Breeding for Nutritional Enhancement in Potato: Exploring Vitamin B9 Diversity in Wild and Cultivated Potatoes.

Bruce Reid Robinson II Department of Crop and Soil Sciences Hermiston Agricultural Research and Extension Center Oregon State University

Folate – Water Soluble Vitamin B9

Folate – Water Soluble Vitamin B9

Folate – Water Soluble Vitamin B9

Folate Sources and Deficiency

- Folate deficiency has been linked to:
- -Neural Tube Defects (NTDs) such as spina bifida and anencephaly
- -Cardiovascular diseases
- -Stroke
- -Anemia
- -Development of certain types of cancers
- -Impaired cognitive performance

12 Foods Rich in Folate papaya & leafy greens broccoli asparagus oranges Brussels beans, peas, seeds & nuts avocado lentils sprouts cauliflower bell peppers okra beets

Biofortification Through Breeding

- Has additional advantages compared to industrial fortification alone:
 - Cost-effective
 - Sustainable
 - Can impact areas that lack the political will, infrastructure, and money to utilize current fortification practices
- Requires that the target of the biofortification is a staple crop
- Requires that this crop demonstrates natural variation, stability, and heritability for the trait you are breeding for

Why Potatoes?

- Currently a 148g serving of potato (a medium sized potato) only provides about 6% of the 400µg RDA of folate
- There are approximately 200 tuber bearing *Solanum* species representing enormous genetic diversity
- Exploiting this variation between species is the paradigm for modern crop improvement, yet potatoes have not been a major focus of biofortification studies until now

Folate Content Variability in Potatoes

- Wild type and primitive cultivated species show the greatest range of folate content
- Some demonstrate significantly higher levels of folate over modern cultivars

Potato Materials – Wild and Primitive Cultivated Species

 285 individual plants from 95 accessions representing 10 species evaluated with Russet Burbank as control

 Accessions were obtained from the U.S. Potato Genebank

Potato Materials – Wild and Primitive Cultivated Species

Harvested Selections:

- 1. S. acuale (3 accessions)
- 2. S. boliviense (25 accessions)
- 3. S. candolleanum (3 accessions)
- 4. S. chacoense (2 accessions)
- 5. S. circaefollium (3 accessions)
- 6. S. demissum (3 accessions)
- 7. S. microdontum (3 accessions)
- 8. S. okadae (3 accessions)
- 9. S. tuberosum subsp. andigenum (9 accessions)
- 10. S. vernei (23 accessions)

Oreaon

Tri-Enzyme Extraction Method

- General Principle: Folate species must be released from food matrices and processed without degrading the sample so determination can be performed
- HEPES/CHES buffer, protease, αamylase, and conjugase allow for this with reasonable throughput

Freeze-dried Tuber Sample Homogenize in HEPES/CHES Buffer Heat (10min at 100° C) Ice Bath Incubate with Protease (2hrs at 37° C) Heat (5 min at 100° C) Ice Bath Incubate with α -amylase and conjugase (2-3hrs at 37° C) Heat (10min at 100° C) Ice Bath Centrifuge Storage at -80° C

Folate Determination

- Microbiological Assay using L.
 Rhamnosus
- Wells loaded with Folic Acid Medium, standards, or samples
- Incubated for 18-24 hours
- Read with microplate reader
- Folate values calculated from standard curve

Wild and Primitive Cultivated Species Folate Distribution

Wild and Primitive Cultivated Species Folate Distribution

Wild and Primitive Cultivated Species Average Folate Concentration

Normalized Average Folate Concentration by Species

Results

- Wild and primitive cultivated species demonstrated an averaged range of 220 2200 ng/g folate based on dry weight
- Highest measured individuals were in *S. vernei* and *S. tuberorsum subsp. andigenum*
- If modern cultivars' average folate concentration could be increased to 2000 ng/g dry weight or more this would represent a 4-5X increase

https://the3amigoz.files.wordpress.com/2014/01/6761e-100_9485.jpg

https://hauntingthelibrary.files.wordpress.com/2013/03/potato.jpg

Conclusions

- Research demonstrates that there is genetic material with significantly higher folate concentration available for breeding purposes
- Hybridization and evaluation of folate content in these materials will be necessary to determine:
 - -Heritability of high folate traits
 - -Which species and accessions are the most useful for this process
- Further research is currently underway to try and establish molecular markers associated with high folate phenotypes

Acknowledgements

- Dr. Aymeric Goyer
- Dr. Vidyasagar Sathuvalli
- Dr. Laurent Deluc
- Dr. John Bamberg, US Potato Gene Bank
- Solomon Yilma

Funding Sources

- National Institute of Food and Agriculture
- USDA-Western Sustainable Agriculture Research Student Fellowship

United States Department of Agriculture National Institute of Food and Agriculture