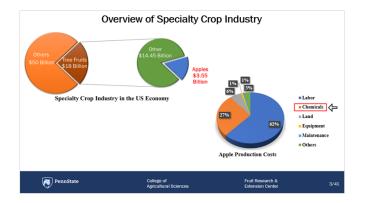
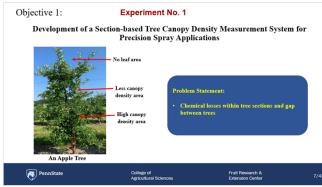
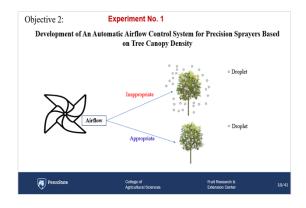
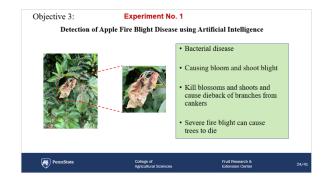
Study of core technologies in tree canopy parameter measurements for precision spraying

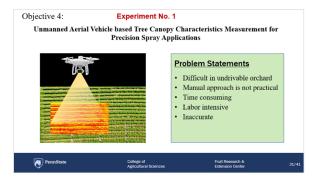

Md Sultan Mahmud

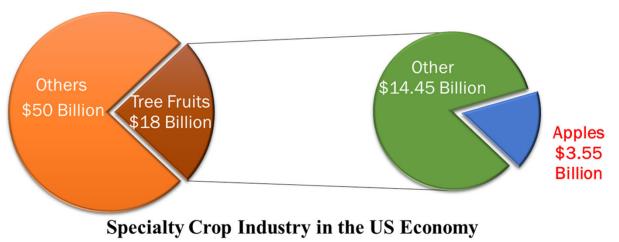

Department of Agricultural and Biological Engineering
PhD Student

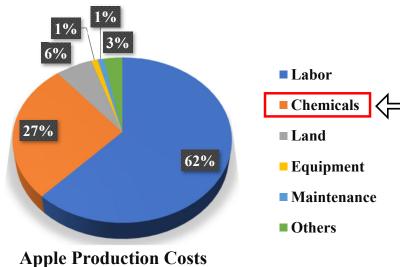

03/22/2022

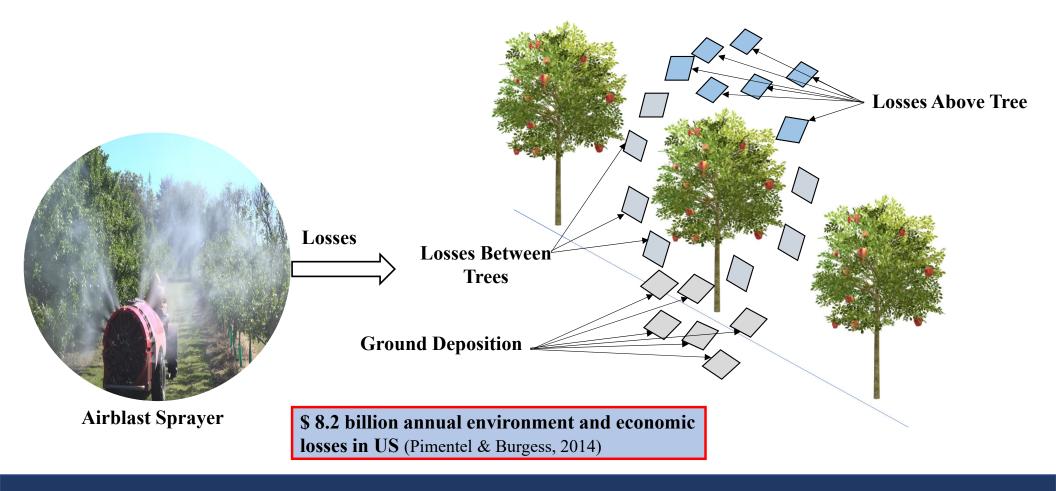


Outline





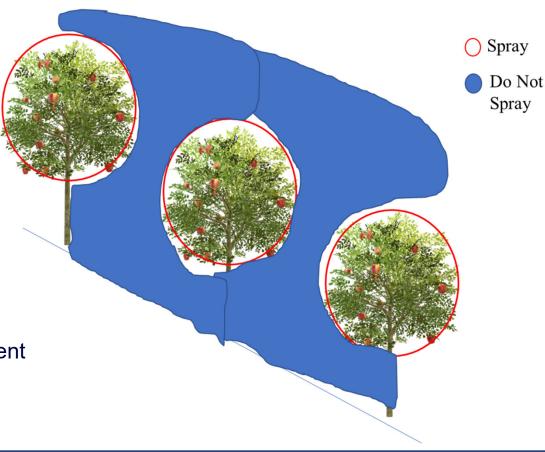

College of


Overview of Specialty Crop Industry

Spray Operation in Tree Fruit Orchards

Precision Spraying in Tree Fruit Orchards

Precision Spraying


Apply chemical according to the need

Major Advantages

- Accurate spray deposition
- Reduce off-target deposition and drift

Major Tasks

- Sensor application and algorithm development
- Tree canopy characteristics measurement
- Automatic nozzle and airflow control

