	Tuble 17 Suggested dietary mitute un esholds for various state extension programs							
State Extension	Author, Year	Safe to feed	Caution feeding	Toxic to feed				
Program	Program		level	level				
		ppm NO ₃ -N DM equivalent						
Pennsylvania	Adams et al., 1992	< 1000	1000-1700	> 1700				
Kansas	Roozeboom et al., 2011	< 1380	1380-2070	> 2070				
Nebraska	Rasby et al., 2014	< 1500	1500-2100	> 2100				
Oklahoma	Strickland et al., 2017	< 1150	1150-2300	> 2300				
Colorado	Whittier, 2014	< 1150	1150-2300	> 2300				
Iowa	Ensley and Barnhart, 2012	< 1500	1495-2300	> 2300				
UC Davis	Maas, 2001	< 1500	1500-4000	> 4000				
Florida	Halsey, 1998	< 1518	1518-4048	> 4048				
North Dakota	Stoltenow and Lardy, 2015	< 1500	1500-4500	> 4500				

 Table 1: Suggested dietary nitrate thresholds for various state extension programs

*Calculations done using conversion factors in Adams et al. (1992) *UC Davis reported in % NO₃-N *OK, KS, CO reported in ppm NO₃

*FL reported in % NO₃ *KSU reported <690 safe and <1380 safe in most cases

Table 2: University of Nebraska-Lincoln grazing annual forage trials with
retrospectively measured nitrate concentrations of the forage.

Trial	Forage Type	ppm NO ₃ -N DM	Animal	Year	ADG (lb./d)
1452	Oat, Turnip, Radish	6146	Steers	2014	2.2
1544	Oat, Turnip, Radish	4655	Steers	2015	1.3
1545	Oat, Turnip, Radish	2158	Heifers	2015	1.6
1546	Oats (Hill)	912	Steers	2015	1.1
1546	Oats(Valley)	4414	Steers	2015	1.5
1641	Oats (Hill)	3921	Steers	2016	2.3
1641	Oats (Valley)	8026	Steers	2016	2.5

		Grazing		Hay	
	n	%	n	%	<i>P</i> -value
Frequently test annual forage for nitrate ¹	114	n = 43 (38%)	115	n = 61 (53%)	0.02
Experienced an issue with nitrate toxicity when using					
annual forage ²	110	n = 34 (31%)	24	n = 24 (21%)	0.09
Use forage that test high in nitrate ³	108	n = 15 (14%)	40	n = 40 (36%)	< 0.01
Consulted vet for diagnosis is suspected nitrate toxicity ²	97	n = 63 (65%)	46	n = 46 (50%)	0.04

Table 3: Differences in beef cattle producer responses regarding testing, use, and toxicity of annual forage pasture vs. hay.

¹ Responded frequently or very frequently

² Responded yes

³ Responded almost always, usually, or often

Table 4: Effect of beef producers' previous experience with nitrate toxicity on their response regarding frequency of testing and use of annual forages that contain potentially toxic nitrate concentrations.

		1 2			
	Prev	iously experienced	1	No previous	
		toxicity		issue	
	n	%	n	%	<i>P</i> -value
Test annual forage hay for nitrates ¹	24	n =13 (54%)	90	n =48 (53%)	0.94
Test annual forage pasture for nitrates ¹	34	n =16 (47%)	75	n =27 (36%)	0.28
Use annual forage hay that tested high ²	24	n =11 (46%)	86	n =29 (34%)	0.28
Use annual forage pasture that tested high ²	33	n =3 (9%)	72	n =12 (17%)	0.31
1					

¹Responded frequently or very frequently

² Responded almost always, usually or often

	Brassica	Millet	Oat-pea mixture	Small Grain forages	Sorghum x sudangrass	Cover crop mixture	SEM ³	<i>P</i> -value
Fresh ¹	4,060 ^a	1,391 ^b	-	1,008 ^b	1,564 ^b	1806 ^b	419	< 0.01
110311	n = 63	n = 236		n = 70	n = 236	n = 34		
Dry ²	-	617 ^{bc}	789 ^{ab}	469 ^c	824 ^a	-	120	< 0.01
Dry		n = 327	n = 60	n = 595	n = 532			

Table 5: Effect of species and moisture classification on nitrate concentration (mg NO₃-N/kg DM) of samples submitted by producers to a commercial laboratory for analysis.

^{a-c} Values within row without the same superscript differ ($P \le 0.05$).

¹Fresh refers to samples with < 26% DM

²Dry refers to samples with > 84% DM

³Greatest SEM from species estimates reported

Table 6. Odds ratio (95% confidence interval¹) of the likelihood that fresh samples in a species category contained greater than 2100 ppm NO₃-N DM relative to the likelihood of another species using multivariable logistic regression analysis

			Sorghum x	Cover crop
	Millet	Small grain forage	sudangrass	mixture
Brassica	0.20 (0.09 to 0.46)	0.21 (0.11 to 0.42)	0.27 (0.16 to 0.47)	0.31 (0.15 to 0.65)
Millet		1.04 (0.44 to 2.42)	1.36 (0.65 to 2.83)	1.56 (0.64 to 3.76)
Small grain forage			1.31 (0.75 to 2.30)	1.50 (0.71 to 3.16)
Sorghum x				
sudangrass				1.15 (0.62 to 2.12)

¹Confidence interval range that includes 1 indicates no difference in likelihood.

Table 7. Odds ratio (95% confidence interval¹) of the likelihood that dry samples (>84% dry matter) in a species category contained greater than 2100 ppm NO₃-N DM relative to the likelihood of another species using multivariable logistic regression analysis

			Sorghum x
	Oat-pea mixture	Small grain forage	sudangrass
Millet	1.024 (0.474 to 2.213)	0.445 (0.288 to 0.689)	1.584 (1.096 to 2.290)
Oat-pea mixture Small grain		0.435 (0.201 to 0.941)	1.546 (0.741 to 3.229)
forage			3.556 (2.450 to 5.162)

¹Confidence interval range that includes 1 indicates no difference in likelihood.