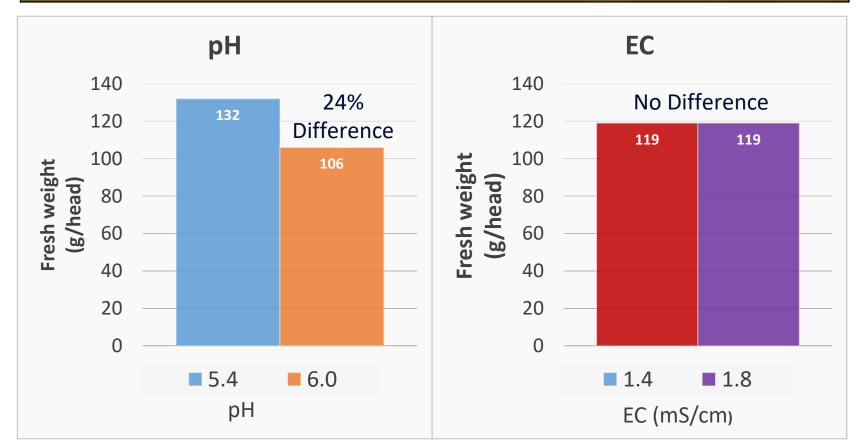


TABLE 2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate

Target Fertilizer Concentration	Injector Ratios			EC mmhos/cm of Target	
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution	
50	0.5	3.2	6.4	0.32	
100	1	6.4	12.9	0.63	
200	1.9	12.9	25.7	1.26	
300	2.9	19.3	38.6	1.89	

Made in the U.S.A.


More is not better

Nutrient concentration/EC

Effect of pH and EC on hydroponic lettuce

(Adapted from Hansen et al., 2009; n=112)

Dissolved oxygen

Dissolved oxygen

- Oxygen (O₂): Necessary respiration for root growth and nutrient uptake.
- Low O₂: inhibits growth, increases ethylene production.
- Optimum level for hydroponics ≥ 6 ppm

Temperature affects how much oxygen is held by water

\uparrow Temperature= \downarrow oxygen solubility

Temperature-Oxygen Solubility Relationship					
Temperature (°C)	Oxygen Solubility (mg/L)				
0	14.6				
5	12.8				
10	11.3				
15	10.2				
20	9.2				
25	8.6				
100	0				

The solution temperature can affect plant health directly and indirectly.

Crop nutrient requirements

Specific crop and growth stage requirements

- Given as part per million (ppm), %, or milligrams per liter (mg/L).
- 1 ppm: 1/1,000,000

Liquids: 1 mg/L (1milligram in 1 liter) Solids: 1 mg/kg (1 milligram in 1 kilogram) 1%: 1/100 = 10,000 ppm

 Recommendations for hydroponic nutrient solutions given as ppm of elements

Requirements by crop and growth stage (ppm N)

Туре	Propagation	Production
Buttercrunch/Boston Bibb	125	150
Romaine, Red and Green leaf	125	150
Basil	125	175
Culinary Herbs	125	150
Cole Crops	125	175
Garlic and Scallions	125	150
Tomatoes	125	200
Peppers	125	150
Cucumber	125	175
Heavy Feeders cabbage, kale, spinach, Swiss chard, mustard greens, mizuna, escarole	125	175 - 200
Light Feeder Lettuce arugula, watercress, spring mix	125	125 - 150
University of Missouri		28

Fertilizer recipe: Lettuce

	16-4-17 (1 bag)	5-11-26+ CaNO₃ (2 bag)	9-7-37+ CaNO₃ + MgSO₄ (3 bag)	Sonneveld's Solution
Nitrogen (ppm)	150	150	150	150
Phosphorus (ppm)	16	39	12	31
Potassium (ppm)	132	162	122	210
Calcium (ppm)	38	139	133	90
Magnesium (ppm)	14	47	42	24
Iron (ppm)	2.1	2.3	2.0	1.0
Manganese(ppm)	0.47	0.38	0.75	0.25
Zinc (ppm)	0.49	0.11	0.75	0.13
Boron (ppm)	0.21	0.38	0.36	0.16
Copper (ppm)	0.13	0.11	0.20	0.02
Molybdenum (ppm)	0.08	0.08	0.04	0.02 ²⁹

Vine crop requirements

(ppm)	Tomato	Cucumber
Ν	125-225	160-210
NH₄ (% Total N)	5-10	7-14
Р	40-60	40-60
К	200-350	325-370
Са	120-180	190-210
S	40-140	120-140
Mg	30-60	60-75
Fe	3-7	1-2
K/N Proportion	1:1 to 1.7:1 1.8:1 to 2.1:	
EC	1.5-3.5	1.5-3.0

Courtesy: Richard McAvoy, Univ. of Connecticut

Tomato nutrient requirement by growth stage

Growth stage	K:N
Vegetative stage (before first flower)	1:1
1 st to 4 th cluster	1.5:1
Ripe fruit	1.7:1

To promote vegetative growth in any stage by increasing the amount of ammonium nitrogen (NH₄).

Courtesy: Richard McAvoy Univ. of Connecticut

Alkalinity

What is alkalinity?

- Alkalinity is a measure of the acid neutralizing capacity of water.
 - Bicarbonates (HCO₃⁻): Ca, Mg, Na
 - Carbonates (CO₃⁻⁻): Ca, Mg, Na
 - Ions: hydroxides, phosphates, silicates, sulfides, and borates
- Think of it as "dissolved limestone"
- High alkalinity=higher amounts of acid needed to change the pH.
- Low alkalinity=pH changes constantly and you need to monitor and adjust pH constantly

How to measure alkalinity

- Equivalents of calcium carbonate (CaCO₃ ppm):
 - 1meq/L=50mg/L(ppm)=61mg /L HCO₃⁻
- It is measured through titration.
- It can't be determined directly with a pH meter

Topics

- 1. Introduction
- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

Directions for Use

Detections on own and a second fertilizer program

Initiate program. Selecting the correct concentration – The correct fertiliser concentration for particular growing spectration will depend on number of factors including, leading hapanic corplyine, core tasking growing midding, our tokin, leading hard toking and correct on the selection of the selection of the selection of the selection optimal net zone nucleif leading and gained and concentrations messariary to usatio optimal net zone nucleif leading and gained gained gained gained gained gained more uniform plant nation program and is accommended new periodic leading. See Table of the growing incremendations for complexe.

TABLE 1 Recommended Feeding Rates					
Crop Type	Constant Liquid Feeding ppm N	Periodic Feeding ppm N			
Bedding Plants	50 - 150	150 - 250			
Containerized Woody Plants	50 - 100	200 - 350			
Flowering Pot Crops	200 - 300	300 - 450			
Potted Foliage	150-200	250-300			
Plugs (All Types)	50 - 125	175-225			
Landscape/Outdoors	200 - 300	400 - 600			

Concentrated Stock Tanks - Most growers make up concer in a stock tank and use an injector system to achieve the correct final

1. Decide if you want to dilute a partial bag (Table #2) or full bag (Table #3) of fertilizer.							
TABLE 2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate							
Target Fertilizer Concentration	Inj	ector Ra		EC methosice of Target			
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution			
50	0.5	3.2	6.4	0.32			
100	1	6.4	12.9	0.63			
200	1.9	12.9	25.7	1.26			
300	2.9	19.3	38.6	1.89			

TABLE 3 Gallons of Water I	Required to Dissolve One	25 Lb. Bag of Fertilizer		
Target Fertilizer Concentration	Injector Ratios			
(ppm N) After Dilution	1:100	1:200		
50	124.4	62.2		
100	62.2	31.1		
200	31.1	15.6		
300	20.7	10.4		

2. Determine your desired Target Fertilizer Concentration (ppm N) After Dilution 3. Select your Injector Ratio Setting.

4. (a.)Table #2 - the value stated is the correct weight of fertilizer necessary to make one

gallon of concentrate. (To Make More Than 1 Gallon: Multiply the value times the number of gallons of concentrate you wish to mix - i.e., stock tank volume.)

runther of galaxies of concentrate you was to mm – . .a., stock tank waterna). (b), Table 83 – Mowale stated is the wolverne (in galancia) of mater required to discolve on 25 pound bag of ferificate. STR ff the concentrates leads to approximately 1/3 tank volume, Bjotz if possible use warm water to more quickly discolve the fertilitus). A definitional call only it moceasize didation may be required with alkalitrity levels.

creater than 250 mplL calcium carbonate).

7. Add fertilizer and stir vigorously. 8 Ton off the tack unknow with wat

Mixing	For Watering C	ans, Spray Tanks (No In	ectors)
Conventional Measure	= Grams	+ Amount of water (gallons) =	ppm N
1 tsp 1 Tbsp	5.8 17.3	1	320
1 cup	276.7	25	614

Product Properties					
Potential Acidity	Conductivity of 100 ppm	Maximum Solubility			
390 lbs. calcium carbonate equivalent per ton	0.63	4 Ibs/gal			

Fertilizer Compatibility – All Peters Escel fertilizers are tank mix compatible with each other. However, not all Peters Professional and Peters Escel water soluble fertilizer

such other, browier, not all Freiten Professional and Press: Eacel water studies forsilizer products are compatible. There can be problems whon blanding acidium, containing forsilians with suffact acid or statistic containing berlikters such as STE-M¹⁰. Epons alls inguarismi suffacts. More To sensis Compatibility Internation on con worksitu. Solubalityr – Product components are completely water scieble. However, a number of lactus will detormine how lact the forefaction will disolve (a, desired constructions). temperature of inigation water, agitation, time, inigation water quality, the fertilizer itself and compatibility of other components in the stock tank). Each product has a stated maximum solubility that is determined under ideal lab conditions – it is physically impossible to maintain solubility above this value.

imposition to maintain sources were used. Water solubles for this experiment, ways and the source of the source of the source of the source of the products are uniform in apparations while others against heterogeneous. The that or dyo coin ritensity and distribution may appear variable in the bag, flowever, once the product is diluted in a stock tank the colorant level should be encoded. Monitoring - The Eventis Testing Laboratory is a reliable source for testing water,

growing media or tissue. Injector monitoring and maintenance will help to ensure that yos are feeding at optimal levels. Weekly on-site measurements of fertilizer solution and crop media EC and pH can be a valuable tool in managing your crop. A follow-up program of complete media analysis (and tissue in problem-solving situations), should be initiated to optimize your nutritional program.

