### Tropical cover crop mulch systems for low-external-input reduced-tillage vegetable production





Stuart A. Weiss Danielle D. Treadwell, K. Paul Beamer & Rhuanito S. Ferrarezi

USDA - Southern SARE Research & Education Program Project # LS12-252



# Introduction

- Nutrients tied up in CC biomass are released back into the soil beginning at termination (Ditsch and Alley 1991).
- Minimum- till, mechanical-kill systems for cover crops have proven to be cost efficient, all while improving soil organic matter and providing weed suppression (Curran et al., 2010).
- Roller-crimpers combine these methods into a low-input system.
- More cover crop species need to be tested for their suitability for use with a roller-crimper (Curran and Ryan, 2010), particularly in tropical environments.

### Cover Crop Management Using Roller-Crimper Technology

- Cover crops that are mechanically killed with a roller-crimper benefit the agricultural system by:
  - Reduction of soil temperature
  - Block solar radiation
  - Reduce soil moisture loss
  - Increase water availability to succeeding crops
  - Decreases soil nutrient loss through volatilization





Courtesy of Rodale Institute



Cereal rye cover crop rolling/crimping in March 2011 at Brock Farm in Monticello, Florida. Custom roller/crimper design and fabrication by Kirk Brock



Rolling/crimping of sunn hemp cover crop on St. Croix, USVI. Design by Stuart Weiss

### **Cover Crop Residue Surface Sheet Mulch**

- Increases soil conservation through reduced tillage
- Decomposition of CC sheet residue allows for the slow release and conversion of organic matter to plant available nutrients
- Sheet residue more efficiently converts carbon into soil organic matter
- Sheet residue acts as a barrier against weeds
- Surface plant residues provide a beneficial microorganism rhizosphere



### **Agricultural Relevance**

- Fertilizers, bulk soil amendments and chemical inputs are not economically feasible for smallholder farmers and are often not available at all (Smithson and Giller, 2002; Palm et al., 2001).
- Tropical conditions result in heavy, year-round weed pressure causing decreased farm productivity.







- Many warm season CCs can be successfully grown in the U.S. Virgin Islands.
- However, successful CC termination with a rollercrimper and their residual use for weed control is unknown.

## Objectives

- To evaluate three cover crops under tropical conditions produced with zero external inputs.
- To evaluate the effectiveness of a roller-crimper to terminate the cover crops to produce surface sheet mulch.
  - Evaluate termination method efficiency through cover crop re-growth.
  - Evaluate cover crop surface sheet mulch for weed suppression following cover crop termination.
- To measure the combined system effects of CC sheet mulch on Jalapeno pepper production after CC termination.

# **Treatments and Methodology**

### Treatments

- Sunn hemp (*Crotalaria juncea* cv. IAC-1)
- Pigeon pea (Cajanus cajan cv. BRS Mandarim)
- Sun flower (*Helianthus annuus* cv. Black Oil)
- Weedy Fallow Control Conventional full-till seed bed preparation
- Replications: 3
- Fields were disk-harrowed in preparation for planting
- Cover crops planted by broadcast seeding and then rolled with a culti-packer
- No external inputs were applied to the cover crops (no irrigation, fertilizer, or pesticides)

#### **Cover Crops at Maturity Prior to Termination**



#### **Sampling Procedures Prior to Termination**

- Biomass sampling of cover crops and volunteer weeds
  - 3 random 0.25m<sup>2</sup> samples collected per plot prior to CC termination
  - CCs and weeds were separated
  - Weeds were sorted by class (grass and broad leaf)
  - Samples were dried in a forced air oven to determine dry matter

### **Custom Built Roller-Crimper**

- Cover crops were terminated at 112 DAP with a custom built roller-crimper
  - Built from a recycled 24 inch disc plough using the disc and plough hubs, 24 inch steel pipe, steel tubing, and steel flat bar.







#### Cover Crop Termination with Roller-Crimper and Crop Residue Surface Sheet Mulch







Sunn Hemp

Pigeon Pea

#### Jalapeno peppers (Invicto-F1) grown in a green house and transplanted into treatment plots 42 DAP and 7 days after CC termination



Control



Sun Flower



Pigeon Pea

Sunn Hemp

## Cover Crop and Weed Monitoring Procedures Post CC Termination

- Biomass sampling of cover crop regrowth and weeds 3, 6, 9, 12, and 15 weeks after termination.
- Six weeks after JP transplanting, all plots were split in half to compare JP yield from weekly weeding vs. reduced-weeding at three week intervals.
  - 3 random 0.25m<sup>2</sup> samples collected per plot per harvest
  - CCs and weeds were separated
  - Weeds were sorted by class (grass and broad leaf), no sedges were present



Agronomy program personnel Jose Hererra,.



