ROOTSTOCK SELECTION AND CHOICE

Washington Viticulture Looking Forward

Jean C. Dodson Peterson, Ph.D.
Founding Department Chair
Associate Professor of Viticulture
Department of Viticulture and Enology
Washington State University, Tri-Cities

European Phylloxera Crisis

Phylloxera are aphids native to the Eastern and Southwestern United States. They that feed on grapevine roots, causing damage known as tuberosities and nodosities.

3

Phylloxera: The Spread

- Vitis vinifera → New World
- American Wild Species and Phylloxera → Europe (1845)
- France Quickly Impacted by Phylloxera and by 1900, 75% of French Vineyards Destroyed
- Spreads Rapidly Across Europe and North
 Africa with Minor Exceptions

Phylloxera: The Initial Response

French American hybrids were among the industry's initial response but were problematic due to their chemical and sensory attributes. Additionally, any *Vitis vinifera* in the background perpetuates the risk.

Vitis riparia

TRADITIONAL USE

- Close Spacing
- Fertile Soils
- Water Available
- · Wet Feet Situations
- Strong Phylloxera Tolerance

11

Vitis rupestris

ORIGIN AND HISTORY

- Native to the United States Dry, Rocky Creek
 Beds
- 'Rupestris du lot' or 'St. George'
- Long History in California Dry-farmed
 Vineyards

TRAITS

- Deep Rooted Drought Adaptive
- Susceptible to Nematodes
- Lime Sensitive
- More Scion Vigor
- · Roots and Grafts Well

Vitis rupestris

TRADITIONAL USE

- Dry-Farmed Sites
- Not Overly Fertile Soils
- · Not Shallow Soils with Limited Water
- Not where Nematodes are Present

13

Vitis berlandieri

ORIGIN AND HISTORY

- Native to the United States Limestone Hills of Central Texas
- Must be Hybridized with Other Species
- Imported to France Lime

TRAITS

- Deep Rooted Drought Avoidance
- Not Lime Sensitive
- More Scion Vigor
- Roots and Grafts Poorly

Vitis berlandieri

TRADITIONAL USE

- Drought Prone Sites
- High Lime Presence
- Moderate Phylloxera Tolerance

15

Considerations for Rootstock Selection

Avoid Making the Clearly Wrong Decision

Vitis riparia x Vitis rupestris

MAJOR TRAITS

- Useful on fertile, non-calcareous soils
- Root system generally spreads evenly throughout the soil profile
- Nematode resistance varies by selection
- Typically at least minimally tolerant to Phylloxera
- Easy to root and graft

23

3309 Couderc 3306 Couderc

- Intolerant to virus → only use with certified wood
- Roots and grafts well
- Decent Phylloxera tolerance
- Very susceptible to nematodes (root-knot)
- Vigorous on deep fertile soils
- Induce moderate scion vigor despite shallow root system
- Good candidate for high density plantings

- Good Phylloxera tolerance but feeding does occur on young root tips → caution on heavy clay soils prone to drought
- Good nematode tolerance (root-knot)
- Low to moderate vigor induced in scion → more vigorous than 3309C on fertile soils with water
- Tolerates wet feet
- Lime sensitive
- Not drought tolerance
- Easy to root and graft

Schwarzmann

- Good Phylloxera tolerance → potentially better nodosity resistance than 101-14MGT
- Good nematode tolerance (ectoparasitic)
 however moderate levels of root galling from
 X. index feeding
- Moderate vigor induced in scion but not tolerant of summer drought conditions
- Less commonly used → less data available
- Easy to root and graft

Vitis berlandieri x Vitis rupestris

MAJOR TRAITS

- Drought and lime tolerant in warmer growing regions
- Deep root system
- Limited nematode tolerance
- Decent Phylloxera tolerance
- Difficult to root and graft

- Good Phylloxera tolerance
- Susceptible to nematodes
- Moderate to higher vigor induced in scions
- Slow to establish when first planted but strong by years 4-5
- Intolerant of virus presence with graft incompatibilities -> Certified material needed
- Moderate rooting and grafting
- Recommended for hillsides and dry-farmed sites where drought is common/likely
- Careful of inducing too much vigor in the scions, causing vegetative characteristics in wines and a tendency for poor bud fruitfulness
- Caution on heavy clay soils → historic reports of K deficiency

- Good Phylloxera tolerance
- Moderate to low nematode tolerance
- High vigor induced in scions → more than 110R but less than 140Ru
- Well suited for dry farming but can collapse under sudden drought
- Decent salt tolerance
- Widely used on low vigor sites → can induce very high vigor on scions on fertile soils with ample water
- Roots and grafts well

- Good Phylloxera tolerance
- Low nematode tolerance
- Highest vigor induced in scions of this group
 - → caution in deep fertile soils
- Suited for shallow, droughted and/or limestone soils
- Roots and grafts moderately well

Vitis berlandieri x Vitis riparia

MAJOR TRAITS

- Crosses selected for Phylloxera tolerance, lime tolerance and moderate vigor
- Rooting depth between shallow and moderate
- Moderate nematode tolerance
- Most graft and root well

33

Kober 5BB 34

- Good Phylloxera tolerance
- Good lime tolerance
- Moderate nematode tolerance (broadly speaking)
- Very intolerant of virus → graft failure and uneven healing, must used certified wood
- Roots and grafts moderately well
- Slightly more drought tolerance than 5C or 420A but less so than 110R or St. George
- Very sensitive to Phytophthora root rot → avoid on sites with standing water in the Spring

- Moderate lime tolerance
- Moderate nematode tolerance
- Overgrown graft unions are common
- Does not tolerate deficit irrigation well
- Roots and grafts well

SO4

- Good Phylloxera tolerance
- Moderate lime tolerance
- Moderate nematode tolerance
- Care in older vineyards → was commonly confused with 5C until 1990
- Does not tolerate deficit irrigation well
- Roots and grafts moderately well

- Good Phylloxera tolerance
- Moderate lime tolerance
- Low to moderate nematode tolerance → lacking sufficient field trials
- Induces lower scion vigor on most soils compared to 5C and 5BB
- K deficiency has been observed in scions

- Low to moderate tolerance of limestone soils
- Low vigor induction in scion
- Decent Phylloxera tolerance
- Moderate to high nematode tolerance
- Low drought tolerance
- Tolerates wet feet well
- Roots and grafts easily

- Resists Dagger nematode feeding, allows GFLV into scion w/o major symptoms
- Susceptible to root-knot nematodes
- Decent resistance to Phylloxera → V. vinifera parentage makes this doubtful in the long-term
- High induction of scion vigor
- Poor limestone tolerance
- Good response to deficit irrigation and aggressive cover crop use

- Susceptible to nematodes
- Supports high population of Phylloxera but no reports of failure in the field
- Typically used in dry-farmed vineyards
- Drought avoider due to extensive root system
- Does not perform well on shallow soils with limited water
- Considered high vigor rootstock with generally lowyield:pruning weight ratios (reduced fruit set)
- Generally good to avoid with small-clustered or loose clustered cultivars on fertile soils

Riparia Gloire

- Not tolerant to limestone soils
- Strong Phylloxera tolerance
- Roots and grafts well
- Known to induce low vigor even in fertile soils →
 not much recent research
- Used in high density plantings with ample water
- Reported to encourage earlier ripening and maturity of scions

Rootstocks for the Future

43

Rootstock: The Future

WHERE TO WE GO FROM HERE?

- Evolving Pest Pressure, Fires, Drought, Climate Change
- Quantitative Data, Vineyard to Bottle, Building on Past Mistakes and Successes
- Site Specific, Production Oriented, Future Needs