Need More Information - To fine-tune your fertilizer selection to your individual growing conditions, you can contact an experienced Events horticultural professional or you can refer to the www.PetersABC.com website to access the Peters ABC Selection

Guaranteed Analysis Total nitrogen (N) ... 7.3% ammoniacal nitrogen 12.6% nitrate nitrogen 1.1% urea nitrogen dwailable Physiobate (PrOc)

Peters

Exce

	Soluble potash (K2O)	
	Boron (B)	0.02
	Copper (Cu)	0.02
	0.0262% water soluble copper (Cu)	
	Iron (Fe)	0.10
	0.1050% chelated iron (Fe)	
	Manganese (Mn)	0.05
	0.0525% water soluble manganese (Mn)	
	Molybdenum (Mo).	0.01
L	Zinc (Zn)	0.05
ŝ	0.0525% water soluble zinc (Zn)	
2		

boric acid, coppor sullate, iron EUIA, manoa Information regarding the contents and levels of metals in this pro internet at http://www.aapfco.org/metals.htm

WARNING: This fertilizer contains more than .001% molybdenum fertilizing mat

SAFETY INST FOR SAFETY INSTRUCTIONS: FOR SAFETY INSTRUCTIONS, REFER TO THE MATERIAL SAFETY DATA SHEET, OR CALL 1-800-492-8255 or 314-983-7500. WARNING: May be harmful if swallowed or inhaled. May cause irritation. Avoid chart with yes, skin and clothing. • Wash thoroughly after handling. • Do not swallow. Hant Documents and the second s

Spills and Disposal: If spilled, absorb with an inert noncombustible material and remove for disposal. Dispose of all waste in accordance with applicable government regulations. Storage: Opened bags should be sealed. Unsealed or partially used products may take on

FOR PROFESSIONAL USE ONLY, KEEP OUT OF REACH OF CHILDREN

By using this product, user or boyer accepts the conditions, disclaimer of warranties and limitations of liability. Itsued the entire directions for use, conditions of warranties and limitations of liability before using this product. If terms are not acceptable, return the unopened product container at once for full refund.

CONDITIONS: This product has been researched to provide necessary data to support its uses listed on the label. The directions for use of this product are believed to be adequate uses listed on the label. The directions for use of this product are balanced to be adequare and the user or byper and always forther that label directions carefully and exercise judgment and caration where using this product rated the big product. The subsect of the granulation is directional with the use of the product. Cons plays, and the subsection of the subsection of the user of the product Const plays may reach because of tasks hardness at wardher conditions. The source of the subsection of the subsection of the direction of the product of the trans. Al such risks shall be assumed by the same or bayes: which is it transdet contractors and the share of directions to the full and and all big to the full constant compared that the label and all conditions is the share. It is also and directions to the the label and, all bigst to the conditions and the shares, it susmandly fits reas the any papers for the share is the start conditions.

subject to the provisions of the applicable state law, but makes no other warranties or representations, express or implied, of merchantability or of fitness for a particular purpose or otherwise, that extend beyond the statements made on this label. No agent of Evenis is authorized to make any warranties beyond those contained herein or to modify the warran-

Its affiliates, for any and all losses, injuries or damages resulting from the use or handling of this product, whether in contract, warranty, tort, negligence, strict liability or otherwise, shall not enceed the purchase price paid by the user or buyer for the quantity of this product. involved or at Evenis' election, the replacement of the product. Subject to the user's or buyer's rights and remedies under the applicable state law, any and all claims or actions related to the use or handling of this product must be commenced within one (1) year from the date the product was purchased.

To request additional information, please contact your Events Distribute call Events Customer Service at 1-800-492-8255 or 314-983-7500.

5%
0.0262%
0.0262%
0.1050%
0.0525%

525%

oduct is available on the	
(Me) The application of	1.1

		molybdenum			forage	crops	containing	
bdens	am (Mo) wh	ich are toxic t	o ruminant	tanimak.				
TRUM	TIONS							

involution of the atmosphere and may subsequently softwor or harden in the bag. As long as bags are properly re-sealed, this should in no way deninish nutrient content of the fertilizer. Store product in a cool, dry environment.

DISCLAIMER AND LIMITATION OF LIABILITY IMPORTANT NOTICE FROM EVERRIS NA INC. ("Everris"). PLEASE READ BEFORE USE.

autorizie to inake any warlentes topport troce contained tenien or to mostly the wards-fice contained therein. Subject to the ward of subject and tendes under the applicable state. Large Servers disclaims any labelity whatsovere for spool, incidental or consequential disanges worksing from the law one handling of this spools. LUMINITORS OF LUMELITY: Subject to the ear's to hospir's rights and tendes such the applicable state law devices were topport of the same top and the labelity of formic or specificable state.

050112

Made in the U.S.A.

Peters[®] Exce

(For Continuous Liquid Feed Programs) Guaranteed Analysis F1877 Total nitrogen (N) 21% 7.3% ammoniacal nitrogen 12.6% nitrate nitrogen 1.1% urea nitrogen Soluble potash (K2O) 20% Boron (B) 0.0262% 0.0262% water soluble copper (Cu) 0.1050% chelated iron (Fe) 0.0525% water soluble manganese (Mn) 0.0525% water soluble zinc (Zn)

N%

 $P_2O_5 \%$

Multi Purpose

K₂O %

Fertilizer calculations (1 bag)

Example: Prepare 10 liters (L) of nutrient solution with 100 ppm N using the 21-5-20 fertilizer

- *Remember 100 ppm N = 100 mg N in 1 L of solution
- 21-5-20 : %N-%P₂O₅-%K₂O
- **Step 1**. Calculate how much nitrogen you need for your nutrient solution tank.
- For 10 L we need : 10 L X 100 ppm N= 1,000 mg N

ALWAYS USE WATER SOLUBLE FERTILIZERS Check the handout for the two fertilizer bags calculations

Fertilizer calculations (1 bag)

• Step 2. Calculate how much fertilizer you need to meet your nitrogen needs (1,000 mg N from step 1)

 $F = NR \div (\%N \div 100)$

F: required fertilizer, NR: required nitrogen (step 1),

%N: percent nitrogen in the fertilizer (label)

 $F = 1,000 mg N \div (21 \div 100) = 4,762 mg \text{ or } 4.7 \text{ g in } 10 \text{ L of water}$

To convert grams (g) to ounces: gram x 0.035274 To convert liters (L) to gallons US: liters x 0.26417 *Refer to the calculation handout for the 2 bag system.*

Online calculators

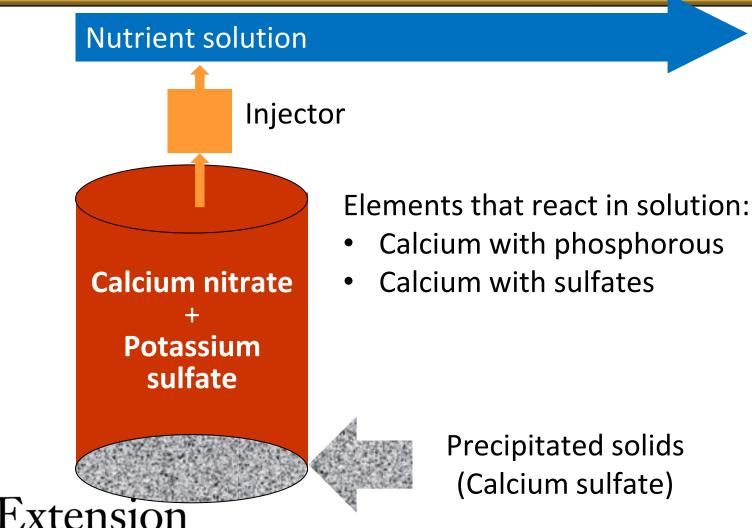
How much fertilizer or chemical product do I need to get a Esp certain concentration (ppm)?

(1)

www.backpocketgr

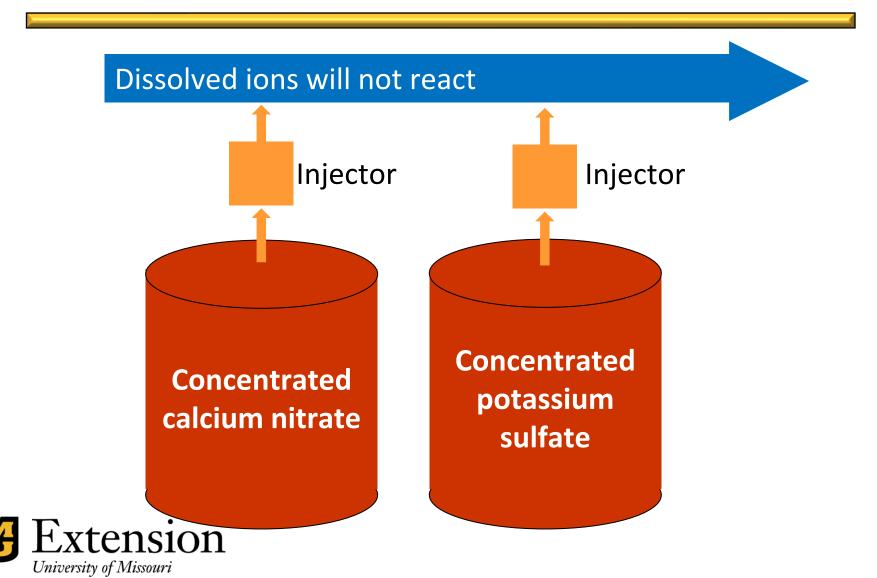
Back Pocket Grower	1. What units are you using?	US Metric	0		
Interactive tools Supporting your decisions with calculators and research Solutions	2. What is the product's formulation ?	Liquid Solid	0		
ppm to Recipe - I know the target ppm, c. add	3. What is the required concentration (ppm)?	150	0		
Recipe to ppm - I know how much produce ppm FACS Extension Fertilizer pH - select a nitrogen ratio for p	4. What is the % active ingredient by weight in product?	5	0		
IFAS Extension	5. How much solution (litres) is being prepared in the tank?	30 📼	0		
	6. Are you using an injector (diluter)?	Yes No			
	For a 150 ppm solution using a 5% a.i., 90.	000 grams of product to 30 litres .			
		Calculate			
UF IFAS Extension					