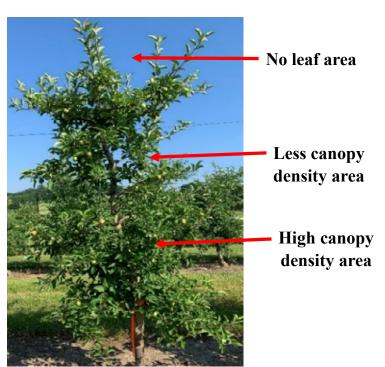
Goal & Objectives

Overall Goal

Developing core technologies for advancing the orchard spraying system for tree fruits

Objectives

- Development of an accurate tree canopy density measurement system to apply correct spray volume
- Development of an automatic airflow control system to reduce drift
- Advancing sprayer with site-specific management capability for disease management
- Application of unmanned aerial vehicle (UAV) to measure canopy characteristics for undrivable orchards



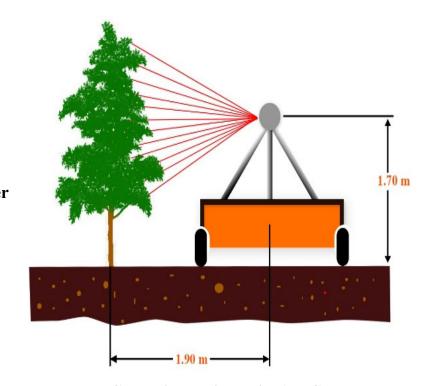
Objective 1:

Experiment No. 1

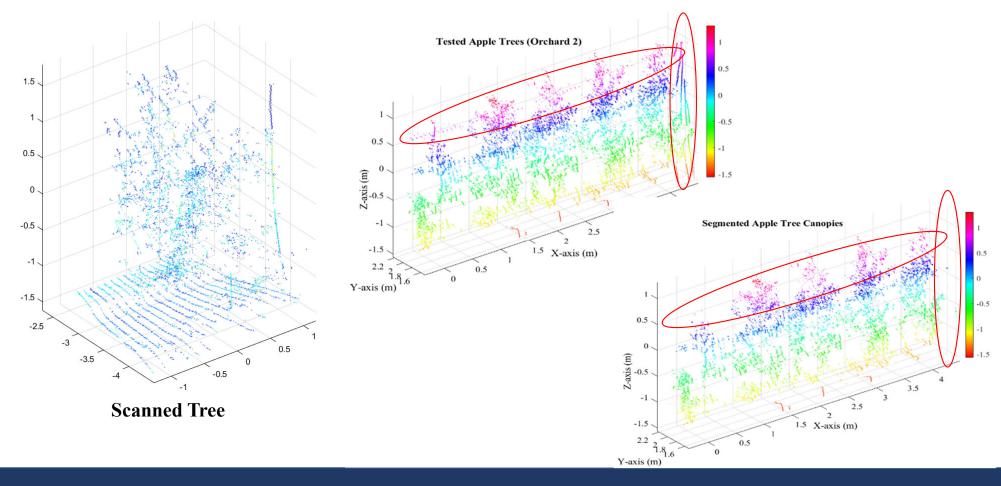
Development of a Section-based Tree Canopy Density Measurement System for Precision Spray Applications

Problem Statement:

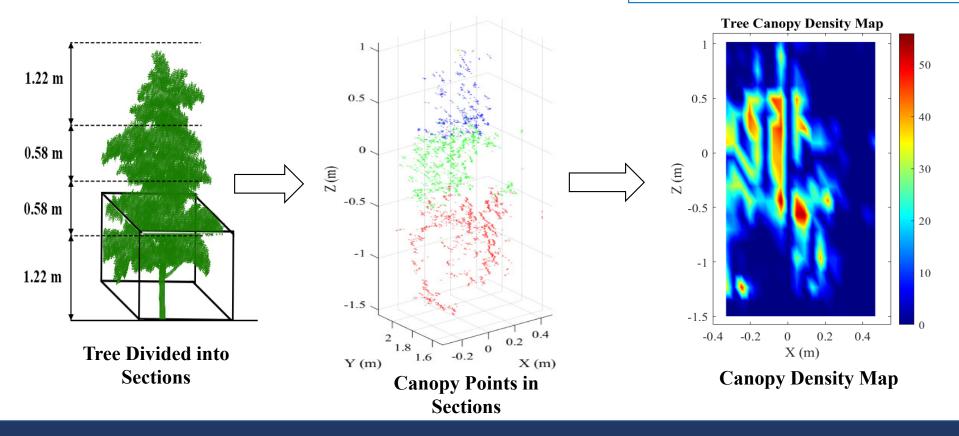
 Chemical losses within tree sections and gap between trees

