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Letter to the editor 

Paired resampling to detect field-level soil organic carbon stock change. Comment on “Testing the 
feasibility of quantifying change in agricultural soil carbon stocks through empirical sampling” by 
Bradford et al. 

Bradford et al. (2023) highlighted how spatial variability of SOC 
stocks is a major obstacle for detecting single-field SOC stock changes 
when using field sampling schemes common in measurement, reporting, 
and verification (MRV) protocols. Specifically, when soil sampling is 
constrained to economically feasible densities (e.g., ~1 sample ha− 1), 
and spatial sampling locations are randomly selected through time, 
Bradford et al. (2023) showed that single-field estimates of SOC stock 
change can be highly inaccurate. While sampling density often is limited 
by logistical and financial constraints, the decision to employ a tempo
rally random versus a paired sampling scheme (i.e., temporal resam
pling near the original sampling locations) should pose minimal 
constraints (e.g., it may require a GPS receiver). Bradford et al. (2023) 
suggested that a paired design theoretically could improve SOC stock 
change estimates over temporal random sampling and that more 
research exploring this approach should be undertaken. While we agree 
that this issue is urgent given a lack of consistency in currently employed 
MRV protocol sampling schemes (Oldfield et al., 2021), several studies 
have shown the statistical benefits of paired temporal sampling for 
estimating temporal changes in soil properties (e.g., Papritz and 
Webster, 1995; Lark, 2009; Brus and de Gruijter, 2013). Combining an 
approach analogous to Bradford et al. (2023), a spatially gridded SOC 
stock dataset, and a spatial autocorrelation model, we visually demon
strate how resampling soils near the original sampling locations miti
gates sampling errors associated with temporal random sampling when 
estimating SOC stock change. 

We used a historical dataset from the Wisconsin Integrated Cropping 
Systems Trial (WICST), a long-term agroecosystem experiment located 
on Mollisols in south-central Wisconsin (Posner et al., 1995). In 1989, 
soil samples for SOC mass fraction and bulk density were collected at 
0 to 15- and 15 to 30-cm increments at alternating points on a 27.5 ×
27.5-m grid across a ~22-ha field (Sanford et al., 2012). We interpolated 
this dataset with ordinary kriging and an exponential isotropic spatial 
autocorrelation model using ggstat (Gräler et al., 2016) to produce a 1 ×
1-m grid of 0 to 30-cm SOC stocks (Fig. 1A). In line with the approach 
used by Bradford et al. (2023), we divided a 16-ha portion of the field 
into 4-ha subfields to serve as discrete sampling units (Fig. 1A). We 
simulated four sampling scheme scenarios, where each consisted of two 
hypothetical time points (time 1 and time 2) with no true temporal 
change in the SOC stock at any location in the field. In the first scenario, 
soil samples were selected at random locations at both time points 
(Fig. 1B) analogous to Bradford et al. (2023). In the last three scenarios, 
soil samples for the first time point were selected randomly, and samples 
for time 2 were selected in a random direction at 50, 25, or 10-m 

distances from each of the time 1 locations, while remaining within the 
original 4-ha subfield (Fig. 1C, 1D, 1E). In all scenarios, samples were 
collected at a density of 1 sample ha− 1, samples were evenly distributed 
among the 4-ha subfields, and each scenario was simulated 100 times. 
All data processing and simulation was conducted in R 4.2.3 (R Core 
Team, 2023). We refer to the difference between field-average SOC 
stocks between the two simulated time points (time 2 – time 1) as 
“apparent SOC change,” because the true SOC change was zero, and 
therefore any observed difference between the time points is artifactual. 

When soil sampling locations were randomly selected at both time 
points, our simulations confirmed those of Bradford et al. (2023), with 
relatively high dispersion in apparent SOC change estimates (2.3 Mg 
ha− 1 median absolute deviation, MAD) among simulations and a 
prominent regression to the mean (Fig. 2A). When resampling at time 2 
was constrained to locations 50 m from the time 1 sampling locations, 
the dispersion of apparent SOC change was similar to random sampling 
(2.4 Mg ha− 1 MAD), but the magnitude of regression to the mean was 
reduced (Fig. 2B). When resampling locations were constrained to 
within 25 m of the original sampling point, dispersion of apparent SOC 
change decreased (1.3 Mg ha− 1 MAD) and regression to the mean was 
reduced (Fig. 2C). In the final scenario where resampling at time 2 was 
constrained to 10 m from the time 1 locations, the dispersion of apparent 
SOC change was further reduced (0.7 Mg ha− 1 MAD) and the regression 
to the mean was not evident (Fig. 2D). Given that SOC stocks generally 
show strong field-scale spatial autocorrelation (Gamble et al., 2017), we 
expect that paired temporal sampling schemes will generally improve 
estimates in SOC stock change in single fields where sampling density is 
constrained (e.g., Papritz and Webster, 1995; Lark, 2009). 