Legal


Search

Sign in

About



Fertilizer Incompatibility: Salt reaction

University of Missouri

Option 1: Separate incompatible salts in different concentrated tanks

Option 2: Dissolve fertilizers separately then mix them

Lettuce

- For every 10 gallons add
 - 1.34 oz (40 grams) of 5-12-26 fertilizer
 - 0.87 oz (25 grams) of 15.5-0-0 fertilizer
- Dilute the fertilizers separately each in 5 gallons then combine the dissolved fertilizers
- Measure pH and EC
- Adjust the pH between 5.5 to 6.0

Element	Required ppm	Provided by fertilizers	
Total N	150	150.75	
Р	31	110	
К	210	260	
Ca	90	123.5	
Mg	24	31	
S	0	40	
В	0.16	0.5	
Cu	0.02	0.15	
Fe	1	3	
Mn	0.25	0.5	
Мо	0.02	0.1	
Zn	0.13	0.15	

Tomato Stage 1

- Use until you see the first cluster of flowers (approx. 6 weeks)
- For every 10 gallons add:
 - 0.8 oz (23 grams) of 5-12-26
 - 1 oz (29 grams) of 15.5-0-0
 - 0.4 oz (11 grams) of Epsom salts
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required ppm	Provided by fertilizers	
Total N	145	150	
Р	47	72	
К	145	156	
Ca	144	147	
Mg	60	65	
S	10	90	
В	0.4	0.30	
Cu	0.05	0.09	
Fe	2	2	
Mn	0.55	0.30	
Мо	0.05	0.11	
Zn	0.33	0.09	
K:N ratio	1.0	1.04	

Tomato Stage 2

- Use until you see the fourth cluster of flowers (weeks 6 to 12)
- For every 10 gallons add:
 - 1.5 oz (43 grams) of 5-12-26
 - 1.2 oz (34 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required ppm	Provided by fertilizers
Total N	195	195
Р	47	137
К	300	300
Ca	160	168
Mg	60	69
S	10	98
В	0.4	0.58
Cu	0.05	0.17
Fe	2	3.5
Mn	0.55	0.58
Мо	0.05	0.22
Zn	0.33	0.17
K:N ratio	1.54	1.54

Tomato Stage 3

- Use when you see the fruits ripening (plants older than 12 weeks)
- For every 10 gallons add:
 - 2 oz (57 grams) of 5-12-26
 - 1.4 oz (39 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required ppm	Provided by fertilizers
Total N	205	240
Р	47	186
К	350	403
Са	200	200
Mg	60	93
S	10	132
В	0.4	0.8
Cu	0.05	0.2
Fe	2	4.7
Mn	0.55	0.8
Мо	0.05	0.3
Zn	0.33	0.2
K:N ratio	1.7	1.68

Nutrient solution management

- 1. Test your water source.
- 2. Research nutrient requirements for your crops (nutrient levels and pH).
- 3. Calculate how much fertilizer you need for the nutrient solutions.
- 4. Prepare nutrient solutions.
- 5. Measure pH and EC.
- 6. Adjust the pH as needed.
- 7. Constantly measure and adjust the pH and EC of the nutrient solution.

Topics

- 1. Introduction
- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

Why monitor and adjust nutrient solutions?

- The pH and EC of the nutrient solution changes after mixing the fertilizers. We need to know how it changes so we can adjust it to the plants' comfort zone.
- Over time, plants use water and nutrients which generate changes to pH and EC of the nutrient solution.
- We need to constantly monitor the nutrient solution to make necessary adjustments.
 - KEEP THE PLANTS IN THEIR COMFORT ZONE SO THEY CAN GROW!

The pH of the nutrient solution may fluctuate every day and it is necessary to control it.

Increasing the pH

• Use:

- Potassium bicarbonate
- Fertilizers with high nitrate concentration (Over 25% of the total nitrogen is from nitrates)
- Potassium hydroxide
- Avoid using calcium carbonate (limestone) because it has low solubility.

Lowering the pH

Chemical	Notes
Mineral and organic acids	Cost \$\$: Cítrico > Fosfórico > Nítrico > Sulfúrico Safety: Cítrico > Fosfórico ≈ Sulfúrico > Nítrico Consider that some will provide additional nutrients.
Iron sulfate (for potted plants)	Can cause iron toxicity in plants, especially if the water contacts the leaves. It will precipitate and cause clogging.
Elemental sulfur (for potted plants)	Slow reaction and its solubility depends on the source of the product.
Extension University of Missouri	How much acid you need? Depends on the alkalinity of the nutrient solution.

How much acid you need?

• Online calculator:

e-Gro Alkalinity Calculator

http://e-gro.org/alkcalc/

Instructions	
	mendations for the amount of acid to add to irrigation water in order to modify the pH and alkalinity levels ne amount of added phosphorus, nitrogen, and sulfur that the corresponding acids will provide, plus an
Calculation Form	
Company Name:	Your Name:
The pH of your sample:	
the prior four sumpler	
The alkalinity of your sample:	meq/L -
	meq/L Alkalinity meq/L (set at 2 meq/L alkalinity for most crops)
The alkalinity of your sample:	

University of Missouri

H,

Automatic injectors

Monitoring pH and EC

Monitoring pH and EC

 Cheap meters make inaccurate measurements that can result in costly mistakes

• A meter is as precise as the last time it was calibrated

Choosing meters

- Avoid test strips for pH (dyes in fertilizers).
- The ideal meter:
 - Water and shock proof
 - Replaceable probes
 - Easy to calibrate
 - Available calibrating and storage solutions
 - Portable
 - pH-EC Combo
 - \$100-\$300

his-Photo by Unknown Author is licensed under <u>CC BY-NC-ND</u>

SET NODE HOLD

Grotine

OH . FC . TOS

57

Grotine

Waterproo

Fotos: Hannah instruments

Proper care for meters

Foto: Hannah instruments

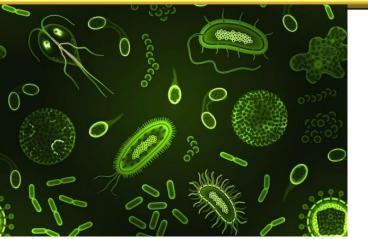
- Calibrate once a week
 - Calibrate in two points: pH 4 and 7
- Do not touch, scratch or rub paper towel on the pH probe glass bulb
- Store the pH probe in **storage solution** or the pH 4 calibrating solution (not water)
- Rinse with distilled or deionized water before every use, after calibration, in between samples, and before storing
- Probe lifetime pH 1-2 years and EC 2-5 years
 - Replace when you can't calibrate

Needed meters

	Parameter	NFT & Dutch Bucket	DWC
	рН		
Combo meters	Electric conductivity (EC)		
	Temperature		
	Dissolved oxygen (DO)	\mathbf{O}	