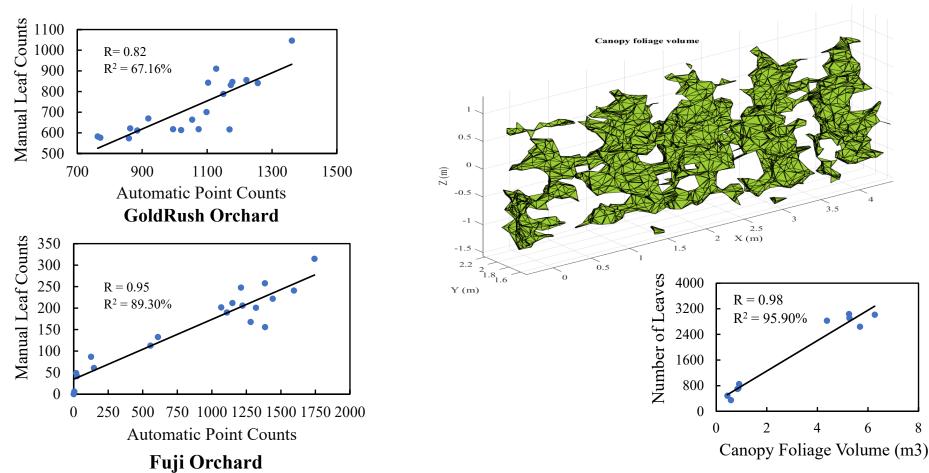


Methodology: Tree Scanning


System Development

Tree Scanning using LiDAR Sensor


Methodology: Canopy Points Segmentation


Canopy Density Measurement

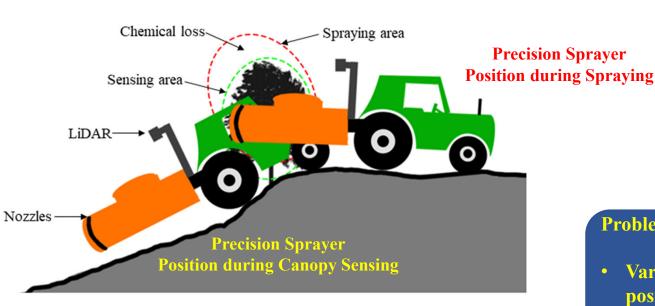
**Scale represents number of leaves per grid area

Prediction Models Performance

College of

Agricultural Sciences

Conclusions


- A strong correlation of 0.95 was achieved between manually counted leaves and acquired point cloud data using Fuji apple tree data (smaller canopy)
- Canopy volume measured by using the alpha shape algorithm showed a very strong relationship with manually counted leaves with a correlation up to 0.98 by using alpha value of 1
- Generated canopy density map can pinpoint high, moderate, and less density, and no leaf regions within the apple trees, which could be able to guide the precision management systems

Objective 1:

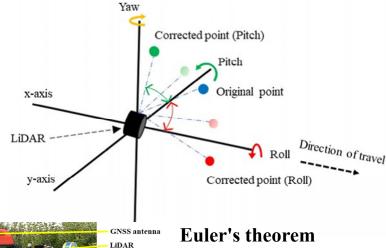
Experiment 2

Correction of 3D-LiDAR Sensed Canopy Density Information in Sloping Terrains using Sensor Fusion

Problem Caused by Slope Variation

Problem Statements:

- Variation between sensing and spraying positions
- Adjustment of canopy position is required


Methodology:

Longitudinal Slope

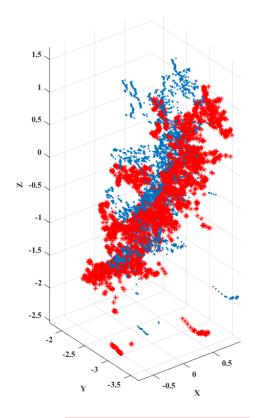
Lateral Slope

Both Slopes

Corrected position at x, y, and z-axis can be described as:

$$\mathbf{P}_{\mathbf{C},\mathbf{x}} = \cos(\theta_{\mathbf{P}}) \times \{ \cos(\theta_{\mathbf{w}}) - y\sin(\theta_{\mathbf{w}}) \} + z\sin(\theta_{\mathbf{P}})$$

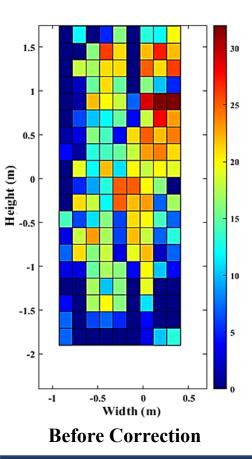
$$\mathbf{P_{C,v}} = \cos(\theta_{r}) \times \{y\cos(\theta_{w}) + x\sin(\theta_{w})\} + \sin(\theta_{r}) \times [\sin(\theta_{P}) \times \{x\cos(\theta_{w}) - y\sin(\theta_{w})\} - z\cos(\theta_{P})]$$

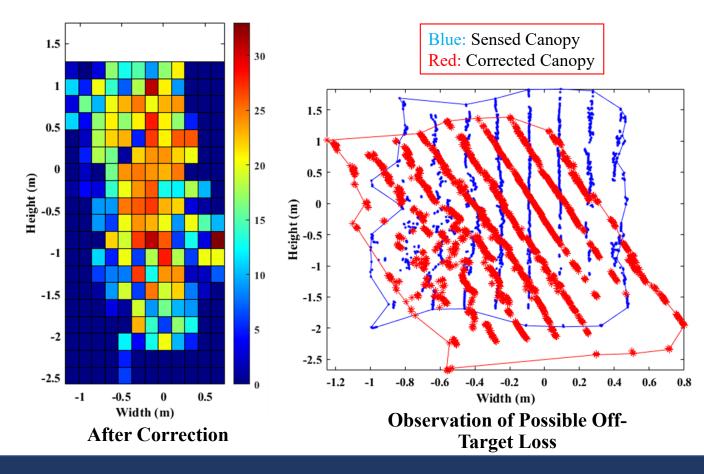

$$\mathbf{P_{C,z}} = \sin(\theta_r) \times \left\{ y\cos(\theta_w) + x\sin(\theta_w) \right\} - \cos(\theta_r) \times \left[\sin(\theta_P) \times \left\{ x\cos(\theta_w) - y\sin(\theta_w) \right\} - z\cos(\theta_P) \right]$$

