# Exploring Vitamin B9 Diversity for the Nutritional Improvement of Potato

#### **Bruce Reid Robinson II**

Crop Science
Hermiston Agricultural Research and Extension Center
Oregon State University



# **Outline**

- I. Introduction/Background
- II. Objectives
- III. Conclusions/Perspectives
- IV. Acknowledgements

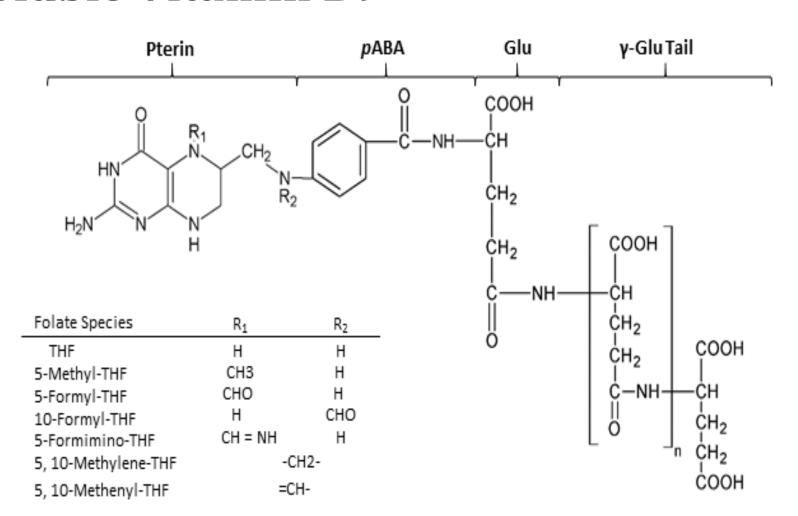




# **Outline**

- I. Introduction/Background
  - -Micronutrient Malnutrition
  - -Folate
  - -Sources and Deficiency
  - -Biofortification
  - -Potatoes
- II. Objectives
- III. Conclusions/Perspectives
- IV. Acknowledgements




### **Micronutrient Malnutrition**

- Negatively affects as many as 2 billion people worldwide
- Most commonly a deficiency in dietary intake of:
- Minerals: Ca, I, Fe, P, K, Na, Zn
- Vitamins: A, B1, B2, B3, B5, B6, B9, B12, C, D, E, K
- Phytochemicals: Carotenoids, Flavonoids...
- Main sources in human diets are plants



#### Folate - Water Soluble Vitamin B9

 Without adequate folate levels, cells are not able to biosynthesize nucleotides, metabolize amino acids, or utilize the methylation cycle properly



# **Folate Sources and Deficiency**

- Plants are the major source of dietary folate
- Folate deficiency has been linked to:
- a. Neural Tube Defects (NTDs) such as spina bifida and anencephaly
- b. Cardiovascular diseases
- c. Stroke
- d. Anemia
- e. Development of certain types of cancers
- f. Impaired cognitive performance
- More that 75 countries have instituted folic acid fortification programs



#### **Biofortification**

• The process by which the nutritional quality of food crops is improved through conventional plant breeding or modern biotechnology (W.H.O.)

- Has additional advantages compared to industrial fortification alone:
  - a. More cost-effective and sustainable over time
  - b. Can impact areas that lack the political will, infrastructure, and money to utilize current fortification practices



# Importance of Potato (Solanum tuberosum L.)

 Third most important food crop behind rice and wheat

 Considered as significant source of folate in their diets





### **Additional Potato Information**

- 150g serving of potato (one medium sized russet) provides 6-10% of the 400 $\mu$ g RDA of folate
- Folate retention is high in potato tubers even after storage, processing, and cooking
- ~200 tuber bearing *Solanum* species representing enormous genetic diversity





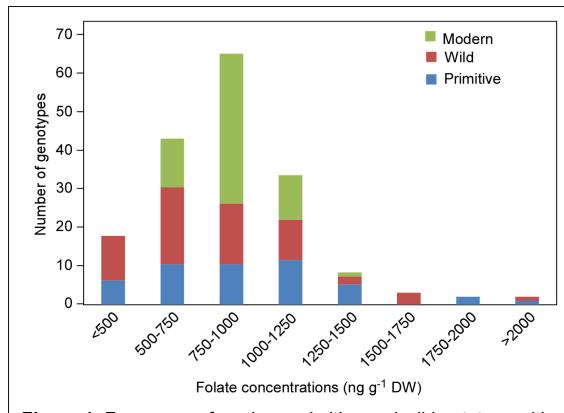




#### **Outline**

- I. Introduction/Background
- II. Objectives
- -Germplasm diversity with respect to folate levels
- -Expression of folate related
- genes
  - -SNP Genotyping
- III. Conclusions
- IV. Acknowledgements




**Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement** 



# **Previous Work in Folate Variability in Potatoes**

 Wild and primitive cultivated species show the greatest range of folate content

 Further evaluating this wild and primitive germplasm is useful in identifying sources of high folate germplasm



**Figure 1.** Frequency of modern, primitive and wild potatoes within folates concentration brackets.



# **Objectives**

- Quantify folate content via tri-enzyme extraction and *Lactobacillus rhamnosus* microbiological assay
- Identify wild and primitive accessions that have high folate content





# Potato Materials - Wild and Primitive Species

• 257 individual plants from 77 accessions representing 10 species evaluated with Russet Burbank as control

 Accessions were obtained from the U.S. Potato Genebank





# Potato Materials - Wild and Primitive Species

#### Harvested Selections:

- 1. S. acuale (3 accessions, 4X)
- 2. S. boliviense (25 accessions, 2X)
- 3. S. candolleanum (3 accessions, 2X)
- 4. S. chacoense (2 accessions, 2X)
- 5. S. stipuloideum (3 accessions, 2X)
- 6. S. demissum (3 accessions, 6X)
- 7. S. microdontum (3 accessions, 2X)
- 8. S. okadae (3 accessions, 2X)
- 9. S. tuberosum subsp. andigenum (9 accessions, 2X & 4X)
- 10. S. vernei (23 accessions, 2X)



# **Tri-Enzyme Extraction Method**

- General Principle: Folate species must be released from food matrices and processed without degrading the sample so determination can be performed
- HEPES/CHES buffer, protease, α-amylase, and conjugase allow for this with reasonable throughput

**Tuber Sample** 

Homogenize in HEPES/CHES Buffer

Heat (10min at 100°C)

Ice Bath

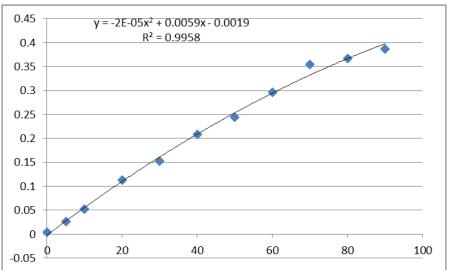
Incubate with Protease (2hrs at 37°C)

Heat (5 min at 100° C)

Ice Bath

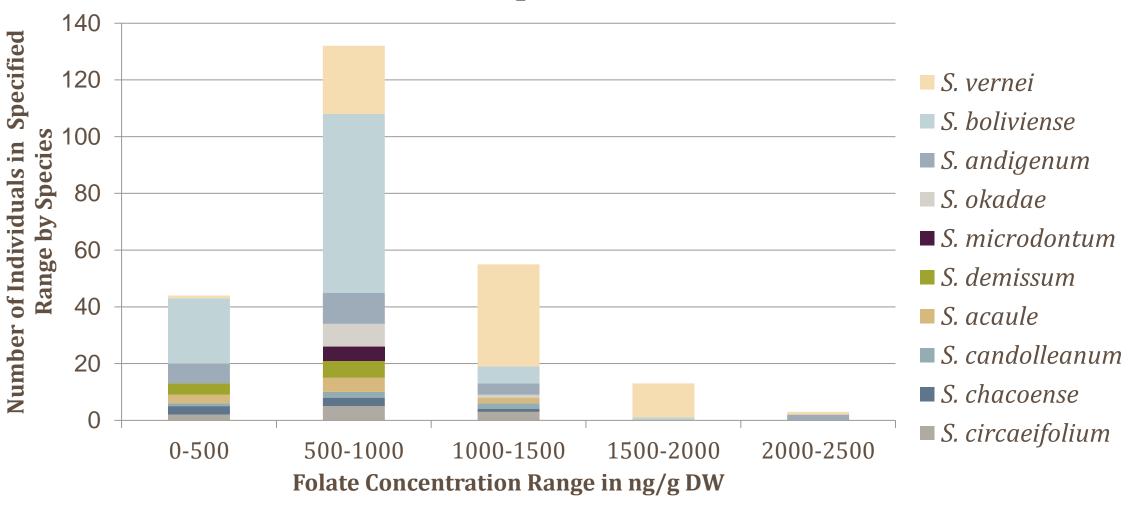
Incubate with α-amylase and conjugase (2-3hrs at 37°C)