### **Jalapeno Pepper Yields**

Peppers where harvested from data rows, graded (marketable or unmarketable), and weighed.



### **Statistical Analysis**

- Data was subjected to General Linear Modeling tests with a least significant difference range separation using SAS.
  - Version 9.3; SAS Institute, Cary N.C.
  - Significance reported at  $P \le 0.05$

## Cover crop performance and weed development at termination

Cover crop (CC), broad leaf (BL) weed, and poacea (GW) weed biomass (kg ha<sup>-1</sup>) within treatments assessed at termination

| Treatment         | Plant | Year 1   | Year 2  |
|-------------------|-------|----------|---------|
| Control           | С     | NA       | NA      |
| Control           | BL    | 1,904d   | 1,271d  |
| Control           | GW    | 1,867d   | 1,736d  |
| Pigeon Pea        | PP    | 13,842a  | 2,598bc |
| Pigeon Pea        | BL    | 1,631def | 1,894cd |
| Pigeon Pea        | GW    | 1,791de  | 435e    |
| Sun Flower        | SF    | 4,760c   | 2,682b  |
| Sun Flower        | BL    | <1f      | 124e    |
| <b>Sun Flower</b> | GW    | 30ef     | 165e    |
| Sunn Hemp         | SH    | 7,976b   | 7,551a  |
| Sunn Hemp         | BL    | <1f      | <1e     |
| Sunn Hemp         | GW    | <1f      | <1e     |
| SE                |       | 635      | 271     |

Values within the same column group followed by different letters differ (p<0.05) according to a least significant range separation.









# **Potentially Available Nutrients**

(Plant Biomass x Plant Tissue Nutrient Concentration)





Control



**Pigeon Pea** 

Total weed biomass (kg ha<sup>-1</sup>) by treatment at three and six weeks

|            | Three Week Harvest |        |  |  |  |  |
|------------|--------------------|--------|--|--|--|--|
| Treatment  | Year 1             | Year 2 |  |  |  |  |
| Control    | 31b                | 109b   |  |  |  |  |
| Pigeon Pea | 87b                | 404a   |  |  |  |  |
| Sun Flower | 214a               | 604a   |  |  |  |  |
| Sunn Hemp  | 51b                | 30b    |  |  |  |  |
| SE         | 35                 | 88     |  |  |  |  |



**Sun Flower** 



Treatment Year 2 Year 1 250c 1,427a Control 616a 1,632a Pigeon Pea 541ab 1,295a Sun Flower 357bc 206b Sunn Hemp SE 85 171

Six Week Harvest

Sunn Hemp

Values within the same column group followed by different letters differ (p<0.05) according to a least significant range separation.



#### Sunn Hemp

#### **Sun Flower**



### Cover crop regrowth (CCRG), broad leaf (BL) weed, and poacea (GW) weed biomass (kg ha<sup>-1</sup>) by treatment at three and six weeks post termination

| Year 1     |              |             |                    |                  |       | Year 2 |       |
|------------|--------------|-------------|--------------------|------------------|-------|--------|-------|
|            | <b>Three</b> | Week Harve  | Three Week Harvest |                  |       |        |       |
| Treatment  | CCRG         | BL          | GW                 | Treatment        | CCRG  | BL     | GW    |
| Control    | NA           | 31cd        | 0d                 | Control          | NA    | 109cb  | 0c    |
| Pigeon Pea | 197a         | 83bc        | 4d                 | Pigeon Pea       | 48c   | 404a   | 0c    |
| Sun Flower | 0d           | 108b        | 106b               | Sun Flower       | 0c    | 217b   | 388a  |
| Sunn Hemp  | 0d           | 32cd        | 20cd               | Sunn Hemp        | 7c    | 30c    | 0c    |
|            |              |             |                    |                  |       |        |       |
|            | <u>Six V</u> | Veek Harves | t                  | Six Week Harvest |       |        |       |
| Treatment  | CCRG         | BL          | GW                 | Treatment        | CCRG  | BL     | GW    |
| Control    | NA           | 239bcd      | 11e                | Control          | NA    | 648b   | 779ab |
| Pigeon Pea | 393ab        | 530a        | 86de               | Pigeon Pea       | 58d   | 1150a  | 482bc |
| Sun Flower | 0e           | 283bc       | 258bcd             | Sun Flower       | 0d    | 773ab  | 521bc |
| Sunn Hemp  | 46e          | 253bcd      | 104cde             | Sunn Hemp        | 179cd | 128cd  | 78d   |
|            |              |             |                    |                  |       |        |       |

Values within the same harvest group followed by different letters differ (p < 0.05) according to a least significant range separation.