INS-GNSS

Canopy Points Correction

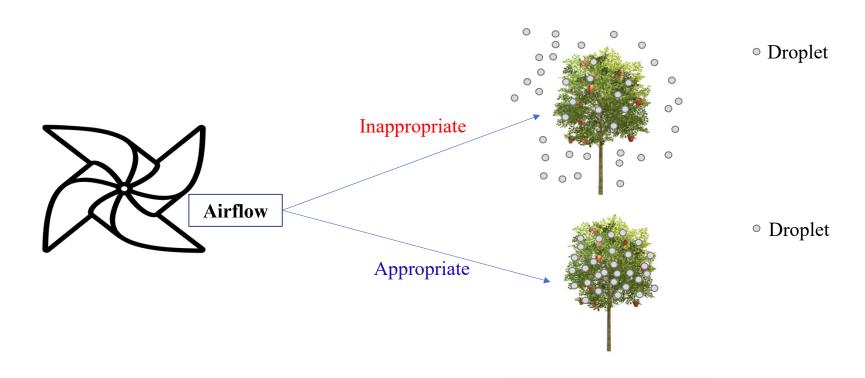
Acquired Canopy Point Cloud Data (m)			Corrected Canopy Point Cloud Data ^a (m)		
X-axis	Y-axis	Z-axis	X-axis	Y-axis	Z-axis
-0.3741389	2.4954416	-1.74862551	-0.949640696	2.863179554	-0.570337959
-0.3719452	2.4838406	-1.73404051	-0.942590976	2.847847258	-0.562131877
-0.3738951	2.4999006	-1.73877065	-0.946041097	2.864230844	-0.560189176
-0.3724327	2.4931417	-1.7276210	-0.940853456	2.854467195	-0.553125488
-0.3724327	2.4961532	-1.72326702	-0.939364306	2.855897707	-0.548250842
-0.3741389	2.5106061	-1.72678237	-0.942169901	2.870409201	-0.545863441
-0.3751138	2.5201662	-1.72688624	-0.943121585	2.879312109	-0.542372064
-0.3758451	2.5280948	-1.72584276	-0.943451814	2.886341669	-0.538503896
-0.3763325	2.5343860	-1.7236605	-0.943163514	2.891495069	-0.534268521
-0.3785262	2.5521810	-1.72925598	-0.947138638	2.909758628	-0.53241819
-0.3821823	2.6039382	-1.70526788	-0.942369816	2.950257216	-0.492359104
-0.2731461	2.6115448	-1.71090064	-0.841835855	2.971970214	-0.529774896
-0.3753576	2.5603585	-1.67035055	-0.924014279	2.898881828	-0.478624863
-0.2721002	2.6045159	-1.6998065	-0.837058641	2.961922016	-0.522718668
-0.3743826	2.5566121	-1.66155238	-0.92008897	2.892647703	-0.472450584
-0.2722745	2.6091491	-1.69634419	-0.836038258	2.965142589	-0.518020714
-0.3746264	2.5611745	-1.65816655	-0.919159989	2.895818268	-0.467822054
-0.2703571	2.5937107	-1.67987378	-0.828603256	2.945566041	-0.509373477
-0.3746264	2.5640646	-1.65369394	-0.917630265	2.897096644	-0.462884147
-0.2682654	2.5765486	-1.6623823	-0.820655227	2.924062007	-0.500470155



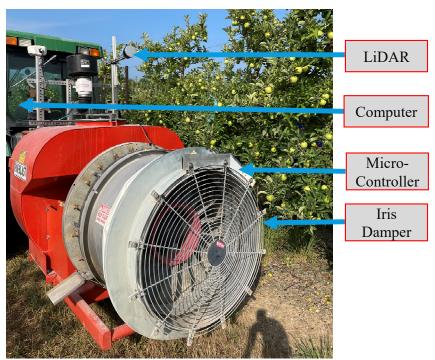

Blue: Sensed Canopy
Red: Corrected Canopy

 $^{^{\}rm a} Change$ of roll and pitch of about $20^{\rm o}$ (degree)