Heat (10min at 100° C)
Ice Bath


Centrifuge Storage at -80° C

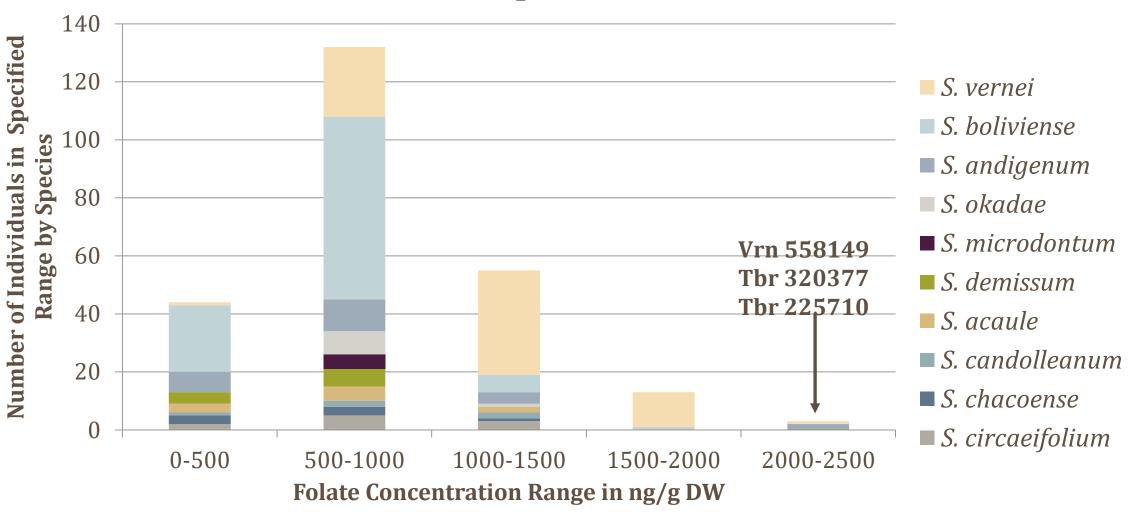


#### **Folate Determination**


- Microbiological Assay using L. rhamnosus
- Wells loaded with Folic Acid Medium, standards, or samples
- Incubated for 18-24 hours
- Read with microplate reader
- Folate values calculated from standard curve



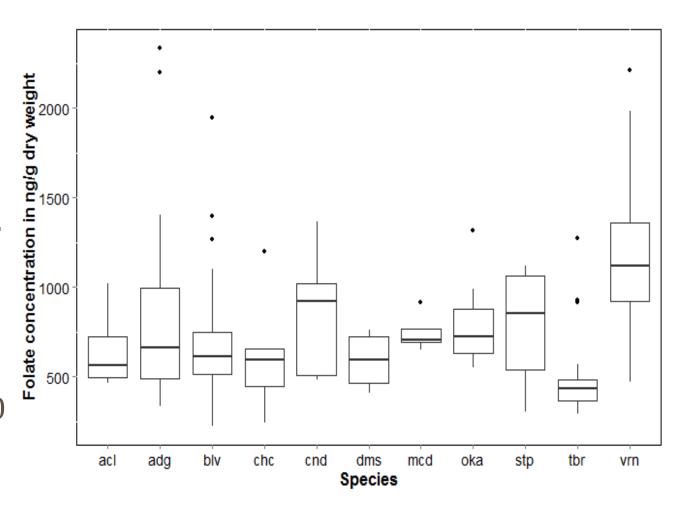





#### Wild and Primitive Species Folate Distribution






#### Wild and Primitive Species Folate Distribution





# Summary

- Wild and primitive cultivated species showed a range of 220 – 2200 ng/g folate DW
- *S. Vernei* and *S. tuberosum* subsp. *andigenum* showed highest folate levels
- Increasing commercial cultivar's folate content to more than 2000 ng/g dry weight or more represents a 4X increase









Article

# **Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement**

Bruce R. Robinson 1,2, Vidyasagar Sathuvalli 1,2, John Bamberg 3 and Aymeric Goyer 1,4,\*

- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA; E-Mails: Bruce.Robinson@oregonstate.edu (B.R.R.); Vidyasagar@oregonstate.edu (V.S.)
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97330, USA
- <sup>3</sup> USDA/Agricultural Research Service, Sturgeon Bay, WI 54235, USA; E-Mail: john.bamberg@ars.usda.gov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, USA
- \* Author to whom correspondence should be addressed; E-Mail: aymeric.goyer@oregonstate.edu; Tel.: +1-541-567-8321; Fax: +1-541-567-2240.