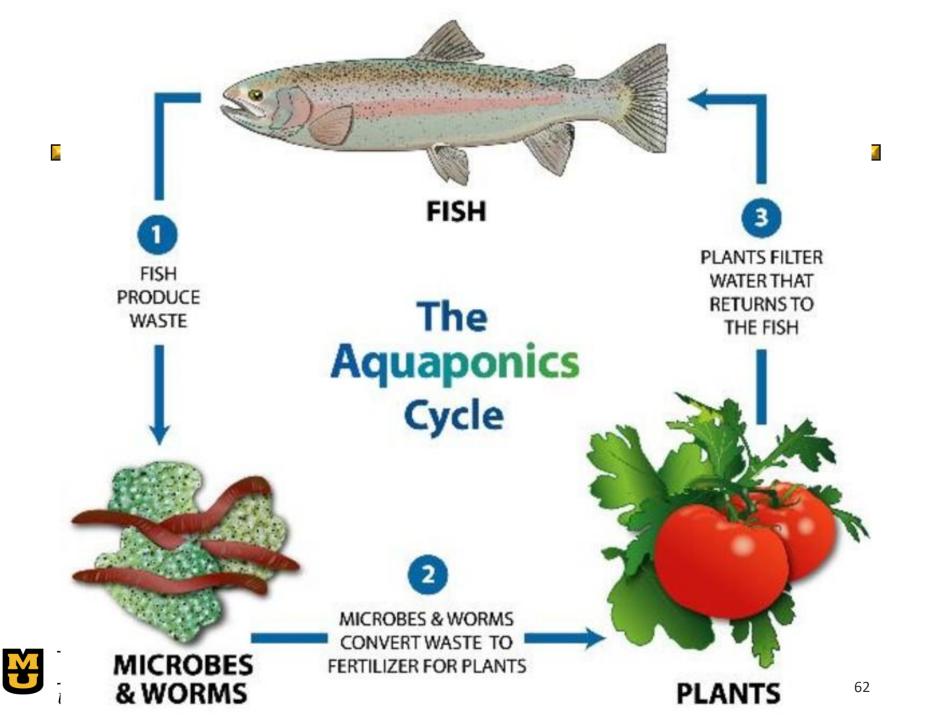
Topics

- 1. Introduction
- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

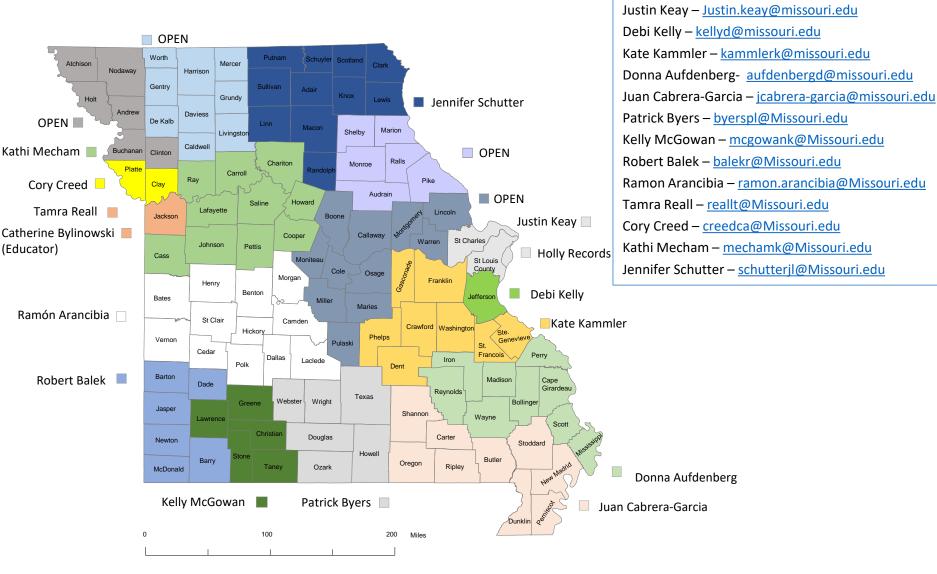


Organic Fertilizers

3-1-1


GUARANTEED ANALYSIS

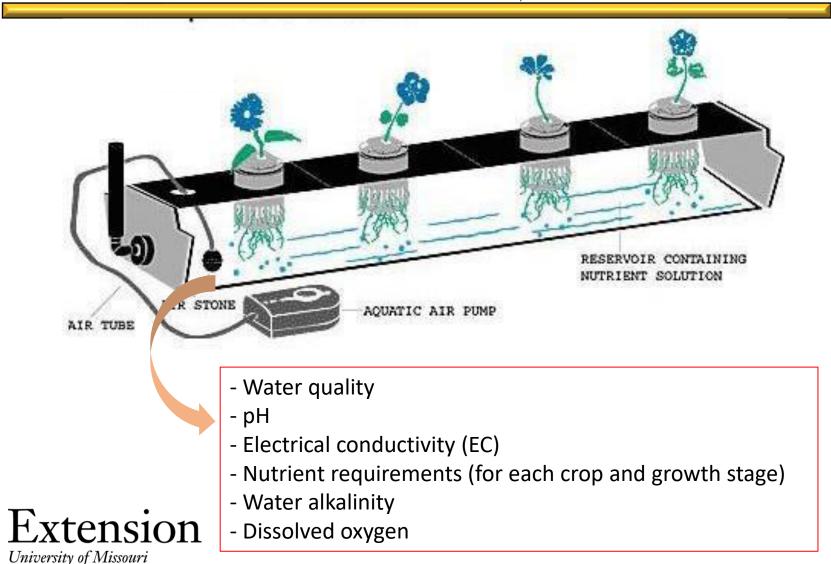
Total Nitrogen (N) 2.55% Water Soluble Nitrogen 0.45% Water Insoluble Nitrogen	3%
Available Phosphate (P ₂ O ₅)	1%
Soluble Potash (K2O)	1%
Derived From: Fermented Oilseed Extract	
10 lbs. per gallon at 68°F	F2358


Coupled aquaponic systems

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Horticulture Specialists

College of Agriculture, Food & Natural Resources University of Missouri



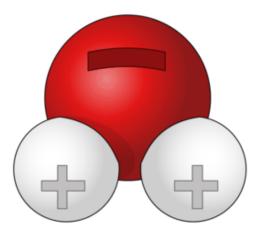
Optional Advanced nutrition and Aquaponic Slides

Advanced concepts

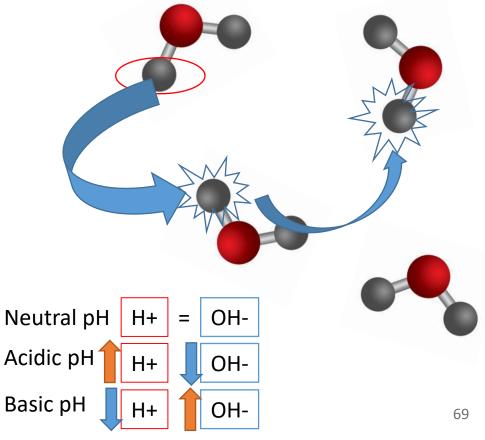
Factors that affect the nutrient solution

EMW-400 : Water Irrigation Suitability

Ň

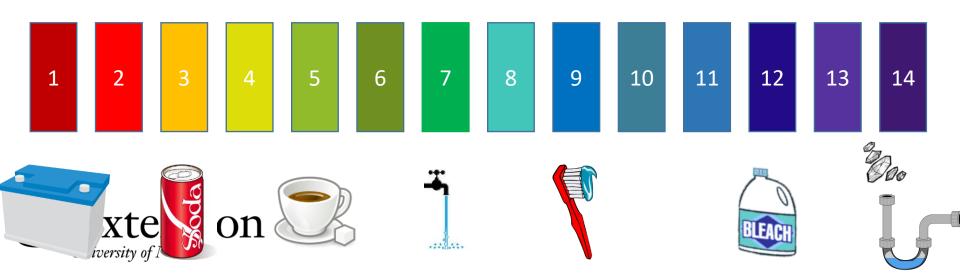

Components		Results		Target Ranges	Acceptable
		mg/L	meq	(mg/L)	(mg/L)
MAJOR CATIONS	5				
Potassium	K	3.73	0.10		<100
Calcium	Ca	11.22	0.56	25 - 75	<150
Magnesium	Mg	3.23	0.27	10 - 30	<50
Sodium	Na	40.54	1.76	0 - 20	<50
MAJOR ANIONS					
Phosphate	PO4	0.71	0.02		<90
Sulfate	SO4	18.97	0.39	0 - 120	<240
Chloride	CI	41.00	1.14	0 - 20	<140
HCO3 Alkalinity	HCO3	45.87	0.75		
CO3 Alkalinity	CO3	0.00	ND		
Ammonium Nitrog	jenNH4-N	ND			<10
Nitrate Nitrogen	NO3-N	ND			<75
рН	pН	7.10		5.50 - 7	4-10
Soluble Salts	EC	0.26		0.20 - 0.80	0-1.5
Total Alkalinity	CaCO3	37.60		40 - 160	0-400
Iron	Fe	0.16		< 1	<4
Manganese	Mn	0.01		< 1	<2
Boron	В	0.04		< 0.10	<0.5
Copper	Cu	0.06		< 0.10	<0.2
Zinc	Zn	0.05		< 0.50	<1
Molybdenum	Мо	0.02		< 0.10	<0.2
Aluminum	AI	0.16			

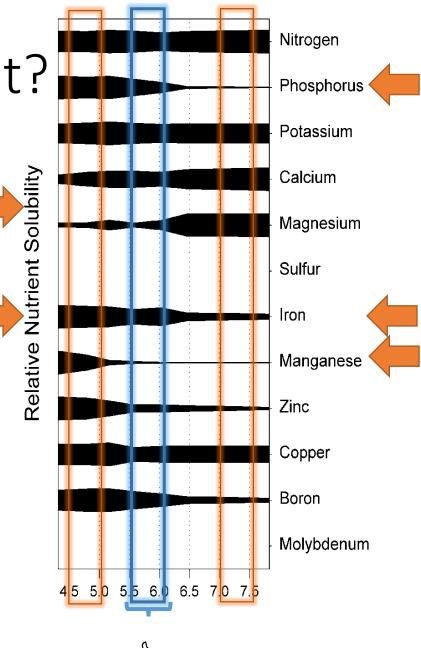
рΗ



Water

Water molecule


Oxygen (O) Hydrogen (H)


What is pH?

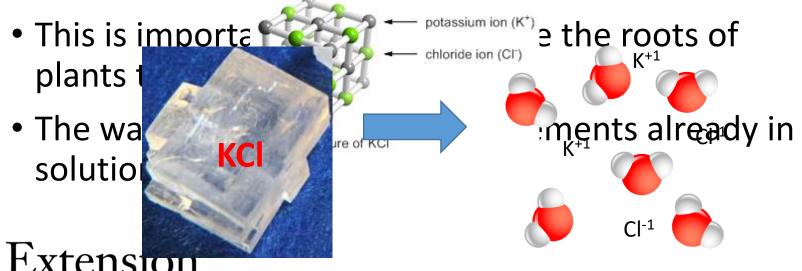
- Represented by a scale that ranges from 1 to 14.
- Is a measure of the concentration of hydrogen ions (H+).
- At pH 7 the solution is said to be neutral, below 7 it becomes more acidic and above 7 it becomes basic.

Why is pH important?

- Solubility (availability) of nutrients.
- Plant health (specificity):
- Excessive \rightarrow toxicity
- Insuficiency \rightarrow deficiency

Optimum pH

Reco	mmei		nutrie Inges	nt sol	ution	
5.4 5.6 5.8 6.0 6.2 6.4						
Lettuce						
Spinach						
	Par	sley				
			Basil			
	Rosemary				mary	


Electrical conductivity (EC)

Fertilizers are salts!

University of Missouri

- Ionic bond: elements with positive charge attach to elements with negative charge= SALTS!
- Water molecules break the ionic bond so salts dissolve in to their charged state or ions (+: cations and -: anions). $K^{+1} + Cl^{-1} \rightarrow KCl$

What is Electrical Conductivity (EC)?

- EC is used to measure a solution's ability to conduct electricity.
- A solution with high salt concentration will conduct more electricity. (Remember salts exist as ions in water).

More dissolved nutrients=More electricity flow!

(1 mS/cm = 1000 μS/cm = 1dS/m=1 mmhos/cm = 1000 μmhos/cm)

Why is EC important?

