References:

- Boettcher KJ, Barber BJ, Singer JT (1999) Use of Antibacterial Agents to Elucidate the Etiology of Juvenile Oyster Disease (JOD) in *Crassostrea virginica* and Numerical Dominance of an α-Proteobacterium in JOD-Affected Animals. *Applied and Environmental Microbiology*, Vol. 65 (6), pp. 2534-2539. doi.org/10.1128/AEM.65.6.2534-2539.1999
- Boettcher KJ, Geaghan KK, Maloy AP, Barber BJ (2005) *Roseovarius crassostreae* sp. nov., a member of the *Roseobacter* clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. *International Journal of Systematic and Evolutionary Microbiology*, Vol. 55, pp. 1531-1537. doi.org/10.1099/ijs.0.63620-0
- Cai SH, Lu YS, Wu ZH, Jian JC, Wang B, Huang YC (2010) Loop-mediated isothermal amplification method for rapid detection of *Vibrio alginolyticus*, the causative agent of vibriosis in mariculture fish. *Letters in Applied Microbiology*, Vol. 50(5), pp. 480-485. doi.org/10.1111/j.1472-765X.2010.02823.x
- Cao YT, Wu ZH, Jian JC, Lu YS (2010) Evaluation of a loop-mediated isothermal amplification method for the rapid detection of *Vibrio harveyi* in cultured marine shellfish. *Letters in Applied Microbiology*, Vol. 51(1), pp. 24-29. doi.org/10.1111/j.1472-765X.2010.02853.x.
- Countway PD, Caron DA (2006) Abundance and distribution of *Ostreococcus* sp. in the San Pedro Channel, California, as revealed by quantitative PCR. *Applied and Environmental Microbiology*, Vol. 72(4), pp. 2496-506. doi: 10.1128/AEM.72.4.2496-2506.2006.
- Goto M, Honda E, Ogura A, Nomoto A, Hanaki KI (2009) Colorimetric Detection of Loop-Mediated Isothermal Amplification Reaction by Using Hydroxy Naphthol Blue. *BioTechniques*, Vol. 46(3), pp. 167–172. doi.org/10.2144/000113072
- Gray MW, Alexander ST, Beal BF, Bliss T, Burge CA, Cram JA, De Luca M, Dumhart J, Glibert PM, Gonsior M, Heyes A, Huebert KB, LyubchichV, McFarland K, Parker M, Plough LV, Schott EJ, Wainger LA, Wikfors GH, Wilbur AE (2022) Hatchery crashes among shellfish research hatcheries along the Atlantic coast of the United States: A case study of production analysis at Horn Point Laboratory. *Aquaculture*, Vol. 546, pp. 737259. doi.org/10.1016/j.aquaculture.2021.737259
- Han F and Ge B (2010) Quantitative detection of *Vibrio vulnificus* in raw oysters by real-time loop-mediated isothermal amplification, *International Journal of Food Microbiology*, Vol. 142 (1-2), pp. 60-66. doi.org/10.1016/j.ijfoodmicro.2010.05.029.

- Hu A, Kong L, Lu Z, Zhou H, Bie X (2023) Construction of a LAMP-CRISPR assay for the detection of *Vibrio parahaemolyticus*. *Food Control*, Vol. 149, pp. 109728. doi.org/10.1016/j.foodcont.2023.109728
- Jones JB (2006) Why won't they grow? Inhibitory substances and mollusc hatcheries. Aquaculture International, Vol. 14, pp. 395-403. doi.org/10.1007/s10499-005-9040-z
- Kessner L, Spinard E, Gomez-Chiarri M, Rowley DC, Nelson DR (2016) Draft Genome Sequence of *Aliiroseovarius crassostreae* CV919-312, the Causative Agent of *Roseovarius* Oyster Disease (Formerly Juvenile Oyster Disease). Genome Announcements, Vol 4 (2) doi.org/10.1128/genomea.00148-16
- Maloy AP, Ford SE, Karney RC, Boettcher KJ (2007) *Roseovarius crassostreae*, the etiological agent of Juvenile Oyster Disease (now to be known as Roseovarius Oyster Disease) in *Crassostrea virginica*. *Aquaculture*, Vol. 269 (1–4), pp. 71-83. doi.org/10.1016/j.aquaculture.2007.04.008.
- Notomi T, Mori Y, Tomita N, Kanda H (2015) Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. *Journal of Microbiology*, Vol. 53, pp. 1–5. doi.org/10.1007/s12275-015-4656-9
- Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. *Nucleic Acids Research*, Vol. 28 (12), pp. e63. doi.org/10.1093/nar/28.12.e63
- Pang B, Yao S, Xu K, Wang J, Song X, Mu Y, Zhao C, Li J (2019) A novel visual-mixed-dye for LAMP and its application in the detection of foodborne pathogens. *Analytical Biochemistry*, Vol. 574, pp. 1-6. doi: 10.1016/j.ab.2019.03.002.
- Park S, Park JM, Kang CH, Yoon JH (2015) *Aliiroseovarius pelagivivens* gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus *Roseovarius* as *Aliiroseovarius* crassostreae comb. nov., *Aliiroseovarius* halocynthiae comb. nov. and *Aliiroseovarius* sediminilitoris comb. nov. *International Journal of Systematic and Evolutionary Microbiology*, Vol. 65, pp. 2646-2652
- Tanner NA, Zhang Y, Evans TC (2015) Visual Detection of Isothermal Nucleic Acid Amplification Using pH-Sensitive Dyes. *BioTechniques*, Vol. 58(2), pp. 59–68. doi.org/10.2144/000114253
- Walker T (2017) Seed supply a challenge for North American oyster producers. *Hatchery International*, Vol. 18 (5), pp. 16-17.
- Zhang L, Liu J, Qin K, Wu C, Ma H, Zhou L (2024) Evaluation of a novel lysis-based sample processing method to optimize *Vibrio vulnificus* detecting by loop-mediated isothermal amplification assay. *BMC Microbiology*, Vol. 24. doi.org/10.1186/s12866-024-03186-8

Zhou S, Gao Z-x, Zhang M, Liu D-y, Zhao X-p, Liu Y (2016) Development of a quadruplex loop-mediated isothermal amplification assay for field detection of four *Vibrio* species associated with fish disease. *SpringerPlus*, Vol. 5, 1104. doi.org/10.1186/s40064-016-2760-x