Academic Editors: Sean Mayes, Festo Massawe, Prakit Somta and Wai Kuan Ho

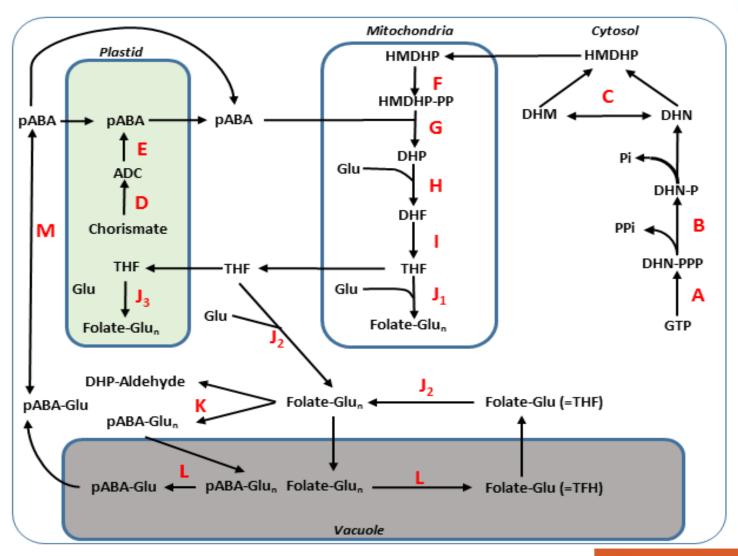
Received: 27 October 2015 / Accepted: 25 November 2015 / Published: 8 December 2015

Abstract: Malnutrition is one of the world's largest health concerns. Folate (also known as vitamin B<sub>9</sub>) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people's folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent



# **Outline**

- I. Introduction/Background
- II. Objectives
- -Germplasm Diversity with respect to folate levels
- -Expression of folate related genes
  - -SNP Genotyping
- III. Conclusions
- IV. Acknowledgements




# Expression Levels of The γ-Glutamyl Hydroplase I Gene Correlate With Vitamin B9 Content in Potato Tubers



# **Objectives**

- Identify how expression of folate-related genes contributes to folate accumulation
- Analyze RNA-Seq data to identify genes with differential expression in high/low folate genotypes
- Perform quantitative PCR
   (qPCR) to confirm the
   results of RNA-seq results in
   diverse germplasm



### **Materials**

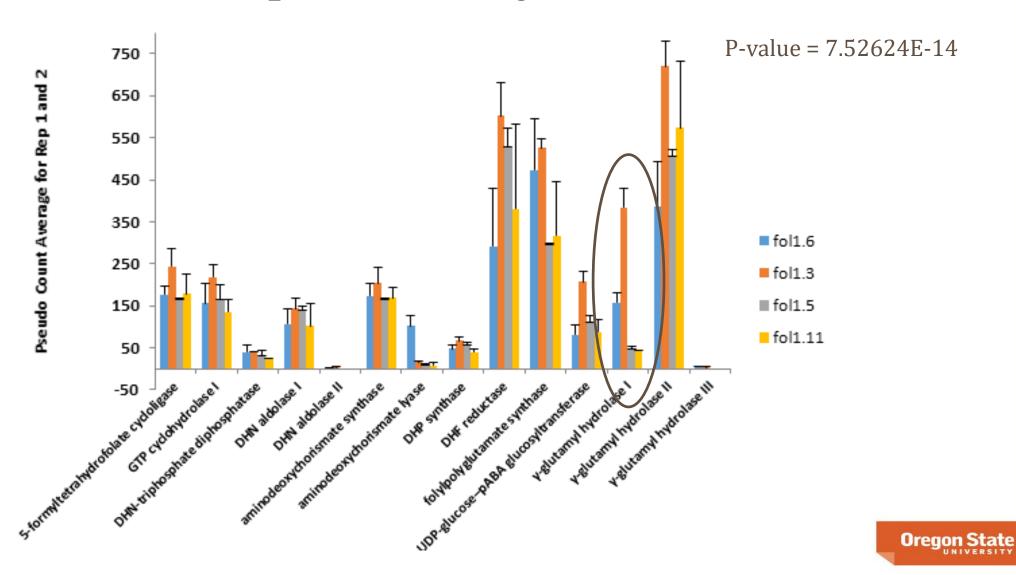
• High: fol 1.3, fol 1.6

• Low: fol 1.5, fol 1.11

Solanum boliviense PI 597736

RNA-Sequence analysis (2 technical reps, each rep made of tubers pooled from 3-4 plants)






### **Methods**

- 1 Illumina HiSeq2000 lane (51 cycle V3 single end)
- TruSeq RNA Libraries quantified by qPCR
- Normalized to β-tubulin pseudocounts
- Mapping, assembly, and differences in expression determined by JEANS