- EC used as an indicator of the total salt concentration in solution. It doesn't provide information of which salts.
- Ions that contribute to EC:
- In water: Ca⁺⁺, Mg⁺⁺, SO₄⁻, Na⁺, Cl, HCO₃-
 - In fertilizers: NO₃⁻, NH₄⁺, PO₄, K⁺, Ca⁺⁺, Mg⁺⁺, SO₄, Cl⁻

Directions for Use

Solecting the correct fortilizer program — The demical composition of the impation solutions applied to creps has a major influence on the numerical available to barts in the long term. First, send a sample of your impation water to The Service Insting Lab. Test reads will indicate your ABC Water Type (1-4)⁺ that can be matched with a similar indicater that appares on the fixed te alex has of Service Water Soleki Firsting fertilizer based on this water type will ensure you experience the best results from your fertilizer program.

Solecting the correct concentration – The context furtilese concentrations for a particular growing operation will depend on a number of lactors including, fixeding frequency, cop type, rogs stage, growing multia, pot siae, lauding faction and environmental conditions. Generally, tertilizer should be applied at concentrations messawy to sustain optimal net zone anishest levels and quality plant growing. Continuous flexing provide a more uniform plant nutrition program and is incommended our periodic feeding. See Table if for general incommendations for zone types.

TABLE 1 Recommended Feeding Rates						
Crop Type	Constant Liquid Feeding ppm N	Periodic Feeding ppm N				
Bedding Plants	50 - 150	150 - 250				
Containerized Woody Plants	50 - 100	200 - 350				
Flowering Pot Crops	200 - 300	300 - 450				
Potted Foliage	150-200	250 - 300				
Plugs (All Types)	50-125	175-225				
Landscapel/hitlenet	200 - 200	400 - 600				

Mixing Concentrated Stock Tanks – Most growers make up concentrate solutions in a stock tank and use an injector system to achieve the correct final concentration. For best results:

TABLE 2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate							
Target Fertilizer Concentration Injector Ratios EC mmhosicm of Target							
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution			
50	0.5	3.2	6.4	0.32			
100	1	6.4	12.9	0.63			
200	1.9	12.9	25.7	1.26			
200	2.0	40.2	29.6	1.00			

larget Fertilizer Concentration	Injecto	r Ratios
ppm N) After Dilution	1:100	1:200
50	124.4	62.2
100	62.2	31.1
200	31.1	15.6
300	20.7	10.4

3. Select your Injector Ratio Setting.

(a.)Table #2 - the value stated is the correct weight of fertilizer necessary to make one

gallon of concentrate. (To Make More Than 1 Gallon: Multiply the value times the number of gallons of concentrate you wish to mix – i.e., stock tank valueme.) (b. Table 45 – the value stated is the volume (in californi of water received to discolve

one 25 pound bag of fertilizer. 5. Fill the concentrate tank to approximately 1/3 tank volume. (Note: if possible use

warm water to more quickly dissolve the fertilizer.)

Add mineral acid only if necessary (addition may be required with alkalinity levels greater than 250 mg/L calcium carbonate).

Add fertilizer and stir vigorously.
 Top off the tank volume with water

8. Iop off the tank volume with wate

EP99150

Mixing For Watering Cans, Spray Tanks (No Injectors)					
	Amount of				
Grams	water (gallons)	ppm N			
5.8	1	320			
17.3	2	480			
276.7	25	614			
	Grams 5.8 17.3	Grams + Amount of water (gallors) = 5.8 1 1 1 17.3 2 2 1			

Product Properties					
Potential Acidity	Conductivity of 100 ppm	Maximum Solubility			
390 lbs. calcium carbonate equivalent per ton	0.63	4 Ibs/gal			

Fertilizer Compatibility – All Peters Exol fertilizers are tack mic compatible with each other However, not all Peters Professional and Peters Exol water soldade fertilizer products are compatible. There can be problems when blending caldium containing fertilizers with suffack cald or sulfate containing fertilizers such as STE.M.¹⁰⁰, Epons salts (magnetism salted), Refer to Events Compatibility Information envolves.

Salability – Product components are completely water soluble. However, a number of factures will determine how fact the ferfilizer will dissuble (i.a, desired concentration, temperature of irrigation water, aplitation, time, irrigation water quality, the ferfilizer head and compatibility that is determined under islaal lab conditions – It is physically impossible to maintain solubility physe this value.

Water Soluble Fertilizer Appearance — This product is composed from a number of components, varying in size. Some of the product se uniform in appearance while others quite heterogeneous. The tracer dy color intensity and distribution may appear variable in the bag. However, once the product is diluted in a stock tank the colorant level should be consistent.

Monitoring — The Events Testing Laboratory is a reliable source for testing water, growing media or Sissa, hijecter monitoring and maintenane will help to mass that you are feeding at optimal levels. Weekly on-site measurements of kertilizer solution and crops media. Eca and pit can be a valuable tool in managing your core, A follow-exp program of complexe media analysis (and fossue is problem-solving situations), should be initiated to optimize your antitistical program.

Need More Information – To fine-tune your fertilizer selection to your individual growing conditions, you can contact as experienced Events horticultural professional or you can refer to the www.PetersABC.com website to access the PetersABC Selection System ".

azanteed Analysis F18 tal nitrogen (M
7.3% ammoniacal nitrogen 12.6% nitsate nitrogen 1.1% unse nitrogen
12.6% nitrate nitrogen 1.1% una nitrogen
1 1% urea nitronen
1.1% urea nitrogen sallable Phosphate (P2O5)
sailable Phosphate (P2O5)
high and the second sec
xon (B)
opper (Cu)
0.0262% water soluble copper (Cul
on (Fe)
0.1050% chelated iron (Fe)
anganese (Mn)
0.0525% water soluble manganese (Mn)
olybdenum (Mo). 0.0105
olybdenum (Mo)
0.0525% water soluble zinc (Zn)
erived from: ammonium nitrate, ammonium phosphate, potassium nitrate, urea phospha

boric acid, copper sulfate, iron EDTA, manganese sulfate, animonium molybdate, zinc sulfate Information regarding the contents and levels of metals in this product is available on the internet at **http://www.aapfco.org/metals.htm**

WARNING: This fertilizer contains more than .001% molybdenum (Mo). The application of

fertilizing materials containing molybdenum (Mo) may result in forage crops containing levels of molybdenum (Mo) which are toxic to ruminant animals.

SAFFTY INSTRUCTIONS

Gu

To

Sei

Bo Co Iro Ma

FOR SAFETY INSTRUCTIONS, REFER TO THE MATERIAL SAFETY DATA SHEET, OR CALL 1-800-492-8255 or 314-983-7500.

NARNING: May be harmful if swallowed or inhaled. May cause irritation.

Avoid contact with eyes, skin and clothing.
 Wash thoroughly after handling.
 Avoid breathing dust.
 Do not swallow.

First Aid: In case of contact, immediately flush with plenty of water for at least 15 minutes. Call a physician; flush skin with water. Wash clothing before reuse.

Spills and Dispose if it gilled, aborb with an intert nencombastille maturial and smoot for disposal. Dispose of all washe in accordance with applicable government regulations. Strenge: Opened hags should be sub-click clickeal dee partially used products may take on moistave from the atmosphere and may subsequently softme or harden in the bag. As long as bags are properly re-sealed, this should in no way diminish nutriest content of the moistave from the strengther re-sealer than though an output of the strengther than the strengther re-sealer that the sub-strengther re-sealer, this should in no way diminish nutriest content of the moistave from the strengther re-sealer. This should in no way diminish nutriest content of the strengther strengther that the strengther strengthere strengther strengther streng

For PROFESSIONAL USE ONLY. KEEP OUT OF REACH OF CHILDREN.

DISCLAIMER AND LIMITATION OF LIABILITY IMPORTANT NOTICE FROM EVERRIS NA INC. ("Everris"). PLEASE READ BEFORE USE.

By using this product, user or buyer accepts the conditions, disclaimer of warranties and limitations of liability. Read the entire directions for use, conditions of warranties and limitations of liability before using this product. If terms are not acceptable, return the

unopened product container at erec for full inflund. CONDITIONS: The product has been researched to provide reconsary data to support its uses liked on the label. The detections for use of this product are believed to be adequate and the user or bayer must always. Show the label directions carefully and exercise judgment and cardion when using this product under their growing conditions. However, it is propulse to a simulate all relative to the original sector of the product any result because of such factors are wardling conditions, presenter or absence of ether materials, or the manere of user or application, all or which are beyond the control of Events. All such risks shall be assumed by the user or bayes.

WARRANT: This product corresponds to all claims and descriptions set forth on the label and, subject to the conditions set furth abone, is searcoarding if for use or any suppose for which it is interded. Events receptions that the right and seneedses of the user or buyer are subject to the powersions of the applicable state law, but makes no other warranties or representations, express or implied, of merchantability or of flowess for a particular purpose or otherwise, but actual buyerd the scataments makes on their warranties or subject to the powersion of the applicable state law, but the biale. No agont of Events is authorized to make any warranties layend those contained herein or to modity the warrantics contained thermits. Subject to the user's or bayer's rights and remedies under the applicable state law, Events fockales any likelity whatcower for special, incidental or consequential damages sworthing from the use or handling of this product.

LIMITATIONS OF LIABILITY: Subject to the user's or boyen's rights and mendios under the applicable state law, the exclusive remedy of the user or boyen and the liability of Evenis or its affiliants, for any and all losses, hjuries or damages resulting freen the use or handling of this product, whether is contract, warranty tork, neighprox, sticit lability or otherwise, what not exceed the parchase prior pairbilly the user or boyen to the quarking the involved or at Evenis's election, the negleacement of the product Subject to the user's require levels in the use or handling of this product must be commenced within one (1) year freen the date the product was puchased.

To request additional information, please contact your Evenis Distributor or call Evenis Customer Service at 1.800-492-8255 or 314-983-7500.

