Updates on Precision Agriculture Program Intelligent Spraying and Sensor-Based Irrigation

Long He

2020 Winter Fruit School

Biglerville, Adams County, PA

February 17th, 2020

PennState College of Agricultural Sciences

Intelligent Spraying for Tree Fruit Orchards

Overview of Orchard Spraying

Production Impact

- Spray coverage
- Spray schedule
- Crop yield
- Crop quality

Environmental Impact

- Ground water
- Soil
- **Beneficial insects**
- Residents

Economic Impact

- Pesticides cost
- Equipment cost
- **Operation cost**
- Income/return

Operation/Maintenance

- Operator-friendly
- Easy to maintain
- Good service
- Educational programs

Orchard Sprayers

PennState College of Agricultural Sciences

Conventional Methods:

- Non-precision and non-targeted
- Waste some chemicals (drift to air/ground, gaps) (~ 30% of chemical on the tree canopy)
- Cause environmental issues

Intelligent Sprayer:

- Targeted spraying
- Save chemical
- Reduce production cost

Airblast 101: Turn off nozzles that are not spraying the target.

Tree Canopy Detection – Ultrasonic Sensors

Measurement of distance to objects using sound waves

Pros

- Inexpensive
- Mid long range
- Reliable in varying environment

Cons

- Small area detection
- Inaccurate at soft surface

Detection range: 20 mm to 8 m.

Core Tech. – Object Detection

Tree Canopy Detection – Laser Sensors

Pros

- Full canopy detection
- Long range
- Reliable in varying environment

Cons

- A bit expensive
- Real-time data
 processing
- 2D (one channel) and 3D (multiple channels)
- Detection range: up to 100 m or more
- Cost: ~ \$1,000 \$10,000 or higher

Cameras based Object Detection

Karkee, WSU, 2014

Philipe Ambrozio Dias, 2018

- Very few studies on the camera based for tree orchard sprayer
- Some on the field crop detection (weed control or crop thinning)
- Specific disease/insect detection Spot/targeted spraying?

Core Tech. – Nozzle Control

PennState Extension

Available Intelligent Sprayers

Smart Sprayer - Ultrasonic Sensor

- Stajnko et al., 2012- apple orchard Save up to 48% pesticides
- California almond and plum tests-Giles et al., 2011

Reduced pesticides by 15-40%, and nontargeted orchard floor deposition by 5-72%.

 Florida citrus tests- University of Florida Extension

Average of 14% reduction in pesticides use.

Problems: valve clogged, control system failure, little saving on some sites.

Available Intelligent Sprayers

PennState College of Agricultural Sciences

Smart Sprayer - Lidar Sensor

Intelligent sprayer kit

- Studies from Dr. Heping Zhu's team: ~30-70% of chemical saving
- The intelligent sprayer kit could be retrofitted to existing sprayers.

What We Are Doing?

Tree Canopy Detection

Geo-reference and Orchard Terrain

- Initial measurement Unit (IMU) orchard terrain
- RTK GPS Geo-reference

Intelligent Sprayer Integration and Evaluation

- Ordered an intelligent sprayer unit
- Integrate the sprayer and intelligent unit (March 2020)
- Orchard evaluation (2020 season)

Soil Moisture Sensors for Precision Irrigation

Challenges for Conventional Method:

- Rely on human experiences
- Cause over- or under-irrigation

Precision Irrigation:

- Rely on data
- When and how much to irrigate

Benefit of Precision Irrigation:

- Improve crop yield and quality
- Conserve water and save energy
- Reduce nutrient leaching and environmental impact

Soil Moisture Measurement

Fundamental Principles

Soil Water Parameters (From: Texas A&M AgriLife Extension, E-618)

Soil Moisture Sensors

Soil water content sensor: TEROS 12 @ QTY 3

Soil water potential sensor: TEROS 21 @ QTY 2

Sensor System Setup

- Soil water content and Potential sensors
- Datalogger to record sensor data
- Cellular network for data communication (cloud server)

Irrigation Scheduling Methods

Soil Moisture Sensor Data Recording

I AT&T LTE	3:54 PM	20% 💽		
2	z6-02464			
z6-02464		AT&T LTE	3:54 PM	20% 💶
Battery	Storage Space	<u>`@</u>	z6-02464	
I 00%	30%			
Serial Number	Measurement	TEROS 12		Port 1
z6-02464	10 minutes	Water Content	Soil Temperature	
2.04.2	3:53 PM	$0.350 \text{ m}^3/\text{m}^3$	4.9.90	
		Coturation Extract E	4.0 0	\rangle
			,	
Actions		0.686 mS/cm		
Q	Ļţţ	TEROS 12		Port 2
Refresh	Configure	Water Content	Soil Temperature	
		0.354 m³/m³	4.8 °C	
TEROS 12		Saturation Extract EC		\rangle
Water Content	Soil Temperati	0.500 mS/cm		
$0.250 \text{ m}^3/\text{m}^3$				
0.359 11 711	4.9 0	TEROS 12		Port 3
Saturation Extract EC	r :			
0.668 mS/cm		Water Content	Soil Temperature	
		0.350 m³/m³	5.0 °C	\ \
		Saturation Extract EC		/
		0.395 mS/cm		

Soil Water Content

Soil Water Potential

Test in Commercial Orchards

Hollabaugh Bro. Inc (Honey Crisp)

Mt. Ridge Farms (Fuji)

Twin Springs Fruit Farm (Crimson Crisp)

El Vista Orchards (Gala)

Test in Commercial Orchards

Test in Commercial Orchards

PennState Extension

Automated Irrigation System

College of Agricultural Sciences

Automated Irrigation System

Interface of IoT irrigation System

Soil Water Potential using Watermark Sensors

\$45/piece (Watermark)

Soil Moisture Measurement (Meters Group, Inc)

ZentraCloud

Data service: \$180/season

Sensor datalogger: \$650

- Three sensors (one node) in different depths for fruit trees
- Number of nodes in an orchard depends on the size and variation of the orchard
- Data can be monitored through ZentraCloud, or can be read and manually downloaded from the datalogger

- Soil moisture sensors: \$50-\$225 per piece
- Datalogger and Gateway: \$500-\$1,000
- Solenoid valves: ~\$100
- IoT platform: Free or data fee if using some commercial services

Future Work

PennSt College of

PennState Extension

Basic Studies

- Sensor testing
- Different irrigation strategies
- Soil moisture sensor installation location

IoT-Based Irrigation

- Communication robustness
- Different IoT systems
- Automated Irrigation system

Extension Activities

- Demonstrations & workshops
- Commercial orchard trials
- Orchard/vegetable fields/greenhouse

Please contact me or your local extension educator if you are interested in applying sensor-based irrigation or want to know more about it.

Funding Sources:

State Horticultural Association of Pennsylvania (SHAP) Northeast SARE, Project No. 19-378-33243 USDA-NIFA CPPM (2019-70006-30440)

Project Personnel:

Long He, Dana Choi, James Schupp, Kari Peter, David Biddinger, Greg Krawczyk Daniel Weber, Tara Baugher

Thank you!