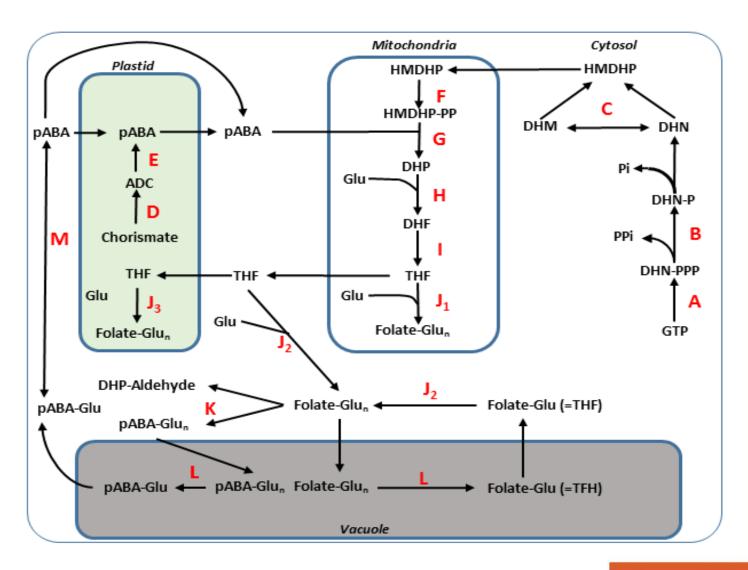
# Methods - RNA-sequence analysis



# **Materials**

| Sample       | Folate concentration (ng/g DW) |
|--------------|--------------------------------|
| BRR1 12      | $2373 \pm 29$                  |
| BRR1 27      | 471 ± 20                       |
| BRR3 90      | 2952 ± 277                     |
| BRR3 56      | $326 \pm 21$                   |
| Tbr 225710.3 | 2336 ± n.d.                    |
| Tbr 546023.4 | 626 ± 21                       |
| Vrn 558149.3 | 1688 ± 18                      |
| Vrn 500063.1 | 469 ± 16                       |
| Fol 1-3      | 1667 ± 113                     |
| Fol 1-5      | 810 ± 269                      |
| Fol 1-6      | 2137 ± 473                     |
| Fol 1-11     | 911 ± 67                       |






| High Folate<br>Genotype | C <sub>t</sub><br>Value | Low Folate<br>Genotype | C <sub>t</sub><br>Value | High/Low<br>2-△Ct    | Fold Change in GGH1 |
|-------------------------|-------------------------|------------------------|-------------------------|----------------------|---------------------|
|                         |                         |                        |                         |                      | Expression          |
| BRR1 12                 | 34.18                   | BRR1 27                | 31.74                   | 0.189/0.018          | 10                  |
| BRR3 90                 | 40.44                   | BRR3 56                | 36.71                   | 3.33E -05/4.53E -04/ | 0.1                 |
| Tbr PI 225710           | 29.66                   | Tbr PI 546023          | 38.84                   | 3.00E -02/1.55E -02  | 2                   |
| Vrn PI 558149           | 35.33                   | Vrn PI 500063          | 40.78                   | 6.25E -02/1.29E -04  | 481                 |
| Fol 1-6                 | 32.01                   | Fol 1-11               | 35.41                   | 7.10E -03/4.76E 04   | 15                  |
| Fol 1-6                 | 32.01                   | Fol 1-5                | 39.82                   | 7.10E -03/8.07E -05  | 88                  |
| Fol 1-3                 | 30.90                   | Fol 1-11               | 35.41                   | 1.13E -02/4.76E -04  | 24                  |
| Fol 1-3                 | 30.90                   | Fol 1-5                | 39.82                   | 1.13E -02/8.07E -05  | 140                 |



# Summary

- RNA-Seq data identified GGH1 with differential expression in high/low folate genotypes
- qPCR results confirmed this trend



# **Outline**

- I. Introduction/Background
- II. Objectives
- -Germplasm Diversity with respect to folate levels
- -Expression of folate related genes
  - -SNP Genotyping
- III. Conclusions
- IV. Acknowledgements