Testing Lab: 1-877-467-8522

everris. Manufactured for Events NA Inc. PO Box 3310 Define. 0H 43016

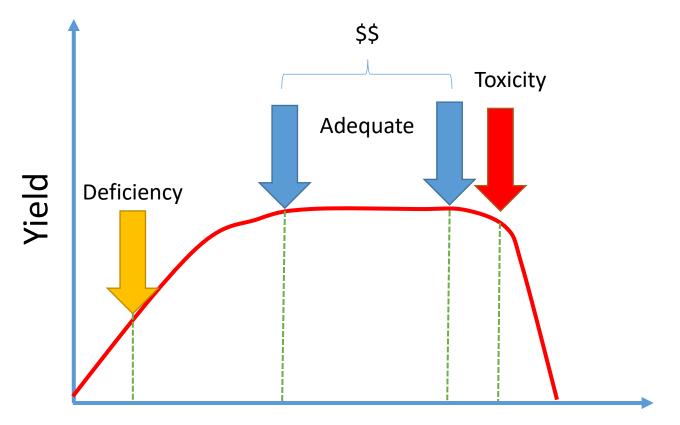


TABLE 2 Weight (In Ounces) of Product Needed To Mix One Gallon of Concentrate

Target Fertilizer Concentration	Injector Ratios			EC mmhos/cm of Target	
(ppm N) After Dilution	1:15	1:100	1:200	Feed Rate After Dilution	
50	0.5	3.2	6.4	0.32	
100	1	6.4	12.9	0.63	
200	1.9	12.9	25.7	1.26	
300	2.9	19.3	38.6	1.89	

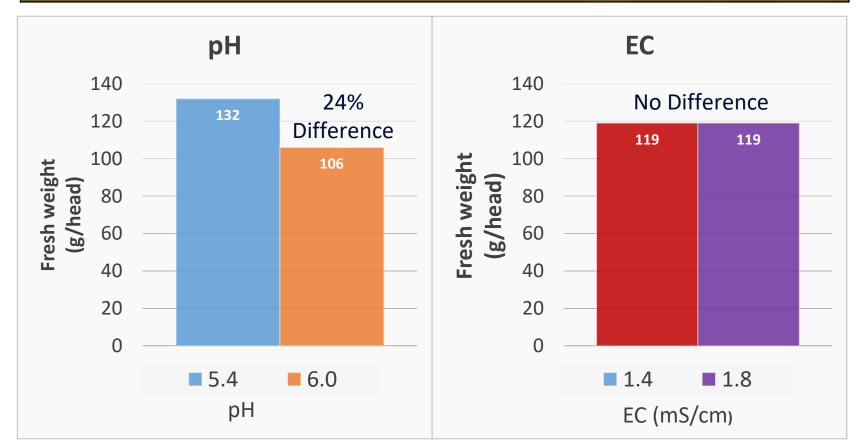
Made in the U.S.A.

More is not better

Nutrient concentration/EC

Basil's response to different EC levels: More is not better

Electrical conductivity (mS·cm ⁻¹)							
0.5	1.0	2.0	3.0	4.0			
	Fi	esh weigh	t (g)				
27.4	34.1	29.8	33.7	27.3			
Source: Chris Currey, Iowa State Univ.							



Problem lons

Element	Critical level ppm (mg/L)
Sodium (Na ⁺)	< 50
Chlorine (Cl ⁻)	< 70
Sulfates (SO4 ⁻)	< 90
Boron (B)	< 0.5
Fluor (F)	< 1.0
Calcium (Ca++)	< 150
Magnesium (Mg ⁺⁺)	< 75

Effect of pH and EC on hydroponic lettuce

(Adapted from Hansen et al., 2009; n=112)

Dissolved oxygen

Dissolved oxygen

- Oxygen (O₂): Necessary respiration for root growth and nutrient uptake.
- Low O₂: inhibits growth, increases ethylene production.
- Optimum level for hydroponics ≥ 6 ppm

Temperature affects how much oxygen is held by water

\uparrow Temperature= \downarrow oxygen solubility

Temperature-Oxygen Solubility Relationship					
Temperature (°C)	Oxygen Solubility (mg/L)				
0	14.6				
5	12.8				
10	11.3				
15	10.2				
20	9.2				
25	8.6				
100	0				

The solution temperature can affect plant health directly and indirectly.

Crop nutrient requirements

Specific crop and growth stage requirements

- Given as part per million (ppm), %, or milligrams per liter (mg/L).
- 1 ppm: 1/1,000,000

Liquids: 1 mg/L (milligrams/liter)

Solids: 1 mg/kg (milligrams/kilograms)

1%: 1/100 = 10,000 ppm

 Recommendations for leafy greens given as ppm of nitrogen

Requirements by crop and growth stage (ppm N)

Туре	Propagation	Production
Buttercrunch/Boston Bibb	125	150
Romaine, Red and Green leaf	125	150
Basil	125	175
Culinary Herbs	125	150
Cole Crops	125	175
Garlic and Scallions	125	150
Tomatoes	125	200
Peppers	125	150
Cucumber	125	175
Heavy Feeders cabbage, kale, spinach, Swiss chard, mustard greens, mizuna, escarole	125	175 - 200
Light Feeder Lettuce arugula, watercress, spring mix	125	125 - 150
University of Missouri		87

Fertilizer recipe: Lettuce

	16-4-17 (1 bag)	5-11-26+ CaNO₃ (2 bag)	9-7-37+ CaNO₃ + MgSO₄ (3 bag)	Sonneveld's Solution
Nitrogen (ppm)	150	150	150	150
Phosphorus (ppm)	16	39	12	31
Potassium (ppm)	132	162	122	210
Calcium (ppm)	38	139	133	90
Magnesium (ppm)	14	47	42	24
Iron (ppm)	2.1	2.3	2.0	1.0
Manganese(ppm)	0.47	0.38	0.75	0.25
Zinc (ppm)	0.49	0.11	0.75	0.13
Boron (ppm)	0.21	0.38	0.36	0.16
Copper (ppm)	0.13	0.11	0.20	0.02
Molybdenum (ppm)	0.08	0.08	0.04	0.02 ⁸⁸

Vine crop requirements

(ppm)	Tomato	Cucumber
Ν	125-225	160-210
NH₄ (% Total N)	5-10	7-14
Р	40-60	40-60
К	200-350	325-370
Са	120-180	190-210
S	40-140	120-140
Mg	30-60	60-75
Fe	3-7	1-2
K/N Proportion	1:1 to 1.7:1	1.8:1 to2.1:1
EC	1.5-3.5	1.5-3.0

Courtesy: Richard McAvoy, Univ. of Connecticut

Tomato nutrient requirement by growth stage

Growth stage	K:N
Vegetative stage (before first flower)	1:1
1 st to 4 th cluster	1.5:1
Ripe fruit	1.7:1

To promote vegetative growth in any stage by increasing the amount of ammonium nitrogen (NH₄).

Courtesy: Richard McAvoy Univ. of Connecticut

Alkalinity

What is alkalinity?

- Alkalinity is a measure of the acid neutralizing capacity of water.
 - Bicarbonates (HCO₃⁻): Ca, Mg, Na
 - Carbonates (CO₃⁻⁻): Ca, Mg, Na
 - Ions: hydroxides, phosphates, silicates, sulfides, and borates
- Think of it as "dissolved limestone"
- The higher the alkalinity, higher amounts of acid needed to change the pH.

How to measure alkalinity

- Equivalents of calcium carbonate (CaCO₃ ppm):
 - 1meq/L=50mg/L(ppm)=61mg /L HCO₃⁻
- It is measured through titration.
- It can't be determined directly with a pH meter

Alkalinity and pH management

- Water with high alkalinity needs a lot of acid to change the pH
- Low alkalinity: pH will fluctuate constantly forcing you to constantly monitor and adjust the pH

\$\$\$

Topics

- 1. Introduction
- 2. Factors that affect nutrient solutions
 - Water quality
 - pH
 - Electrical conductivity (EC)
 - Dissolved oxygen (temperature)
 - Crop requirements by growth stage
 - Water alkalinity (hardness)
- 3. Preparing nutrient solutions
- 4. Monitoring nutrient solutions
- 5. Organic fertilizers and aquaponics

Fertilizer calculations (1 bag)

Example: Prepare 10 liters (L) of nutrient solution with 100 ppm N using the 21-5-20 fertilizer

- *Remember 100 ppm N = 100 mg N in 1 L of solution
- 21-5-20 : %N-%P₂O₅-%K₂O
- **Step 1**. Calculate how much nitrogen you need for your nutrient solution tank.

For 10 L we need : 10 L X 100 ppm N= 1,000 mg N

Fertilizer calculations (1 bag)

• Step 2. Calculate how much fertilizer you need to meet your nitrogen needs (1,000 mg N from step 1)

 $F = NR \div (\%N \div 100)$

F: required fertilizer, *NR:* required nitrogen (step 1), *%N:* percent nitrogen in the fertilizer (label)

 $F = 1,000 mg N \div (21 \div 100) = 4,762 mg \text{ or } 4.7 \text{ g in } 10 \text{ L of water}$

To convert grams (g) to ounces: gram x 0.035274 To convert liters (L) to gallons US: liters x 0.26417 *Refer to the calculation handout for the 2 bag system.*

Online calculators

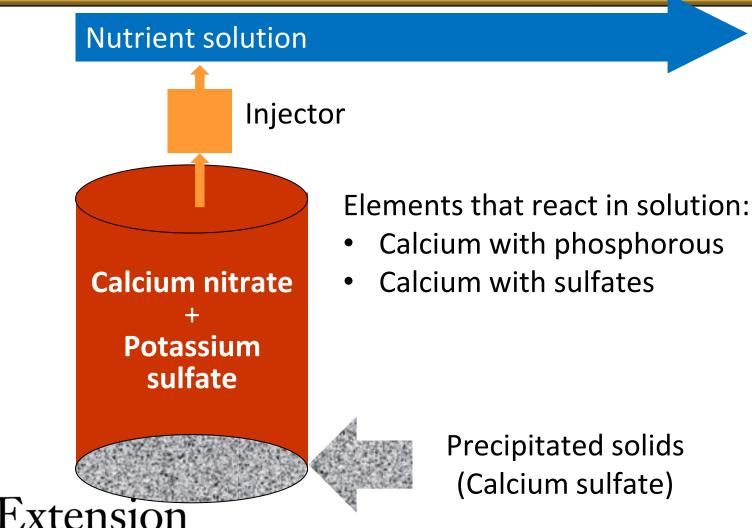
How much fertilizer or chemical product do I need to get a Esp certain concentration (ppm)?