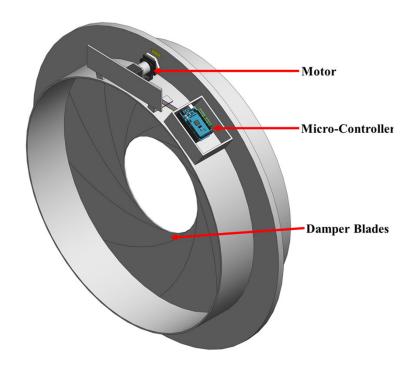
Canopy Points Correction


Conclusions

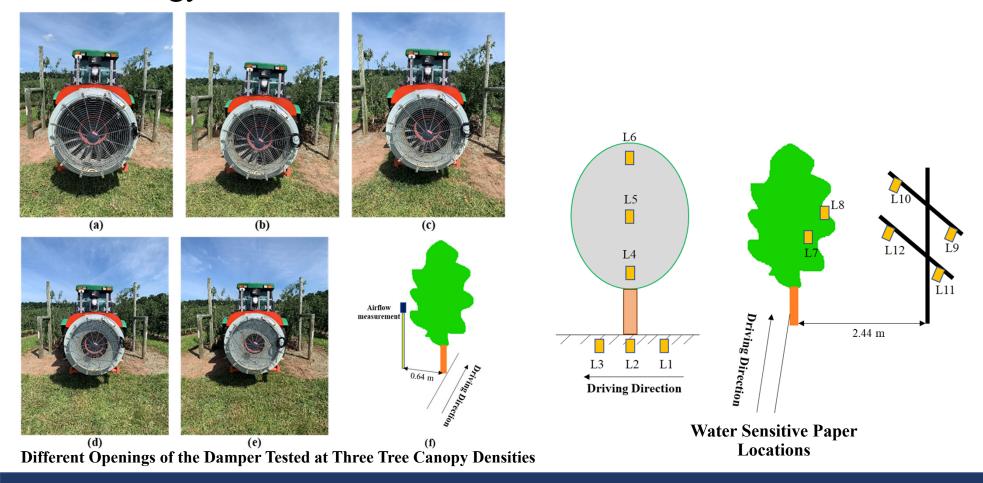
- The simulation results suggested that the model could provide the corrected canopy point location for any change of roll, pitch, and yaw
- Field evaluation results demonstrated that the system was able to correct the apple tree canopy points in different sloping conditions
- The developed system could be able to reduce up to 15.45% of off-target deposition


Objective 2: Experiment No. 1

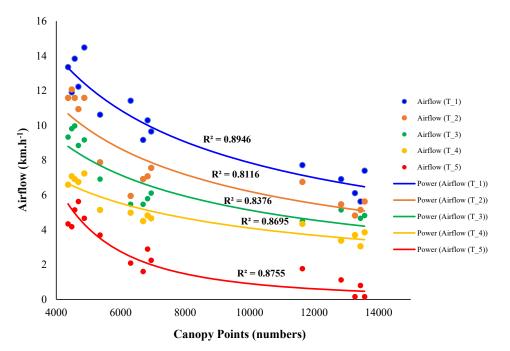
Development of An Automatic Airflow Control System for Precision Sprayers Based on Tree Canopy Density



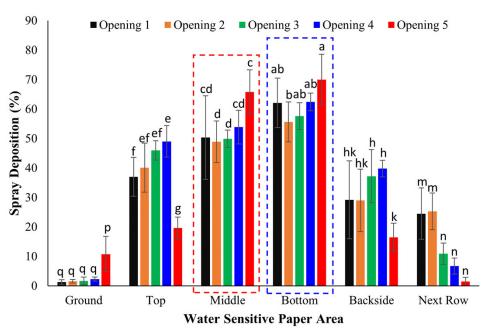
Methodology: Damper Installation


Hardware Integration

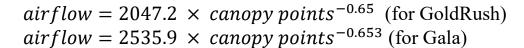
Iris Damper



Methodology: Airflow Measurement and Spray Deposition



Airflow and Spray Deposition


Airflow using Different Opening of the Damper

Spray Deposition on Medium Density Trees

Airflow Control Model & Field Evaluation

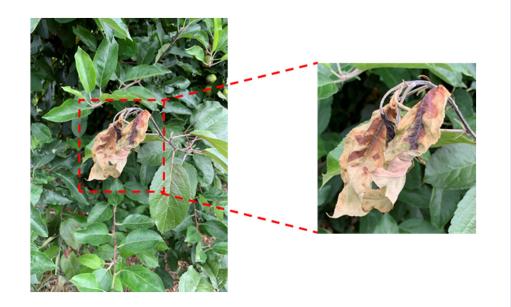
0.75 0.7 0.65 0.60 0.55 0.45 0.35 0.35 0.35 0.30 Damper Opening = 0.3284×ln(Canopy Points) - 2.4219 R² = 0.975 0.3 4000 6000 8000 10000 12000 14000 Canopy Points (numbers)

Canopy Density Vs Required Damper Opening

Theoretical and Experimental Airflow Measurements

	Test Orchard	Tree No	Canopy Points	Theoretical Airflow (km·h ⁻¹)	Experimental Airflow (km·h ⁻¹)	MAE (km·h ⁻¹)	RMSE (km·h-1)
	Orchard 1 (GoldRus h)	1	10372	5.02	7.89	2.27	2.41
		2	9799	5.21	7.4		
		3	8530	5.7	6.92		
		4	10724	4.91	6.59		
		5	8404	5.76	9.17		
	Orchard 2 (Gala)	1	12710	5.3	5.95	1.42	1.6
		2	14111	4.95	3.54		
		3	10291	6.08	8.72		
g		4	15795	4.6	2.9		
		5	10735	5.92	6.63		

Conclusions


- Air penetration through canopies was higher in the lower density trees compared to the medium and higher density trees
- The damper opening 2 offered higher spray deposition on high-density trees than the other openings
- The damper opening 4 could be suitable for medium-density fruit trees, and opening 5 for low-density trees
- The airflow control system was able to calculate the required damper opening and the airflow requirement for uniform spray deposition and reduced drift