## Total Weed Biomass at 9, 12, and 15 weeks after CC Termination (kg ha<sup>-1</sup>)

| Treatment |                                              |         |               |               |              | Weeding | Weeding Frequency |         |     |  |
|-----------|----------------------------------------------|---------|---------------|---------------|--------------|---------|-------------------|---------|-----|--|
| Year 1    |                                              | Control | Pigeon<br>Pea | Sun<br>Flower | Sunn<br>Hemp | SE      | 1 Week            | 3 Weeks | SE  |  |
|           | 9 Week                                       | 219b    | 1,207a        | 315b          | 333b         | 68      | 213b              | 823a    | 48  |  |
|           | 12 Week                                      | 63b     | 410a          | 92b           | 184b         | 63      | 0.7b              | 374a    | 48  |  |
|           | 15 Week                                      | 366b    | 2,694a        | 357b          | 429ab        | 813     | Ob                | 1,923a  | 581 |  |
| Year 2    | <u>.                                    </u> |         |               |               |              |         |                   |         |     |  |
|           | 9 Week                                       | 306b    | 774a          | 212b          | 485b         | 101     | 172b              | 716a    | 72  |  |
|           | 12 Week*                                     | 678ab   | 959a          | 452b          | 629ab        | 186     | *                 | *       | *   |  |
|           | 15 Week                                      | 32b     | 94ab          | 51b           | 133a         | 23      | 39b               | 116a    | 16  |  |

Values within the same harvest group row followed by different letters differ (p<0.05) according to a least significant range separation.

## Jalapeno Pepper Yield (kg ha<sup>-1</sup>) by Treatment, Year, and Weeding Frequency

|        |                    | <b>Treatment</b> |         |                 |         |       | Weeding | <b>Weeding Frequency</b> |       |  |
|--------|--------------------|------------------|---------|-----------------|---------|-------|---------|--------------------------|-------|--|
|        |                    |                  | Pigeon  | Sun             | Sunn    |       |         |                          |       |  |
| Year 1 | <u>[</u>           | Control          | Pea     | Flower          | Hemp    | SE    | 1 Week  | 3 Weeks                  | SE    |  |
|        | Marketable         |                  |         |                 |         |       |         |                          |       |  |
|        | Yield              | 20,649b          | 13,808c | 38,279a         | 24,633b | 2,441 | 27,125a | 21,559b                  | 2,028 |  |
|        | <b>Total Yield</b> | 21,248b          | 14,058c | <b>38,991</b> a | 25,049b | 2,475 | 27,660a | 22,013b                  | 2,055 |  |
| Year 2 | 2                  |                  |         |                 |         |       |         |                          |       |  |
|        | Marketable         |                  |         |                 |         |       |         |                          |       |  |
|        | Yield              | 12,435b          | 12,018b | 18,704a         | 21,363a | 1,696 | 15,978a | 16,281a                  | 1,199 |  |
|        | <b>Total Yield</b> | 12,566b          | 12,134b | 18,843a         | 21,415a | 1,707 | 16,092a | 16,387a                  | 1,207 |  |

Values within the same harvest group row followed by different letters differ (p<0.05) according to a least significant range separation.

- Pepper yields were greatest in sun flower treatments in year 1 and in sun flower and sunn hemp treatments in year 2.
- Weekly weeding resulted in greater yields than reduced frequency weeding in year 1 but not in year 2.

## **Summary of Results**

- Sunn hemp and sun flower provided excellent weed suppression (near 100%) during the cover crop cycle.
- The use of a roller-crimper for cover crop termination was effective for sun flower and sunn hemp, but was not effective for pigeon pea.
- Sunn hemp surface residue provided similar or greater weed suppression than full tillage for 6 weeks after termination.
- Sun hemp and sun flower conservation tillage systems produced similar or greater yields of jalapeno peppers compared to conventional full till systems.
- Sunn hemp and sun flower reduced the negative effects of drought on pepper yields.

### Implications

Cover crops can be a valuable management tool in the tropics that require few if any external inputs.

For indeterminate, warm season cover crops, roller-crimper termination may not be viable without additional management.





CCs terminated with a rollercrimper for in situ mulch may suppress weeds and lessen the effects of extreme environmental conditions on subsequent crop yields.

# **Continuing Research**



Identify and evaluate new tropical/warm season CCs that are compatible with roller-crimper technology.

Compare different CC residue surface sheet mulch for weed suppression in vegetable crop rotations

Compare CC surface sheet mulch to conventional weed suppression practices in vegetable crop production

## **Questions?**



### **Funding & Collaborators**

- USDA Southern SARE Research & Education Grant
- Project # LS12-252
- University of the Virgin Islands, Agricultural Experiment Station
- Duration: 2012-2014
- Collaborating :

Danielle Treadwell, Ph.D., Associate Professor, Horticultural Sciences Department, University of Florida, Gainesville, FL.

Elide Valencia, Ph.D., Associate Professor, Agronomy Sciences Department, University of Puerto Rico, Mayaguez, PR.