(1)

www.backpocketgr

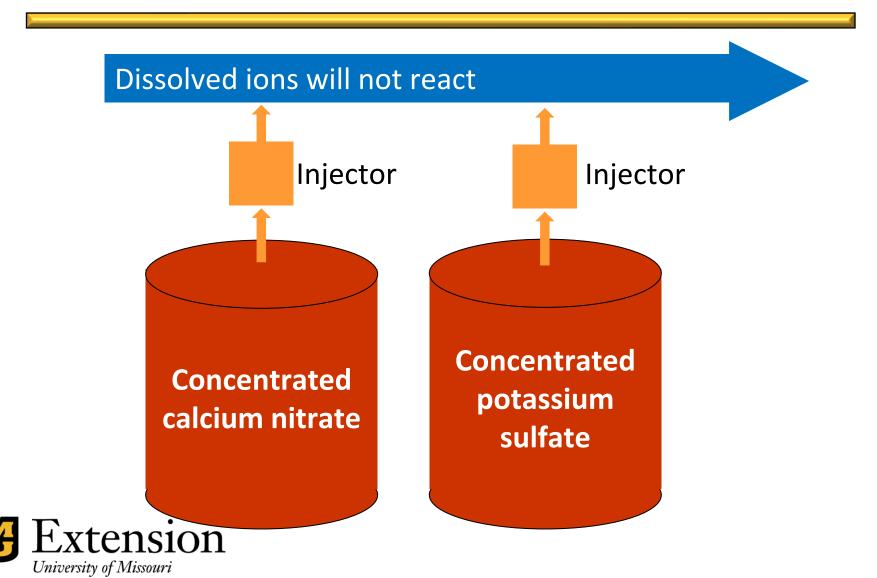
Back Pocket Grower	1. What units are you using?	US Metric	0
Interactive tools Supporting your decisions with calculators and research Solutions	2. What is the product's formulation ?	Liquid Solid	0
ppm to Recipe - I know the target ppm, c. add	3. What is the required concentration (ppm)?	150	0
Recipe to ppm - I know how much produce ppm FACS Extension Fertilizer pH - select a nitrogen ratio for p	4. What is the % active ingredient by weight in product?	5	0
IFAS Extension	5. How much solution (litres) is being prepared in the tank?	30 📼	0
	6. Are you using an injector (diluter)?	Yes No	
	For a 150 ppm solution using a 5% a.i., 90.	000 grams of product to 30 litres .	
		Calculate	
		VERSITY of FLORIDA	

Legal

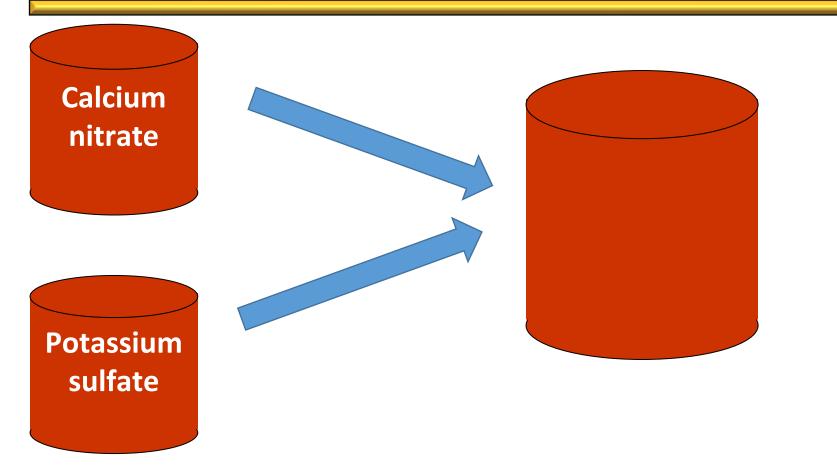

Search

Sign in

About



Fertilizer Incompatibility: Salt reaction



University of Missouri

Option 1: Separate incompatible salts in different concentrated tanks

Option 2: Dissolve fertilizers separately then mix them

Lettuce

- For every 10 gallons add
 - 1.34 oz (40 grams) of 5-12-26 fertilizer
 - 0.87 oz (25 grams) of 15.5-0-0 fertilizer
- Dilute the fertilizers separately each in 5 gallons then combine the dissolved fertilizers
- Measure pH and EC
- Adjust the pH between 5.5 to 6.0

Element	Required ppm	Provided by fertilizers
Total N	150	150.75
Р	31	110
К	210	260
Ca	90	123.5
Mg	24	31
S	0	40
В	0.16	0.5
Cu	0.02	0.15
Fe	1	3
Mn	0.25	0.5
Mo	0.02	0.1
Zn	0.13	0.15

Tomato Stage 1

- Use until you see the first cluster of flowers (approx. 6 weeks)
- For every 10 gallons add:
 - 0.8 oz (23 grams) of 5-12-26
 - 1 oz (29 grams) of 15.5-0-0
 - 0.4 oz (11 grams) of Epsom salts
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required	Provided by fertilizers
Total N	ppm 145	150
P	47	72
K	145	156
Са	144	147
Mg	60	65
S	10	90
В	0.4	0.30
Cu	0.05	0.09
Fe	2	2
Mn	0.55	0.30
Мо	0.05	0.11
Zn	0.33	0.09
K:N ratio	1.0	1.04

Tomato Stage 2

- Use until you see the fourth cluster of flowers (weeks 6 to 12)
- For every 10 gallons add:
 - 1.5 oz (43 grams) of 5-12-26
 - 1.2 oz (34 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required ppm	Provided by fertilizers
Total N	195	195
Р	47	137
К	300	300
Ca	160	168
Mg	60	69
S	10	98
В	0.4	0.58
Cu	0.05	0.17
Fe	2	3.5
Mn	0.55	0.58
Мо	0.05	0.22
Zn	0.33	0.17
K:N ratio	1.54	1.54

Tomato Stage 3

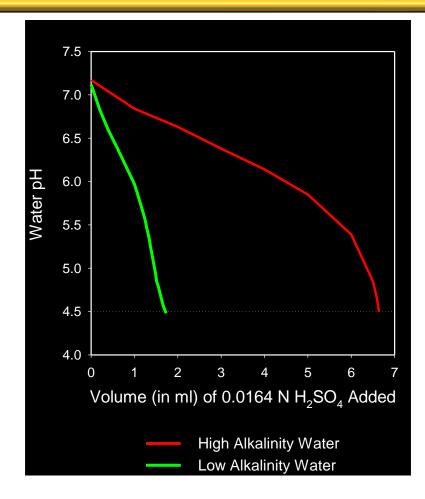
- Use when you see the fruits ripening (plants older than 12 weeks)
- For every 10 gallons add:
 - 2 oz (57 grams) of 5-12-26
 - 1.4 oz (39 grams) of 15.5-0-0
- Dilute fertilizers separately
- Measure pH and EC
- Adjust pH

Element	Required ppm	Provided by fertilizers
Total N	205	240
Р	47	186
К	350	403
Са	200	200
Mg	60	93
S	10	132
В	0.4	0.8
Cu	0.05	0.2
Fe	2	4.7
Mn	0.55	0.8
Мо	0.05	0.3
Zn	0.33	0.2
K:N ratio	1.7	1.68

The pH of the nutrient solution may fluctuate every day and it is necessary to control it.

Increasing the pH

• Use:


- Potassium bicarbonate
- Fertilizers with high nitrate concentration (Over 25% of the total nitrogen is from nitrates)
- Potassium hydroxide
- Avoid using calcium carbonate because it has low solubility.

Lowering the pH

Chemical	Notes
Mineral and organic acids	Cost \$\$: Cítrico > Fosfórico > Nítrico > Sulfúrico Safety: Cítrico > Fosfórico ≈ Sulfúrico > Nítrico Consider that some will provide additional nutrients.
Iron sulfate (for potted plants)	Can cause iron toxicity in plants, especially if the water contacts the leaves. It will precipitate and cause clogging.
Elemental sulfur (for potted plants)	Slow reaction and its solubility depends on the source of the product.
Extension University of Missouri	How much acid you need? Depends on the alkalinity of the nutrient solution.

Why is alkalinity important?

How much acid you need?

• Online calculator:

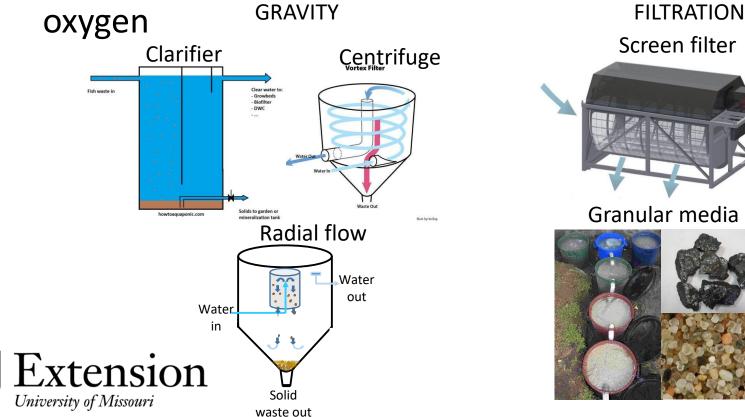
e-Gro Alkalinity Calculator

http://e-gro.org/alkcalc/

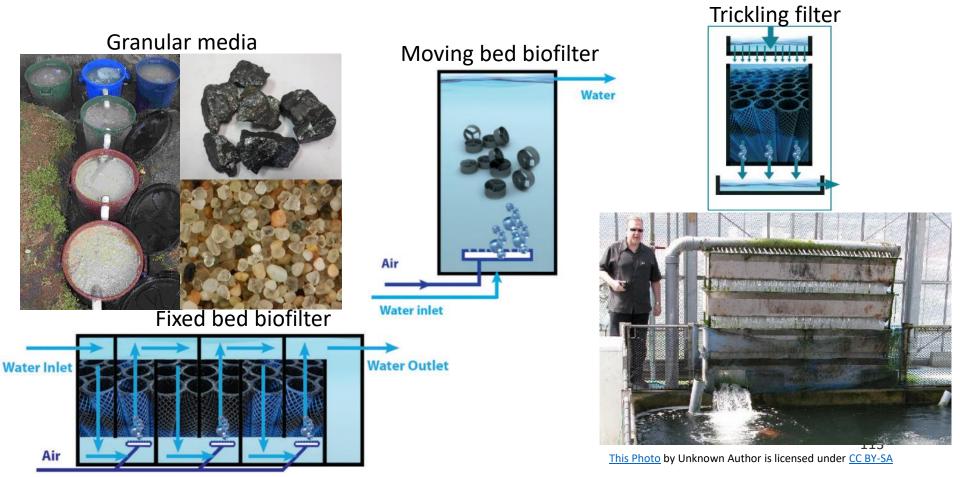
Instructions	
	mendations for the amount of acid to add to irrigation water in order to modify the pH and alkalinity levels. e amount of added phosphorus, nitrogen, and sulfur that the corresponding acids will provide, plus an
Calculation Form	
Company Name:	Your Name:
The pH of your sample:	
The alkalinity of your sample:	meq/L -
Target alkalinity or pH	Alkalinity meq/L (set at 2 meq/L alkalinity for most crops)
(must be below pH 7.2):	
(must be below privile)	

