

What's in Your Milk?

André F. Brito, Veterinarian, M.S., Ph.D. Associate Professor of Dairy Cattle Nutrition and Management Department of Agriculture, Nutrition, and Food Systems University of New Hampshire Email: andre.brito@unh.edu Office phone: (603) 862-1341

Outline

Market and consumption of milk and plant-based drinks

Nutritional composition of milk and plant-based drinks

Kelp meal supplementation and milk iodine

Final considerations

Workshop objectives

- Compare iodine content of milk vs. plant-based drinks relative to recommended dietary allowance (RDA)
- Compare the fatty acid profile of conventional, organic, and organic grass-fed milk

Association between dairy intake and health outcomes

How about consumption of milk and dairy products?

Dairy products consumption per capita in the US

General outline of the manufacturing process of plant-based drinks

Source: Mäkinen et al. 2016 (Crit. Rev. Food. Sci. Nutr. 56:339-349)

Plant-based drinks market

- Global market reached ~\$16.3 billion in 2018, up from \$7.4 billion in 2010 (Innova Market Insights, 2017)
- Leading this market growth are companies dedicated to develop innovative processes and formulations featuring hemp, flax, pistachio, hazelnuts, almond among others (Innova Market Insights, 2017)
- China showed a compound annual growth rate of 19% between 2010 and 2018 compared with 10% in the US (Innova Market Insights, 2017)
- A key factor in this growth is continued consumer desire for lactose-free, dairyfree, plant-based, and vegan options (Innova Market Insights, 2017)

University of New Hampshire

NUTRITION AND WEIGHT CONTROL ARE THE TOP REASONS TO INCLUDE MORE PLANTS

Top reasons from those wanting to incorporate more plant-based foods

*Incorporate more foods that are unprocessed or minimally processed Source: Nielsen, Homescan Panel Protein survey, April 2017 (U.S.) Source: Nielsen Panelviews survey, March 2017 (Canada)

Copyright © 2017 The Nielsen Company (US), LLC. All Rights Reserved.

US CANADA

n

Incidence of lactose intolerance (LI) in different ethnic races

Ethnicity/ Geographic region	% population with LI
East Asian	90-100
Indigenous (North America)	80-100
Central Asian	80
African American (North America)	75
African (Africa)	70–90
Indian (Southern India)	70
French (Southern France)	65
Ashkenazi Jew (North America)	60-80
Balkans Region	55
Latino/Hispanic (North America)	51
Indian (Northern India)	30
Anglo (North America)	21
Italian (Italy)	20-70
French (Northern France)	17
Finnish (Finland)	17
Austrian (Austria)	15-20
German (Germany)	15
British (U.K.)	5-15

Source: Kumar et al. 2015 (J. Food Sci. Technol. 52:6112-6124)

The most difficult part of being vegan is waking up at 5am to milk the almonds...

Workshop objectives

- Compare iodine content of milk vs. plant-based drinks relative to recommended dietary allowance (RDA)
- Compare the fatty acid profile of conventional, organic, and organic grass-fed milk

Thyroid system

Thyroid hormone functions

- Regulation of metabolic processes essential for normal growth and development (Oetting and Yen, 2007; Cheng et al., 2010; Brent, 2012)
- Regulation of metabolism in adults (Oetting and Yen, 2007; Cheng et al., 2010; Brent, 2012)
- Stimulation of lipogenesis and lipolysis (Oppenheimer et al., 1991)
- Influence key metabolic pathways that control energy balance by regulating energy storage and expenditure (Oetting and Yen, 2007; Liu and Brent, 2010; Iwen et al., 2013)

Recommendations for iodine intake (µg/d) by age or population group

US Institute of Medi	cine ¹	World Health Organiza	tion ²
Age or population group	RDA ³	Age or population group	RNI ⁴
Infants (0-12 months)	110-130	Children (0-5 yr)	90
Children (1-8 yr)	90	Children (5-10 yr)	120
Children (9-13 yr)	120		
Adults (≥ 14 yr)	150	Adults (> 12 yr)	150
Pregnancy	220	Pregnancy	250
Lactation	290	Lactation	250

¹US Institute of Medicine, Academy of Sciences (2001)

²World Health Organization (2007)

³RDA = recommended dietary allowance

⁴RNI = recommended nutrient intake

Spectrum of iodine deficiency disorders

PHYSIOLOGICAL GROUPS	HEALTH CONSEQUENCES OF IODINE DEFICIENCY
All ages	Goitre Hypothyroidism Increased susceptibility to nuclear radiation
Fetus	Spontaneous abortion Stillbirth Congenital anomalies Perinatal mortality
Neonate	Endemic cretinism including mental deficiency with a mixture of mutism, spastic diplegia, squint, hypothyroidism and short stature Infant mortality
Child and adolescent	Impaired mental function Delayed physical development Iodine-induced hyperthyroidism (IIH)
Adults	Impaired mental function lodine-induced hyperthyroidism (IIH)