Our in silico simulation is limited, as our soil samples were collected 
at distances >25 m apart, and therefore the spatial variability and cor
relation structure of SOC stocks at smaller spatial scales at our site are 
not well resolved. Recent work by Poeplau et al. (2022) reported sig
nificant unstructured spatial variability at scales <20 m suggesting that 
it may be necessary to collect replicate soil samples at each location (e. 
g., three soil cores within 1 m at each time point) to improve overall 
accuracy of SOC change measurements using a paired approach. Pre
sumably, these replicate samples could be composited prior to labora
tory analysis but would nonetheless incur additional sampling costs. An 
additional limitation is that the paired approach does not provide im
provements over the random approach for estimating the initial mean 
SOC stock, which has implications for estimating changes in the SOC 
stock if the SOC stock change depends on the initial SOC stock (Lark 
2009). For example, if true SOC stock changes are greater in locations 

DOI of original article: https://doi.org/10.1016/j.geoderma.2023.116719. 

Contents lists available at ScienceDirect 

Geoderma 

journal homepage: www.elsevier.com/locate/geoderma 

https://doi.org/10.1016/j.geoderma.2024.116959    

https://doi.org/10.1016/j.geoderma.2023.116719
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2024.116959
https://doi.org/10.1016/j.geoderma.2024.116959
https://doi.org/10.1016/j.geoderma.2024.116959
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Geoderma xxx (xxxx) xxx

2

Fig. 1. Spatial variability of soil organic carbon (SOC) stocks (0 – 30 cm) at the Wisconsin Integrated Cropping Systems Trial (WICST) as interpolated from gridded 
samples using a spatial autocorrelation model (A). The overlaid outline shows the 16-ha field and 4-ha subfields that were used for the sample scheme simulations. 
Example instances of sampling schemes where soil samples are collected at two time points (time 1 or time 2) using a temporally random sampling approach at both 
time points (B) versus paired approaches where samples at time 2 are collected in a random direction at 50-m (C), 25-m (D), or 10-m (E) distances from the time 
1 samples. 
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with higher initial SOC stocks than locations with lower initial SOC 
stocks, and if the initial SOC stock is overestimated due to random 
sampling error, then changes in SOC stocks likely will be overestimated 
as well. To mitigate this issue, initial sampling locations can be selected 
using a stratified random design, where strata are assigned by soil 
classification, topographic wetness index, or other likely SOC covariates 
(Potash et al., 2022). 

The optimal sampling design for an SOC stock monitoring project 
may be different than that of an SOC stock inventorying or mapping 
project (Lark 2009; de Gruijter et al. 2016). That is, compared to the 
temporal random approach, the temporal paired approach provides a 
better estimate of the SOC stock change but provides a less robust esti
mate of the mean SOC stock (e.g., Brus and de Gruijter, 2013). If both the 
mean SOC stock and SOC stock change estimates are desired, hybrid 
sampling methods such as serially alternating or supplemented panel 
approaches may be more prudent (Brus and de Gruijter, 2013). In cases 
where soil at the paired sampling locations could be fraudulently 
manipulated between campaigns, optimized new resampling locations 
could be determined based on the measurements from the previous 
campaign (de Gruijter et al. 2016). However, for routine SOC stock 
monitoring projects, where the SOC stock change is the variable of in
terest and the risk of fraudulent soil manipulation is negligible, paired 
temporal sampling is likely the most practical option. 

We concur with Bradford et al. (2023) that field-level SOC work is a 
necessary step forward towards improving our estimates of SOC stock 
changes under working-farm conditions across the landscape, which 

cannot be attained from plot-level experiments. In our on-farm work, 
and in other discussions with land managers, we find that many in
dividuals have a genuine desire to quantify SOC stock changes under 
their management practices for both personal and market validation 
reasons. Thus, in addition to addressing the scientific and economic 
needs to quantify field- and landscape-level SOC changes, on-farm SOC 
work provides a meaningful connection between land managers, their 
communities, and broader soil and climate goals. As such, there is an 
urgent need to accurately quantify field-level SOC stock changes at 
economically viable soil sampling densities. We hope that future multi- 
scale empirical studies will be undertaken to continue to improve the 
protocols for assessing SOC stock changes at the field-level. In the 
meantime, we suggest that MRVs place a greater emphasis on tempo
rally paired sampling schemes, which will likely provide more robust 
estimates of field-level SOC change. 
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