Objective 3:

Experiment No. 1

Detection of Apple Fire Blight Disease using Artificial Intelligence

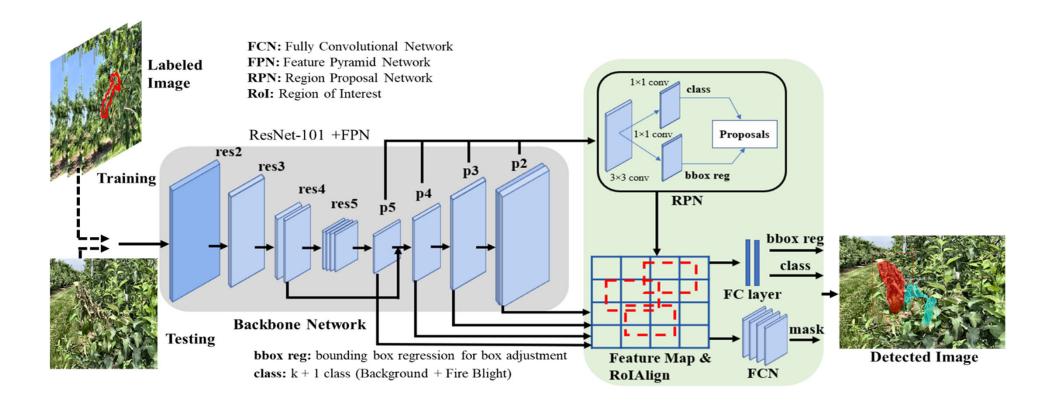
- Bacterial disease
- Causing bloom and shoot blight
- Kill blossoms and shoots and cause dieback of branches from cankers
- Severe fire blight can cause trees to die

Problem Statements

- Manual scouting is time-consuming
- Not practical for large-scale orchard

Objective

• Develop an **automatic fire blight detection system** using artificial intelligence



Methodology: Image Acquisition and Processing

Image Capture Raw Image Pre-Processed Image Pre-Processed Image

Methodology: Deep Learning Application

Fire Blight Disease Detection

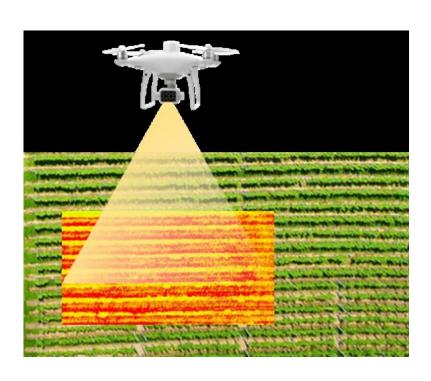
Ground Truth and Detections GT=green, pred=red, captions: score/loU

Detected Area Comparison

Evaluation Parameter	Percentage (%)
Precision	92.79
Recall	91.15
F1 Score	91.96

Fire Blight Disease Detection

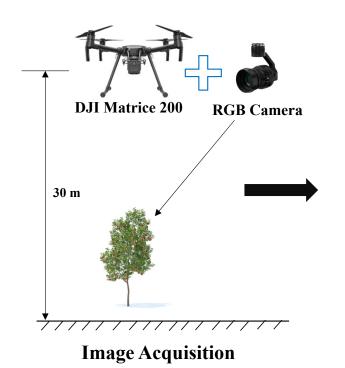
Some Examples of Fire Blight Detection

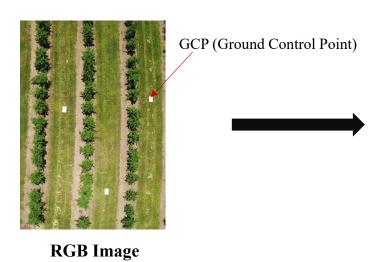

Conclusions

- An artificial intelligence-based fire blight detection algorithm performed impressively with the detection precision, recall, and F1 score of 92.79%, 91.15% and 91.96%, respectively
- Some of the false detections were reported may be due to the illumination variations, shading effects, and complex background
- The IoU value of the detection model was up to 83.5% showing the potential of using this approach for automatic fire blight scouting in the apple orchard

Objective 4: Experiment No. 1

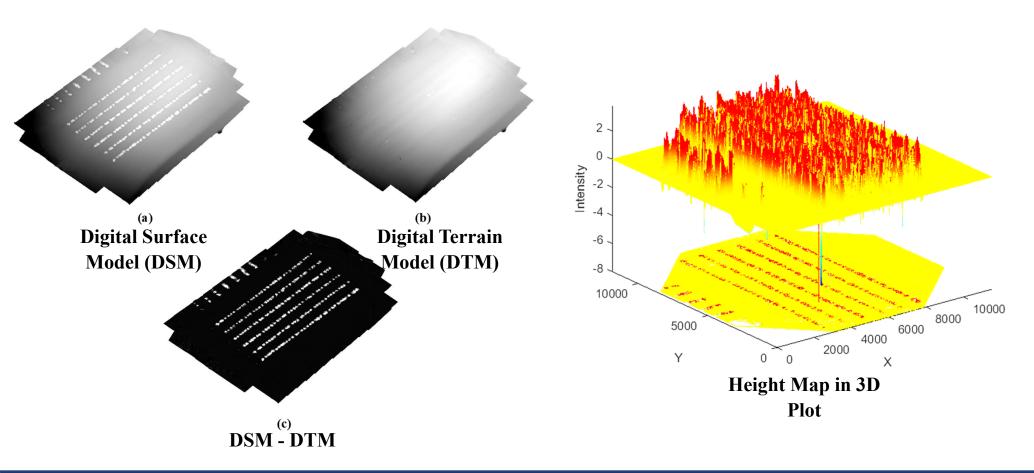
Unmanned Aerial Vehicle based Tree Canopy Characteristics Measurement for Precision Spray Applications