Large nodular goiter in a 14-year old boy

Source: Zimmermann 2009 (Endoc. Rev. 30:376-408)

Neurological cretinism (A) and myxedematous cretinism (B)

Source: Zimmermann, 2009 (Endoc. Rev. 30:376-408)

Global Scorecard of Iodine Nutrition 2017

Based on median urinary iodine concentration (mUIC) in school-age children (SAC) and adults

Source: The Iodine Global Network (2017)

Global Scorecard of Iodine Nutrition 2017

Based on median urinary iodine concentration (mUIC) in pregnant women

Source: The Iodine Global Network (2017)

Estimated iodine intake over time

University of New Hampshire Source: The Iodine Global Network (2017) WHO = World Health Organization

British Journal of Nutrition (2017), **118**, 525–532 © The Authors 2017 doi:10.1017/S0007114517002136

Iodine concentration of milk-alternative drinks available in the UK in comparison with cows' milk

Sarah C. Bath¹, Sarah Hill², Heidi Goenaga Infante², Sarah Elghul¹, Carolina J. Nezianya¹ and Margaret P. Rayman¹*

¹Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK ²LGC Limited, Queens Road, Teddington, Middlesex TW11 0LY, UK

(Submitted 13 March 2017 - Final revision received 23 June 2017 - Accepted 14 July 2017 - First published online 26 September 2017)

Bath et al. (2017) study methods

- The initial survey included 20 grocery stores and 28 brands of plant-based drinks were identified
- Iodine concentration of 7 types of plant-based drinks (i.e., soy, almond, coconut, oat, rice, hazelnut, and hemp) was determined chromatographically in 47 products
- For comparison, winter samples of conventional (n = 5) and organic (n = 5) cows' milk were included

Iodine intake per serving of milk and plant-based drinks relative to RDA for pregnant and nursing women

Iodine intake per serving of milk and plant-based drinks relative to RDA for children (0-5 yr)

Iodine intake per serving of milk and iodine-fortified plant-based drinks relative to RDA for pregnant and nursing women

¹RDA = recommended dietary allowance based on the World Health Organization (2007)

Iodine intake per serving of milk and iodine-fortified plant-based drinks relative to RDA for children (0-5 yr)¹

¹RDA = recommended dietary allowance based on the World Health Organization (2007)

Protein content per serving of milk and plant-based drinks compared with RDA for young children

Source: Singhal et al. 2017 (JPGN 64:799–805) RDA = recommended dietary allowance

Calcium content per serving of milk and fortified plant-based drinks compared with RDA for young children

New Hampshire

Source: Singhal et al. 2017 (JPGN 64:799–805) RDA = recommended dietary allowance

Nutritional composition of soymilk vs. cow's milk (content/serving)

	Fat (gr)	Fatty acid (gr)	Fiber (gr)	Protein (gr)	Carbohydrate (gr)	Lactose (gr)	Ca (mgr)	Fe (mgr)	P (mgr)	Calories (Kcal)
Soymilk	4.67	0.52	3.18	6.73	4.43	0	9.8	1.4	120.05	79
Cow milk	8.15	5.07	0	8.02	11.37	4.27	290.36	0.12	226.92	150

Source: Hajirostamloo, 2009 (Int. J. Nutr. Food Eng. 3:455–457)

Kelp meal supplementation

Kelp meal nutritional properties

- Brown seaweed (Ascophyllum nodosum) rich in minerals, particularly iodine (Antaya et al., 2015)
- Contains a wide spectrum of nutritional compounds including polyunsaturated fatty acids (PUFA), polyphenols, bioactive peptides, and vitamins (Kumari et al., 2010; Tierney et al., 2010; Fitzgerald et al., 2011)
- Rich in phlorotannin, a polyphenol similar to terrestrial tannins known to affect carbohydrate and protein utilization, and to inhibit bacterial growth (Ragan and Glombitza, 1986; Wang et al., 2008, 2009)
- High concentrations of antioxidants such as β-carotene and fucoxanthine, which may improve animal health (Haugan and Liaaen-Jensen, 1994; Allen et al., 2001)

Use of kelp meal in organic dairy farms in the Northeast and Midwest US

- 59% of organic dairy farmers feed kelp meal in the Northeast (Antaya et al., 2015)
- 49% of organic dairy farmers feed kelp meal in Wisconsin (Hardie et al., 2014)
- 83% of organic dairy farmers feed kelp meal in Minnesota (Sorge et al., 2016)

Why organic dairy farmers feed kelp meal in the Northeast?