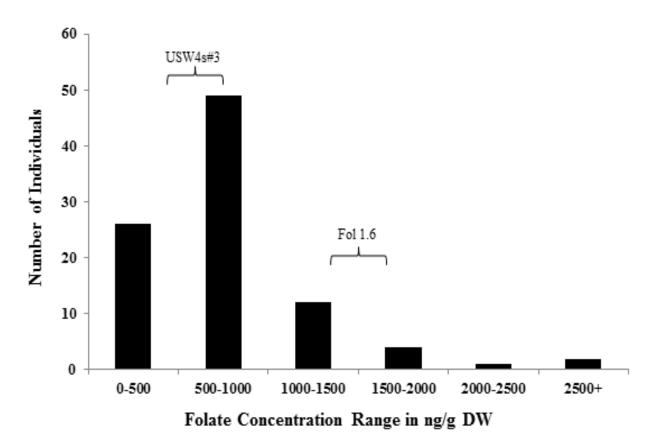




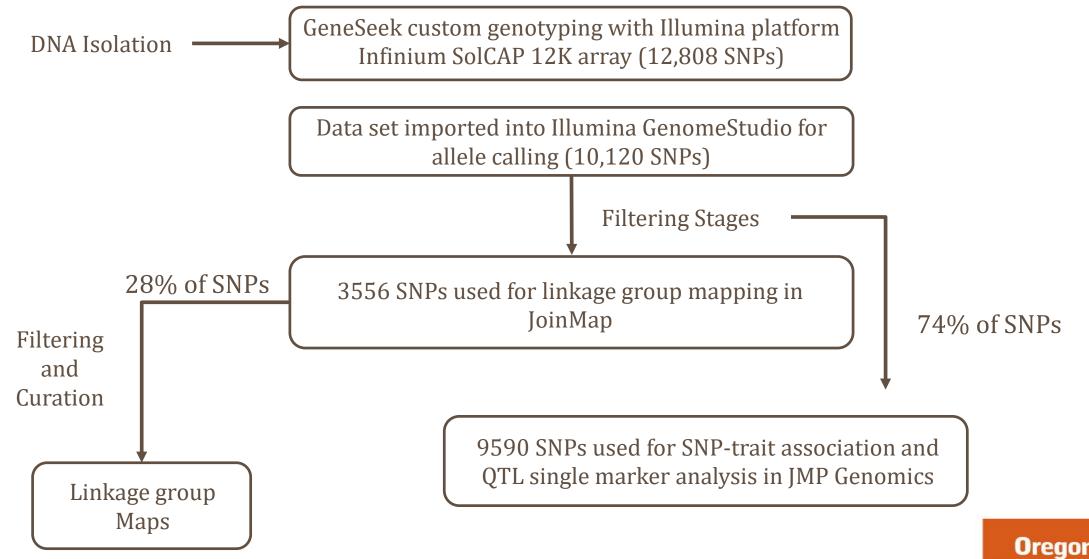
Single Nucleotide Polymorphism Markers Associated With High Folate Content from Wild Potato Species



# **Objectives**


- Use SNP genotyping platform to develop linkage maps
- Perform SNP-trait association
- Perform QTL single marker analysis
- Identify potential SNPs associated with high folate

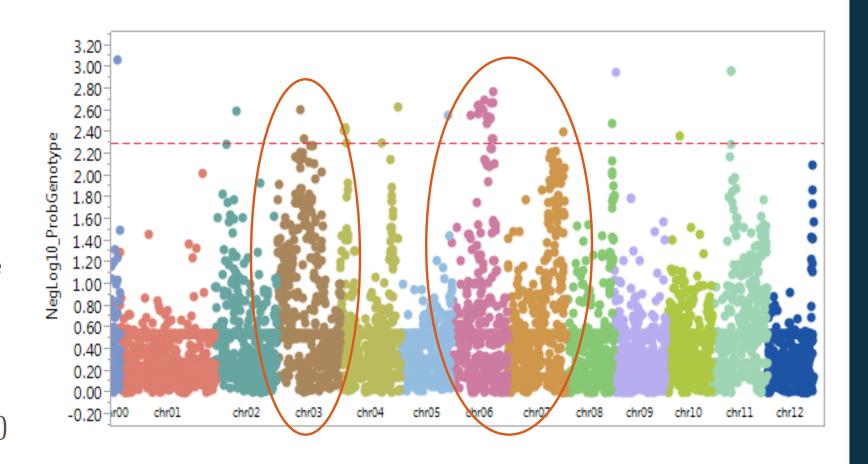





#### **Materials**

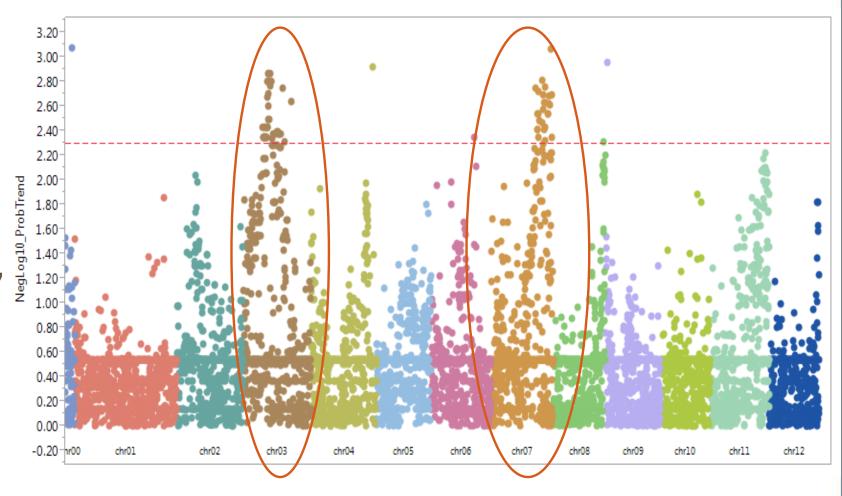
- BRR3 F2 Diploid mapping population
- 94 individuals
- $[USW4_{self}#3 \times fol1.06_{blv597736}]F2$