Problem Statements

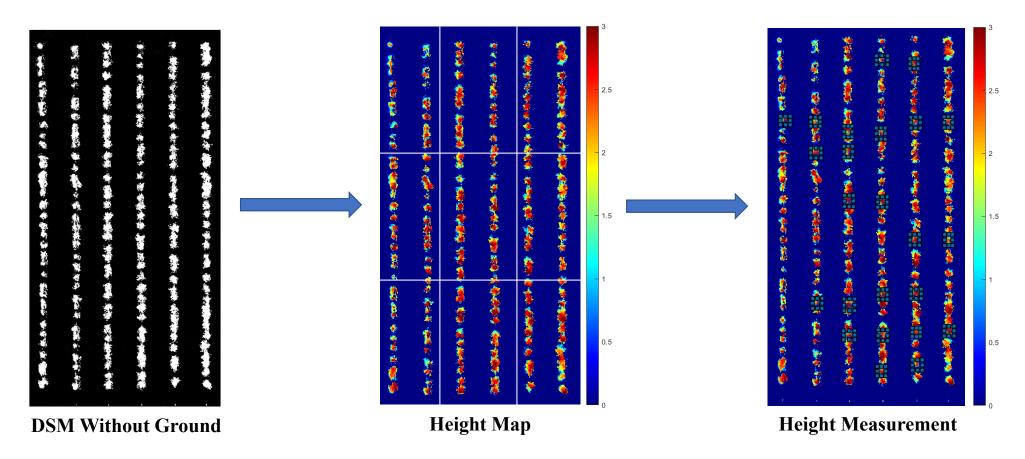
- Difficult in undrivable orchard
- Manual approach is not practical
- Time consuming
- Labor intensive
- Inaccurate

Methodology: Canopy Data Collection and Referencing

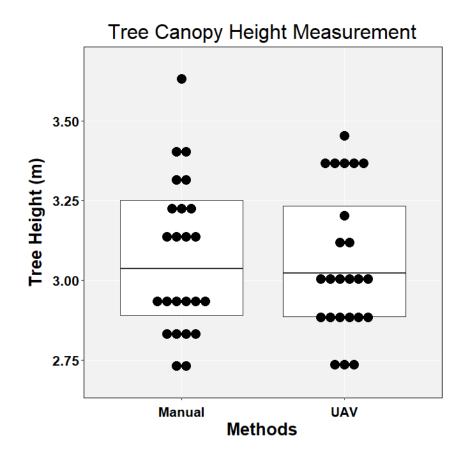


Orthomosaic Map

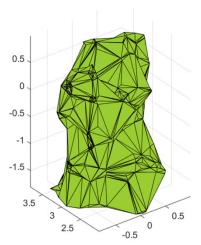
Methodology:


Model Generation and Tree Height Map

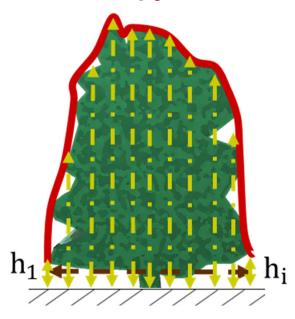
Methodology:


Tree Height and Canopy Volume Measurements

Tree	Manual	UAV- based	Absolute Error	
No.	Measure ment (m)	Measure ment (m)	(m)	(%)
1	2.69	2.93	0.24	8.92
2	2.9	3.45	0.55	18.9 7
3	2.87	3.32	0.45	15.6 8
4	3.12	3.09	0.03	0.96
5	3.2	2.96	0.24	7.5
6	3.3	2.97	0.33	10
7	3.4	3.36	0.04	1.18
8	3.63	2.9	0.73	20.1
9	2.97	3.02	0.05	1.68
10	2.95	2.88	0.07	2.37
11	2.97	2.69	0.28	9.43
12	2.78	2.78	0	0
13	2.79	3.02	0.23	8.24
14	3.1	3.2	0.1	3.23
15	3.33	3.04	0.29	8.71
16	3.18	3.15	0.03	0.94
17	3.09	2.85	0.24	7.77
18	3.25	3.33	0.08	2.46
19	2.92	3.41	0.49	16.7 8
20	3.4	3.39	0.01	0.29
21	2.84	2.89	0.05	1.76
22	2.82	2.72	0.1	3.55
23	2.92	2.84	0.08	2.74
24	3.25	3.05	0.2	6.15
Avera ge	3.07	3.05	0.20	6.64