- It improves body condition score and overall animal appearance
- It decreases milk somatic cell count, reproductive problems, and incidence of "pinkeye" (i.e., infectious bovine keratoconjunctivitis)
- It helps with control of nuisance flies during the grazing season

Source: Antaya et al. 2015 (J. Dairy Sci. 98:1991-2004)

Source: Denning et al. 2014 (J. Dairy Sci. 97 :4624-4631)

- 1. Haematobia irritans L.,
- 2. Stomoxys calcitrans L.
- 3. Musca domestica
- 4. *Musca autumnalis,* De Geer

Pasture vs. kelp meal nutritonal composition

	Feeds			
Item	Pasture	Kelp meal		
	% of dry matter (unle	ess otherwise noted)		
Crude protein	19.5	10.2		
Neutral detergent fiber	51.0	53.9		
Acid detergent fiber	31.4	39.9		
Са	0.76	1.31		
Р	0.36	0.25		
Mg	0.28	0.69		
К	2.68	3.53		
S	0.28	2.84		
l, ppm	0.62	820		

Sources: Antaya et al. 2015; Hafla et al. (2016); Brito et al. (unpublished)

Nutritional comparison of different kelp meal products

	Kelp meal products					
ltem	Thorvin 1	Thorvin 2	TASCO 1	TASCO 2	Sealife	
	%	of dry matt	er (unless ot	herwise note	2)	
Са	1.31	1.28	1.12	1.19	1.13	
Р	0.25	0.21	0.16	0.16	0.15	
Mg	0.69	0.80	0.89	0.84	0.79	
К	3.53	2.57	2.51	2.37	1.76	
S	2.84	2.71	3.37	3.30	3.27	
Na	3.90	3.59	3.42	3.39	3.14	
Cl	4.70	4.73	3.18	3.30	2.95	
Se	<0.041	-	-	0.025	-	
l, ppm	820	727	356	775	-	

Sources: Antaya et al. 2015; Brito et al. (unpublished)

Milk iodine increased linearly in organic dairy cows fed kelp meal during the winter season

Source: Antaya et al. 2015 (J. Dairy Sci. 98:1991-2004)

Iodine intake per serving of milk from cows fed 4 oz of kelp meal relative to iodine RDA¹

Milk I ■ I RDA

Tollerable upper limits for iodine intake

US Institute of Med	icine ¹	World Health Organizat	ion ²
Age or population group	μg/d	Age or population group	µg/d
0-12 months	Unknown	Infants	180
1-3 years	200	Pregnancy	500
4-8 years	300	Lactation	500
9-13 years	600		
14-18 years	900		
19-50 years	1,100		

¹US Institute of Medicine, Academy of Sciences (2001) ²World Health Organization (2007)

Excess iodine intake and human health

• Hyperthyroidism (Sun et al., 2014; Katagiri et al., 2017)

O Hypothyroidism (Sun et al., 2014; Katagiri et al., 2017)

• Thyroid nodules (Katagiri et al., 2017)

• Autoimmune thyroiditis (Sun et al., 2014)

• Goiter (Katagiri et al., 2017)

Milk iodine concentration in grazing cows fed kelp meal

University of New Hampshire

General structure of glucosinolate

 $R = C \sum_{N=OSO_3^{-1}}^{N=OSO_3^{-1}}$

Source: Tripathi and Mishra (2007)

Glucosinolates intake during the grazing season

N

Pasture and TMR intake during the grazing season

Source: Brito et al. (unpublished)

University of New Hampshire

Glucosinolates intake during the grazing season

Source: Brito et al. (unpublished)

University of New Hampshire

Milk iodine concentration in grazing cows fed kelp meal

Source: Brito et al. (unpublished)

Milk iodine concentration in dairy cows fed 4 oz of kelp meal during the winter¹ and summer seasons²

¹Winter study: Antaya et al. 2015 ²Summer study: Brito et al. (unpublished)

Summary

- Plant-based drinks are poor sources of iodine and must be fortified to meet recommended dietary allowance (RDA) for humans
- Kelp meal is an excellent source of iodine, but a comprehensive evaluation of iodine content in retail organic milk is needed

Workshop objectives

- Compare iodine content of milk vs. plant-based drinks relative to recommended dietary allowance (RDA)
- Compare the fatty acid profile of conventional, organic, and organic grass-fed milk

Fatty acid classes in milk fat

Saturated fatty acids

• 55 - 80% of total fatty acids

Monounsaturated fatty acids

• 15 - 30% of total fatty acids

Polyunsaturated fatty acids

• 3 - 6% of total fatty acids

Milk fatty acids affected by:

- Fresh forage and concentrate eaten (Croissant et al., 2007; Coppa et al., 2013)
- Differences within and between breed (Soyeurt et al., 2008; Maurice-Van Eijndhoven et al., 2011)
- Season (Heck et al., 2009)
- Climate (Kamleh et al., 2010)
- Stage of lactation (Craninx et al., 2008)
- Management (Fall et al., 2008)