# Workflow for SNP genotyping, mapping, and QTL Analysis



- c1 3843 05 3133834 r c1 7372 05 4921752 ר 11.2 /r c2 11824 05 4251874 14.2 ¬ 'r c2 47625 05 6019641 22.0 /r c2 37697 05 7717307 32.5 38.8 /r c2 47646 05 5921198 #r c2 10292 5 48256175 47.2 **1** # c2 38737 05 14151730 49.3 51.3 c2\_53227\_05\_20395121 59.2 #r c2 47392 5 42176544 r c2 32854 05 10418984 c2 50840 05 45880548 **L** c1 1873 05 43218969 67.6 69.8 r cl 14645 05 10031602 **--|** c2\_32877\_05\_10273830  $71.0 \, \text{d}$ r c2 53307 05 13386684 72.5 72.9 · c2 5214 05 42894591 r c1 4464 05 32104744 74.0 **√** r c1 4457 05 32992638 74.5 r c2 15739 05 19426468  $c2^{-}5154 \overline{0}5 \overline{4}3218223$ 76.2 c2 8460 05 50479738 c2 8427 05 49736422 · c2 49666 05 19633164 cl 15965 05 44622109 81.9 - c2 51194 05 17503046 · c2 48355 05 44271960 · c2 42374 5 47146520 84.9 · c1 1077 05 51830050 85.0 c2 3452 05 51696835 85.7 c2 48572 05 39348259 86.3 91.7 ·c2 51591 05 45992075 c2 15681 5 18720577 100.3 c2 3512 05 51477749 112.0 113.8 - c2 8240 05 49804489 · c2 8210 05 50922126 114.5 ·c2 55240 05 49467229 116.5 · c2 49147 05 47506482 121.6 123.7 - c2 42381 05 47101740


|                  | SNPs from Pa | rents   |                                    |                      |                                       |                                    |
|------------------|--------------|---------|------------------------------------|----------------------|---------------------------------------|------------------------------------|
| Linkage<br>Group | USW4s#3      | Fol 1.6 | Number of<br>Codominant<br>markers | Group<br>Length (cM) | Total<br>SNPs per<br>linkage<br>group | Marker<br>Coverage<br>(markers/cM) |
| 1                | 59           | 7       | 2                                  | 98.177               | 68                                    | 1.44                               |
| 2                | 22           | 15      | 9                                  | 124.182              | 46                                    | 2.69                               |
| 3                | 51           | 2       | 3                                  | 165.488              | 56                                    | 2.95                               |
| 4                | 49           | 4       | 4                                  | 140.512              | 57                                    | 2.40                               |
| 5                | 29           | 6       | 4                                  | 123.679              | 39                                    | 1.65                               |
| 6                | 36           | 6       | 4                                  | 113.482              | 46                                    | 2.67                               |
| 7                | 24           | 5       | 10                                 | 59.681               | 39                                    | 2.58                               |
| 8                | 52           | 0       | 0                                  | 126.636              | 52                                    | 2.43                               |
| 9                | 48           | 4       | 2                                  | 157.314              | 54                                    | 3.41                               |
| 10               | 51           | 1       | 3                                  | 113.187              | 55                                    | 2.05                               |
| 11               | 58           | 4       | 6                                  | 101.767              | 68                                    | 1.41                               |
| 12               | 51           | 8       | 5                                  | 107.182              | 64                                    | 1.67                               |
| Total            | 530          | 62      | 52                                 | 1431.227             | 644                                   | 2.22                               |

- SNP-trait association identified 109 SNPs
- 86% or 94 SNPs were associated with chromosomes 3, 6, and 7
- 5-Formyltetrahydrofolate cycloligase (chromosome 3)
- Dihydrofolate (DHF) synthase (chromosome 6)
- γ-glutamyl hydrolase 1 (chromosome 7)





- QTL single marker analysis identified 80 SNPs
- 94% or 75 SNPs were associated with chromosomes 3 and 7
- Potential QTLs are located in areas previously identified by SNP-trait association





# Summary

• 73 common SNPs were identified from both analysis, 66 are located on chromosome 3 and 7

| SNP_ID              | CHR   | POS      | R-squared trend |
|---------------------|-------|----------|-----------------|
| solcap_snp_c2_53198 | chr00 | 29279410 | 0.114572486     |
| solcap_snp_c2_48372 | chr03 | 39255217 | 0.105971323     |
| solcap_snp_c2_48371 | chr03 | 39255236 | 0.105971323     |
| solcap_snp_c2_48369 | chr03 | 39257162 | 0.105971323     |
| solcap_snp_c2_35234 | chr03 | 40992986 | 0.105971323     |
| solcap_snp_c1_6875  | chr03 | 41994529 | 0.103532909     |
| solcap_snp_c2_10688 | chr04 | 71592216 | 0.108221677     |
| solcap_snp_c2_28223 | chr07 | 51604961 | 0.10388895      |
| solcap_snp_c2_18680 | chr07 | 55283766 | 0.114219648     |
| solcap_snp_c2_48597 | chr09 | 778420   | 0.109861634     |



