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Introduction: Hazards of Weed Plants i cisiaik
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Weeds cause $138 Billion annual loss in the USA [
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Weed management accounts for more than 30% of
production costs in specialty crops ]

Q] Weeds degrade the quality of specialty crops by
. competing for essential nutrients

Critical to control weeds within the first 4-6 weeks of
crop plantation B!

Weeds in cotton field at J. Phil Campbell Sr.
UGA Research Center, Watkinsville, GA
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Introduction: Challenges In Conventional Weed Management @ aisisii
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Manual Weeding Herbicide Application

e ...

Manual weed removal & Chemical weed control P!
* Time consuming *  Weed resistant plants
* Labor intensive « In-organic
+ Damaging to healthy vegetation * Crop injury
+ Inefficient * Negative impact on environment
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Robotic Laser Weeding W csicin
a Organic process e Precise operation

e Reduced risk of crop damage and e Cost effective
increased weeding efficiency

e Reduction in Soil Disturbance G Automation and labor savings

Introduction | Objectives | Methodology | Results | Conclusion 3




‘AN UNIVERSITY OF

Goal and Objectives W GEGRGIA

Enhancing weed detection under variable lighting conditions using advanced deep
learning models
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Methodology

Data Acquisition

Dataset A4l

Kod™
33.6%0°

Dataset B [5]

1118 RGB
images

Optimal Model
Selection

Performance
Evaluation

Introduction | Objectives | Methodology | Results | Conclusion

it

Pre-processing

Inference Computation
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Train Yolov9, RT-DETR,
Yolo-World and Yolov8

Augmentation in Training Pipeline

First 90% epochs Last 10% epochs

Load Images and
Labels

Load Images and
Labels

Mosaic Letter Box

Random Affine Random Affine
Albumentations Albumentations
Augment HSV

Augment HSV

Flipping Flipping



Results @l sesiain
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Conclusion ) cesian

Model Speed (ms)
YOLOV9 had the fastest inference

speed at 2.9ms, while RT-DETR, with
similar results, was the slowest.

YOLOv8m

YOLOv9c

YOLOV9 outperformed YOLOv8 with a -
2.15% improvement Y-OLO-WOFM
Real-time capabilities RT-DETR

Suitable for robotic system integration
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Future Work W esicin
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Future Work

Step @

RGB Camera and other sensors
* Detect multiple weed species
* Diverse field conditions
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Future Work W ceskain

* Process input data
« Sends control signal
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Future Direction

Execute robot’s autonomous
movements
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Future Direction ) cisiicia

Laser actuation and weed
control
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Thank you!
Any Questions?
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