H,

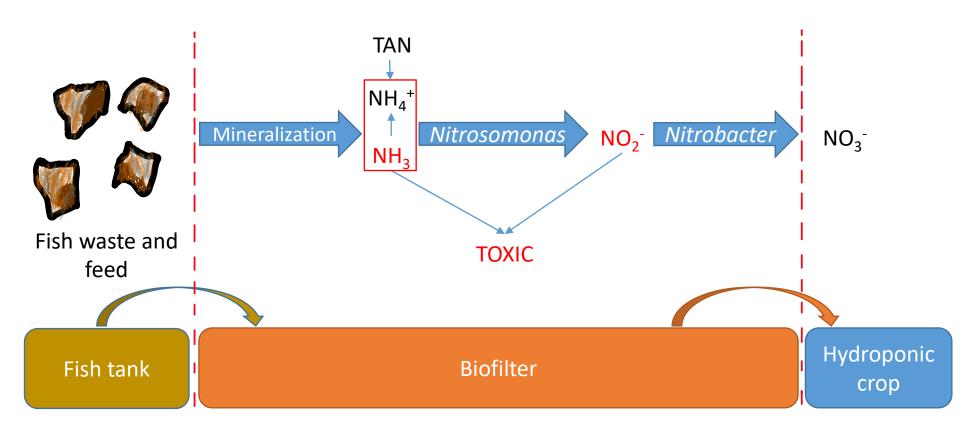
Water quality for aquaponics


• In aquaponic systems, you make compromises to keep the fish, biofilter, and plants in their comfort zones

Parameter	Catfish	Biofilter	Lettuce	Tomato	General system
Temperature (°F)	75 - 86	> 68	75	77	75 - 86
Dissolved oxygen (ppm)	5 - 15	> 4	> 6	> 6	6
рН	6 - 8	7 - 9	5.5 - 6.5	5.5 - 6.5	6.8 - 7
Ammonia (NH3, ppm)	< 1	-	< 1	< 1	< 1
Nitrite (NO2 ⁻)	0 - 1	-	0 - 1	0 - 1	0 - 1
Nitrate (NO3 ⁻ , ppm)	< 150	-	125 - 150	125 - 225	150


Solid separators

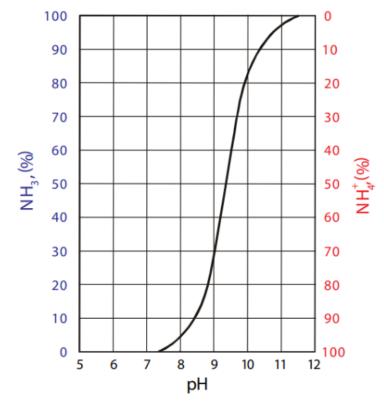
- Non-decomposed material clogs the system and its degradation lowers the dissolved oxygen.
- Bacteria in the biofilter, fishes, and plants NEED



Biofilter

• Bacteria in the **biofilm** transform toxic forms of nitrogen to nitrate (safe for fish and plants)

Nitrogen cycle in aquaponics



Nitrogen management determines the success of an aquaponic system!

Total ammoniacal nitrogen (TAN)

- Includes toxic (NH3) and nontoxic (NH4+) forms.
- The nontoxic form prevails with pH under 7 and temperatures under 87°F/31°C

Source: FAO Recirculated Aquaculture Guide 2015

Priming the biofilters

- Fish cycling
- Cycling without fish: use ammonia
- Use meters to know when the biofilter is ready
 - Amonia y nitrites <1 ppm
 - Nitrate <150 ppm Nitrate Nitrite Ammonia

Nitrate LR

Time

Checker

University of Missouri

Fish:plant Ratio

- Ratio depends on the amount of fish feed used
 - Temperature: fish metabolism
 - Fish species and growth stage
- For DWC systems: 60 100 g/m²/día
 - 100 g of feed per day = 1 − 1.6 m²
 - 100 m² of production = 6,000 10,000 g/day
 - NFT uses 25% of the requirements for DWC
- On average fishes will consume 1.5 2% of their weight per day
- Ideally measure nitrogen forms and ajust the fish:plant rates

Common Problems

Dispersion of plant Pathogens

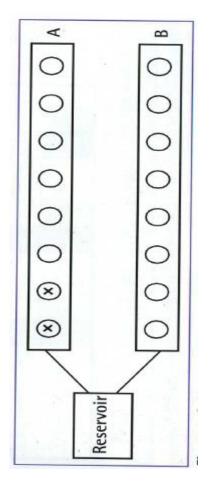


Fig. 4. Mortality of pepper plants on the inoculated and noninoculated side of a two-sided ebb-andflow cultural system in the (A) absence or (B) presence of a surfactant in the recirculating nutrient solution. X = the inoculated plants that served as the source of secondary inoculum.

Common Pathogens in Hydroponics

- Pythium spp.
- Phytophthora spp.
- Thielaviopsis basicola
- Xanthomonas
- Sclerotinia
- Botrytis
- Powdery and downy mildew

Temperature and Diseases

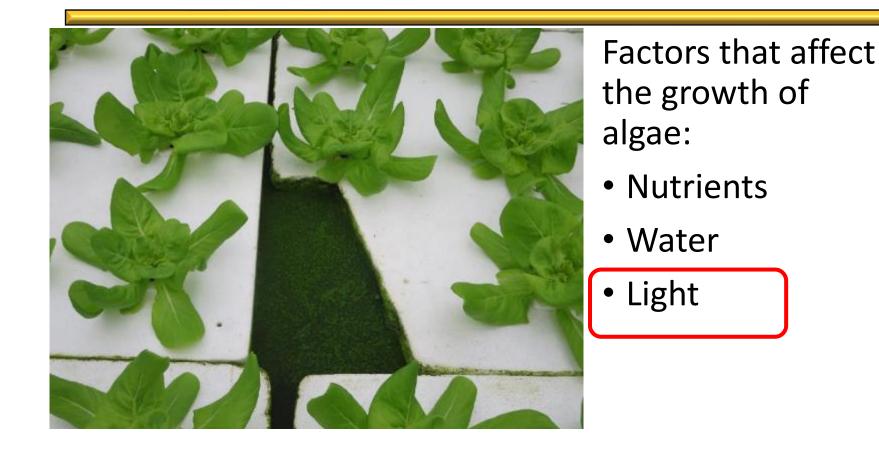
20-30% of losses occur in the summer

University of Missouri

Temperature

- Lettuce: root 75°F; air → Day 68°F-75°F → Night 60°F-65°F
- Tomatoes 77°F
- Spinach: root 72°F; air 61°F -91°F

Accumulation of algae


Algae in indoor production

University of Missouri

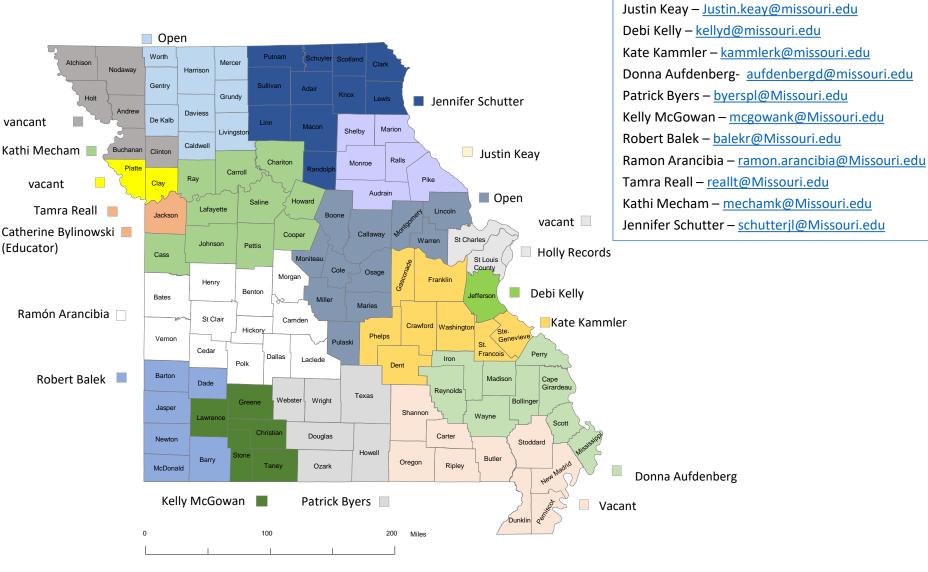
Algaes

Disinfection: Reduce inoculum

University of Missouri

Disinfection: Reduce inoculum

Biocontrol in organic production still not compatible with hydroponic production



Production organic: Obstruction

Specialists in horticulture

College of Agriculture, Food & Natural Resources University of Missouri