# **Outline**

I. Background/Justification

II. Objectives

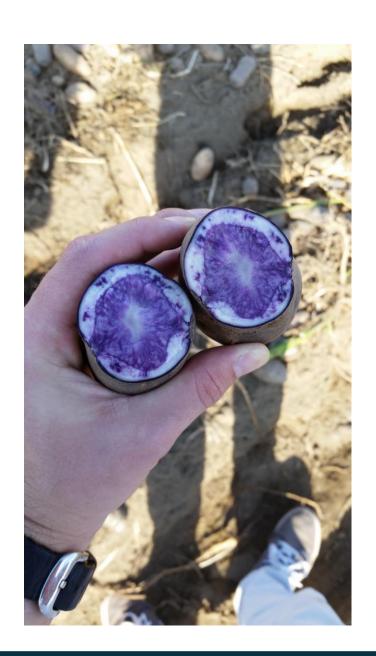
III. Conclusions

IV. Acknowledgements





#### **Conclusions**


- There is genetic material with significantly higher folate concentrations available for breeding purposes
- GGH1 expression correlates with high folate in tubers
- SNP genotyping and subsequent studies identified areas of the genome that are associated with high folate content and folate related genes





#### **Future Research**

- Continue folate studies in *S. vernei* and *S. tuberosum* subsp. *andigenum*
- Evaluate heritability of high folate traits
- Study gene expression of FPGS in conjunction with GGH1 to better understand folate accumulation in tubers
- Validation of identified SNPs for their potential to use in marker assisted breeding of high folate genotypes



# Acknowledgements

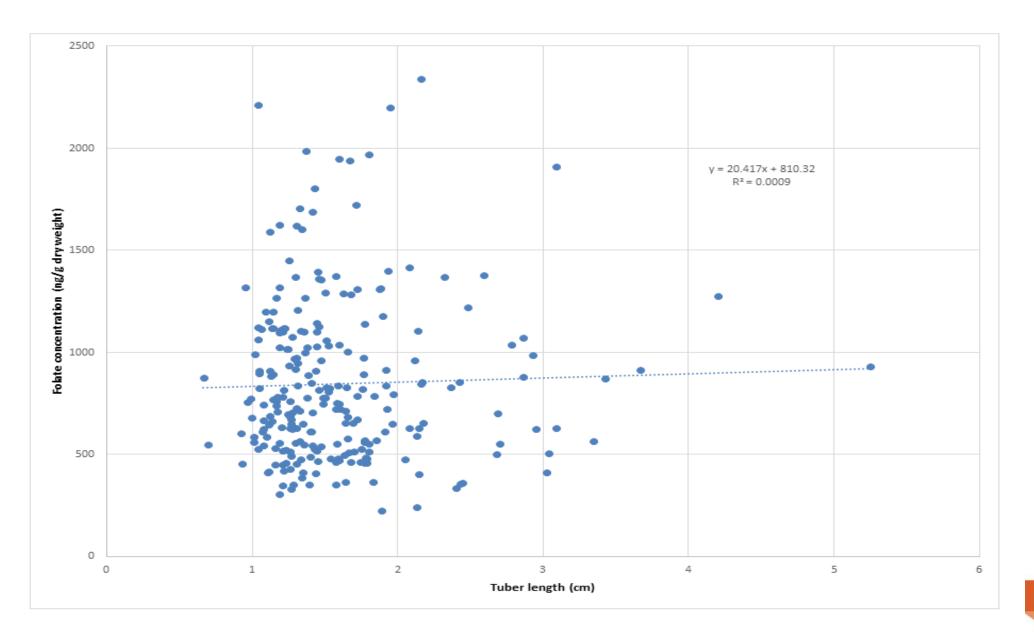
- Dr. Aymeric Goyer

  Matt Warman, Wei Dong, Taryn Goodwin, Mark Barnett
- Dr. Vidyasagar Sathuvalli
   Solomon Yilma, Moises Aguilar, Stan Li, Sapinder Bali
- Dr. Laurent Deluc
- Dr. Ramesh Sagili
- Dr. John Bamberg, US Potato Gene Bank
- OSU HAREC Station

#### **Funding Sources**








United States Department of Agriculture National Institute of Food and Agriculture



#### **THANK YOU**





