Utilization of Tannin-Containing Forages For Sustainable Beef Production in the Intermountain West

Jennifer Reeve PhD¹, Jeanette Norton PhD¹, Jennifer MacAdam PhD¹, and Stephen Lee PhD² 1. Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA 2. USDA ARS Poisonous Plant Research Laboratory, North Logan, UT, USA

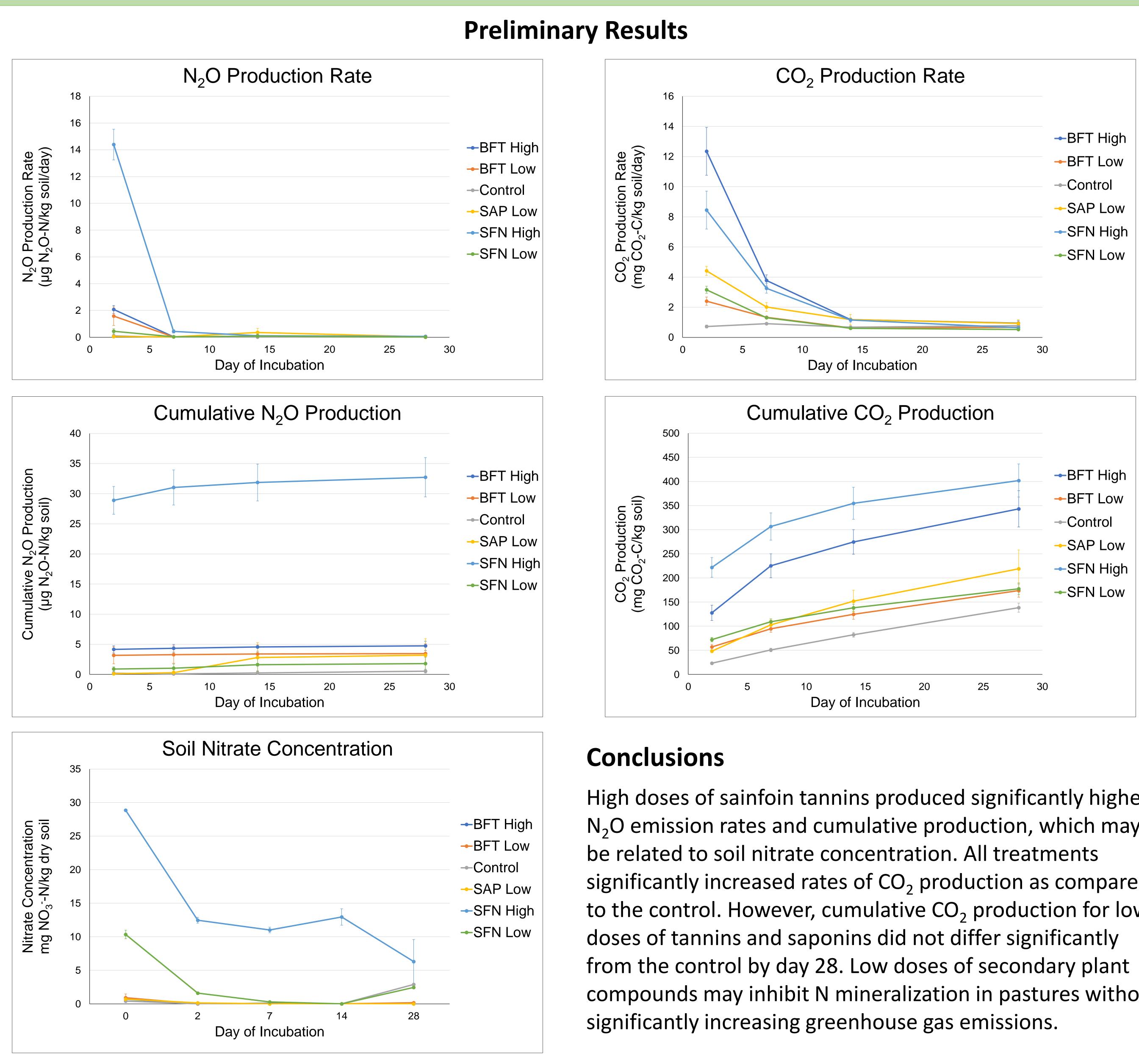
Introduction

Ruminants and pastures contribute significant amounts of nitrous oxide (N_2O) , and carbon dioxide (CO_2) to the atmosphere and nitrogen (N) to waterways. Tannins and saponins are secondary plant compounds which have been shown to reduce N cycling in forest systems by binding proteins and alkaloids (Waghorn et al. 2008). We hypothesize that finishing beef cattle on tannin-containing legumes such as birdsfoot trefoil (Lotus corniculatus) and sainfoin (Onobrychis viciifolia) or saponin-containing legumes such as alfalfa (*Medicago* sativa) may reduce soil N mineralization, increasing overall N retention in pastures.

Methods

Purified tannins from birdsfoot trefoil (BFT) and sainfoin (SFN) and saponins from alfalfa (SAP) were added to a uniform pasture soil and incubated for 84 days. Saponins were added at a low dose (3 mg/g soil) and tannins were added at low (3 mg/g soil) and high (15 mg/g soil) doses. Nitrate (NO_{3⁻}) and

ammonium (NH_4^+) concentrations and N₂O and CO₂ production rates were measured throughout the study.


Figure 1: Preparing soil samples for incubation

Contact Corresponding author: Katie Slebodnik Kathryn.Slebodnik@aggiemail.usu.edu

Acknowledgements

This work was funded by Western Sustainable Agriculture Research and Education Graduate Student Grant #GW18-156. Special thanks to faculty advisors, Karen South, and Charles Hailes at the USDA ARS Poisonous Plant Research Laboratory.

Katie Slebodnik¹

References Waghorn, Garry et al. "Beneficial and Detrimental Effects of Dietary Condensed Tannins for Sustainable Sheep and Goat production—Progress and Challenges." Animal Feed Science and Technology Waghorn / Animal Feed Science and Technology 147.147 (2008): 116–139. Web. 25 July 2017.

High doses of sainfoin tannins produced significantly higher N₂O emission rates and cumulative production, which may significantly increased rates of CO₂ production as compared to the control. However, cumulative CO₂ production for low compounds may inhibit N mineralization in pastures without