Received: 31 October 2017

Revised: 10 January 2018

Accepted: 17 January 2018

DOI: 10.1002/fsn3.610

ORIGINAL RESEARCH

WILEY Food Science & Nutrition

Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes

Charles M. Benbrook^{1,2} | Donald R. Davis^{3*} | Bradley J. Heins⁴ | Maged A. Latif⁵ | Carlo Leifert⁶ | Logan Peterman⁵ | Gillian Butler⁷ | Ole Faergeman⁸ | Silvia Abel-Caines⁵ | Marcin Baranski⁶

Comparison of key fatty acids obtained from conventional, organic, and organic grass-fed whole milk (Grassmilk[™])

	Types of Milk			% Diffe	rence ¹
Fatty acids, % total	Conventional	Organic	Grassmilk™	GM vs. CONV	GM vs. ORG
Total ω-6	3.06	2.28	1.46	-52%	-36%
Total ω-3	0.64	1.03	1.58	+147%	+52%
ω-6/ω-3	5.78	2.28	0.95	-83%	-58%
Total CLA ³	0.62	0.73	1.39	+125%	+90%
ALA (ω-3)	0.51	0.82	1.23	+141%	+50%

¹CONV = conventional milk; ORG = organic; GM = GrassmilkTM ALA = α -linolenic acid Source: Benbrook et al. 2018 (Food Sci Nutr. 6:681–700)

Comparison of key fatty acids (% of total) obtained from conventional, organic, and organic grass-fed whole milk (Grassmilk[™])

	California	Mideast	Midwest	Northeast	SEM	p-value
Observations	85	54	582	442		
Total ω-3	1.40 ^c	1.434 ^{bc}	1.601ª	1.575 ^{ab}	0.04	.002
Total ω-6	1.364 ^{ab}	1.309 ^b	1.477 ^a	1.495ª	0.04	.002
Total CLA	1.282	1.165	1.300	1.379	0.07	.09
LA/ALA	1.091	1.022	1.035	1.047	0.03	.62
ω-6/ω-3	1.189	1.232	1.206	1.151	0.07	.75

*Least square means. Means within a row without common superscripts are different at p < .05. Means were evaluated using Tukey's multiple comparisons test.

Source: Benbrook et al. 2018 (Food Sci Nutr. 6:681–700)

LA = linoleic acid; ALA = α -linolenic acid

Monthly variation in mean ω-6/ω-3 ratio of Grassmilk[™] over all US geographical regions from 2014 to 2016

Comparison of fatty acid profile between Grassmilk[™] and soymilk

	Product		
Fatty acids (FA), % total FA	Grassmilk™	Soymilk	
Oleic acid (ω-9)	20.2	20.4	
Linoleic acid (ω-6)	1.25	54.8	
α-Linolenic acid (ω-3)	1.23	7.53	
Saturated FA	66.9	15.3	
MUFA	28.1	22.1	
PUFA	6.61	62.4	
ω-6/ω-3 ratio	0.95	7.28	
Total <i>trans</i> FA	5.39	0.03	

Sources: Benbrook et al. 2018 (Food Sci Nutr. 6:681–700) Penalvo et al. 2004 (Eur. Food Res. Technol. 219:251–253)

Summary

- Grass-fed organic milk (Grassmilk[™]) resulted in greater proportion of ω-3 fatty acids and CLA and lower ω-6/ω 3 ratio than conventional and traditional organic
- O All cow milk types (i.e., conventional, organic, and grass-fed organic/Grassmilk[™]) led to lower ω-6/ω-3 ratio compared with the plant-based dairy alternative (i.e., soymilk)

Final considerations

- Globally, 29.8% of school-age children (246 million) and 30% of the world population (~2.2 billion) are estimated to have insufficient iodine intake
- In the US, consumption of plant-based drinks is increasing at expense of milk, which may have implications to the iodine status of vulnerable populations (e.g., children, pregnant and lactating women, vegans)
- Organic milk, particularly grass-fed is an excellent source of human-healthy fatty acids implying that management strategies to increase forage intake in organic and conventional sector should be implemented
- Nutritionally, cow's milk and plant-based drinks are completely different foods, and an evidence-based conclusion on the health value of the plantbased drinks requires more studies in humans

Acknowledgments

University of New Hampshire College of Life Sciences and Agriculture

United States Department of Agriculture National Institute of Food and Agriculture

 You're invited!
 J

 NOFA-NY's 37th Annual Organic
 S

 Farming & Gardening Conference
 S

January 18-20, 2019 Saratoga Hilton & City Center Saratoga Springs, NY

Questions?