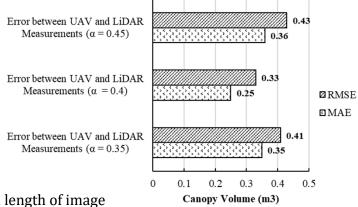

Tree Height Measurement

Error between Manual and UAV-based Measurements


MAE = 0.21 m RMSE = 0.28 m

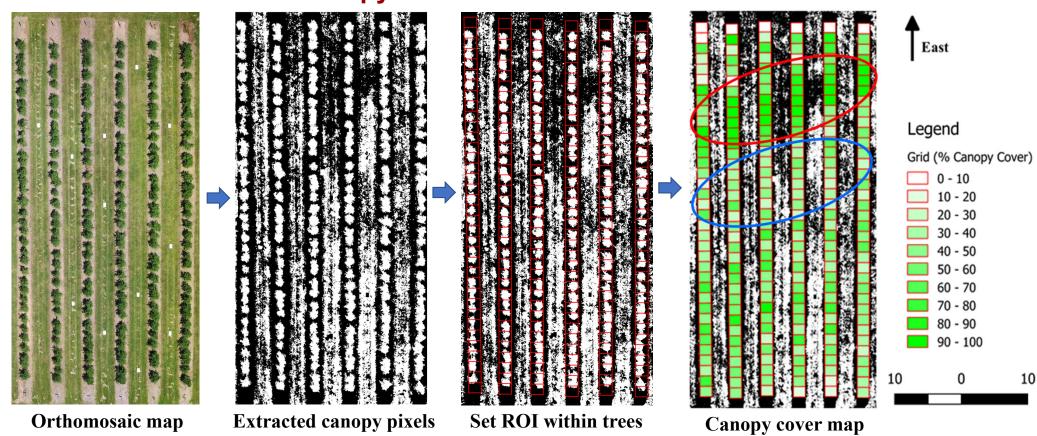
Ground Canopy Volume Measurement


Tree Canopy Volume Measurement



UAV-based Canopy Volume Measurement

Canopy volume (m³)


$$= \sum_{1}^{i} \text{Height}_{i} \times \text{Ground Sample Distance (GSD)}^{2}$$
original orchard distance covers by 1 Pixel length of image

Canopy Cover Measurements

Canopy cover = $\frac{\left(\sum (GSD^2) \text{ if Canopy}\right)}{\sum (GSD^2)} \times 100$

Canopy =

 $\left(\frac{\text{blue}}{\text{green}} < 0.95\right) \text{AND}$

 $\left(\frac{\text{red}}{\text{green}} < 0.95\right) \text{ AND } \left((2 * \text{green} - \text{blue} - \text{red}) > 20\right)$

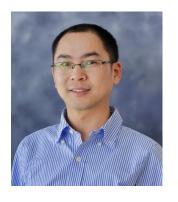
Conclusions

- Experimental results indicated the potential of UAV-based apple tree canopy height measurement to quantify individual tree height with less than 10% error
- The canopy volume results showed a mean absolute error of 0.25 m3 while comparing UAV with ground measurements
- The UAV-based tree canopy characteristics measurements could be used to quantify the tree canopy characteristics to calculate the pesticide requirement for precision spraying applications in tree fruit orchards

Accomplishments

Awards & Research Grants

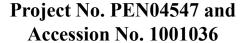
- 1. Outstanding Dissertation Award from College of Ag Sciences
- 2. Paul Hand Graduate Student Research Achievement Award from College of Ag Sciences
- 3. Harold V. and Velma B. Walton Doctoral Student Endowment in Agricultural and Biological Engineering
- 4. Northeast SARE Graduate Student Grant 2020-2022
- 5. College of Ag Science Graduate Student Competitive Grant 2021-2022


Journal Publications

- 1. Mahmud, M. S., He, L., Zahid, A., Choi, D., Zhu, H., Krawczyk, G., and Heinemann, P. (2022). Detection and feature analysis of apple fire blight using image processing and deep transfer learning. Journal of the ASABE (formerly, Transections of the ASABE) [Under Review]
- 2. Mahmud, M. S., Zahid, A., and He, L., Zhu, H., Choi, D., Krawczyk, G., and Heinemann, P. (2021) Development of an automatic airflow control system for precision sprayers based on tree canopy density. Journal of the ASABE (formerly, Transections of the ASABE) [Revision Requested]
- 3. Mahmud, M. S., Zahid, A., and He, L., Choi, D., Krawczyk, G., Zhu, H., and Heinemann, P. (2021). Development of a LiDAR-guided section-based tree canopy density measurement system for precision spraying. Computers and Electronics in Agriculture, 182, 106053
- 4. Mahmud, M. S., Zahid, A., He, L., and Martin, P. (2021). Opportunities and possibilities of developing an advanced precision spraying system for tree fruits. Sensors, 21, 3262
- 5. Mahmud, M. S., Zahid, A., He, L., Choi, D., Krawczyk, G., and Zhu, H. (2021). LiDAR-sensed tree canopy correction in uneven terrain conditions using a sensor fusion approach for precision sprayers. Computers and Electronics in Agriculture, 191, 106565

College of

Acknowledgements



Ag Robotics & Sensing Lab Members

Funding:

United States
Department of
Agriculture

Award No. 2019-70006-30440

Award No. GNE20-234-34268

Graduate Student Competitive Grant

Thank you for listening

Contact: mvm6735@psu.edu (Md Sultan Mahmud)

