

Performance Evaluation of Single-Shot Detection Models for Weed Identification on Open-Source Datasets

Muneeb Elahi Malik

Graduate Research Assistant

Principal Investigator Dr. Md Sultan Mahmud

Assistant Professor of Precision Crop Protection

Institute for Integrative Precision Agriculture UNIVERSITY OF GEORGIA

Introduction: Hazards of Weed Plants

Weeds cause \$138 Billion annual loss in the USA [1]

Weed management accounts for more than 30% of production costs in specialty crops ^[2]

Weeds degrade the quality of specialty crops by competing for essential nutrients

Critical to control weeds within the first 4-6 weeks of crop plantation ^[3]

Weeds in cotton field at J. Phil Campbell Sr. UGA Research Center, Watkinsville, GA

GEORGIA

Introduction: Challenges In Conventional Weed Management

Manual Weeding

- Time consuming
- Labor intensive
- Damaging to healthy vegetation
- Inefficient

Herbicide Application

- Weed resistant plants
- In-organic
- Crop injury
- Negative impact on environment

Goal and Objectives

Enhancing weed detection under variable lighting conditions using advanced deep learning models

Methodology

Results

Conclusion

- YOLOv9 had the fastest inference speed at 2.9ms, while RT-DETR, with similar results, was the slowest.
- YOLOv9 outperformed YOLOv8 with a 2.15% improvement
- Real-time capabilities
- Suitable for robotic system integration

YOLO YOLO YOLO	v8m v9c -World			Model S	peed (m	5)			
RT-DE	IR								
0	2	4	6	8	10	12	14	16	18

Future Work

Future Work

Step **①**

- **RGB** Camera and other sensors
- **Detect multiple weed species**
- **Diverse field conditions**

Future Direction

Future Direction

Acknowledgments

Institute for Integrative Precision Agriculture UNIVERSITY OF GEORGIA

GS24-316

Thank you! Any Questions?

References

[1]https://www.fs.usda.gov/detail/r8/landmanagement/resourcemanagement/?cid=fseprd972844#:~:text=Studies%20 show%20that%20economic%20losses,by%20non%2Dnative%20invasive%20species

[2] https://wssa.net/2016/05/wssa-calculates-billions-in-potential-economic-losses-from-uncontrolled-weeds/

[3] https://crops.extension.iastate.edu/encyclopedia/managing-weeds-protect-crop-yields

[4] Rai, N., Mahecha, M. V., Christensen, A., Quanbeck, J., Zhang, Y., Howatt, K., . . . Sun, X. (2023). Multi-format opensource weed image dataset for real-time weed identification in precision agriculture. Data in Brief, 51, 109691. doi:https://doi.org/10.1016/j.dib.2023.109691

[5] Sudars, K., Jasko, J., Namatevs, I., Ozola, L., & Badaukis, N. (2020). Dataset of annotated food crops and weed images for robotic computer vision control. Data in Brief, 31, 105833. doi:https://doi.org/10.1016/j.dib.2020.105833