

Garlic Fertility - Optimal Rates and Timing

Crystal Stewart

Eastern NY Commercial Horticulture Program
Cornell University Cooperative Extension

Topics for today

How do you grow great garlic?

What are the optimum fertility rates?

What is the optimal timing?

Growing Great Garlic

Quality starts with the seed

Seed is the first source of fertilizer

Seed is the first source of disease

Choose disease and nematode-free seed

Fusarium

Images: Crystal Stewart

Fusarium bulb rot (left) and Fusarium basal rot (right).

Surface disorders

Embelissia

Aspergillus

Images: Crystal Stewart

Creating a good planting environment

Soil texture and structure affect planting depth

Timing of planting affects final bulb quality

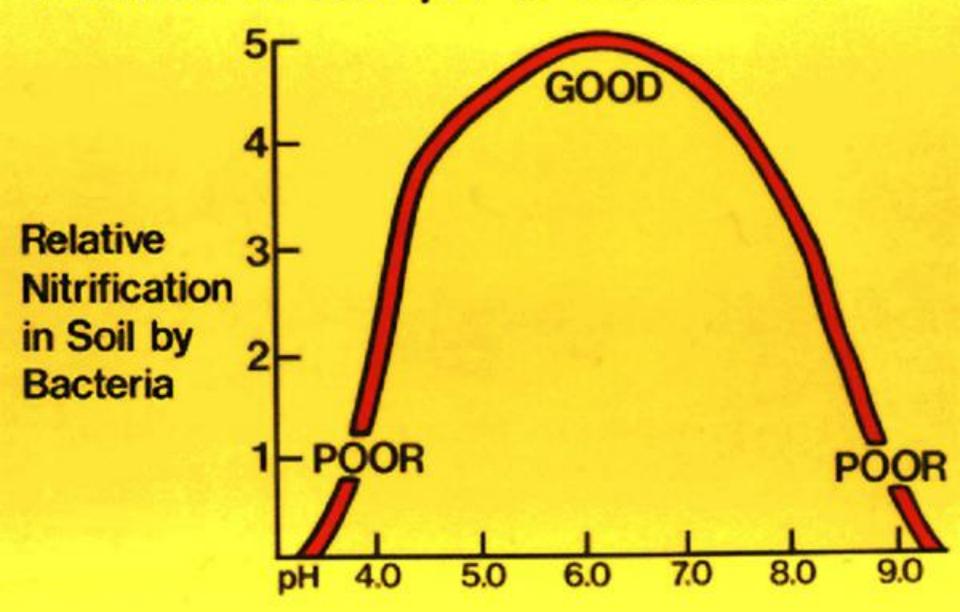
Anatomy of a great garlic plant

Healthy, vigorous root system

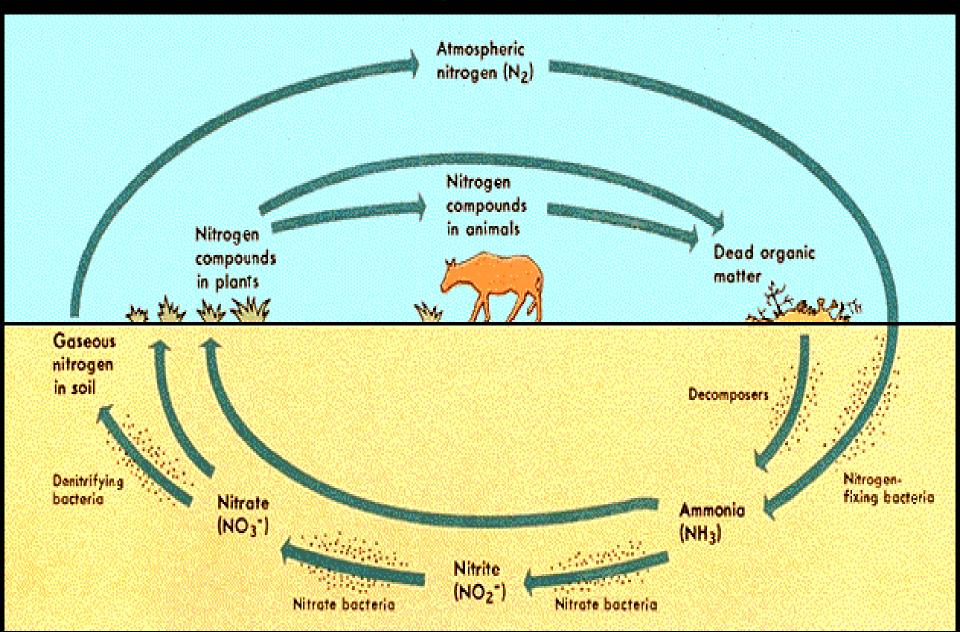
Healthy, durable leaves

Ok, but what about the fertilizer?

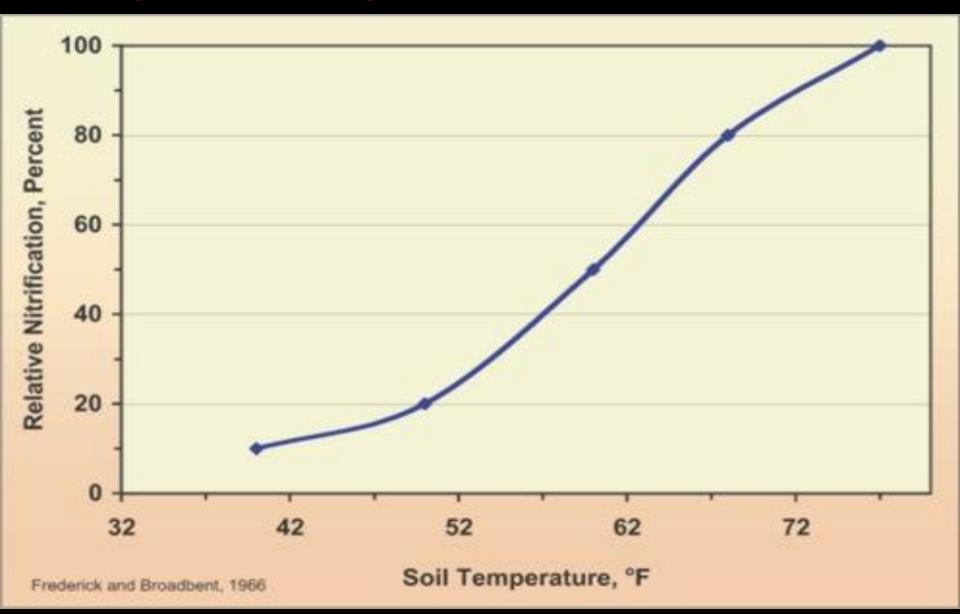
Garlic	Nitrogen (N) Lbs/A	Phosphorus (P2O5) Lbs/A			Potassium (K2O) Lbs/A						
Soil Test		Very low	Low	Medium	High	Very High	Very low	Low	Medium	High	Very High
Results		<3lbs/A	3-6	7-13	14-40	>40	<50	51-100	101-200	201-300	>300
Incorporate at planting	0	200	150	100	50	0	200	150	100	50	0
Sidedress before emergence	25-50	0	0	0	0	0	0	0	0	0	0
Sidedress 2-3 times, 3-4 weeks apart	25-50 divided among sidedressings	0	0	0	0	0	0	0	0	0	0
TOTAL	50-100	150	100	75	50	0	150	100	75	50	0

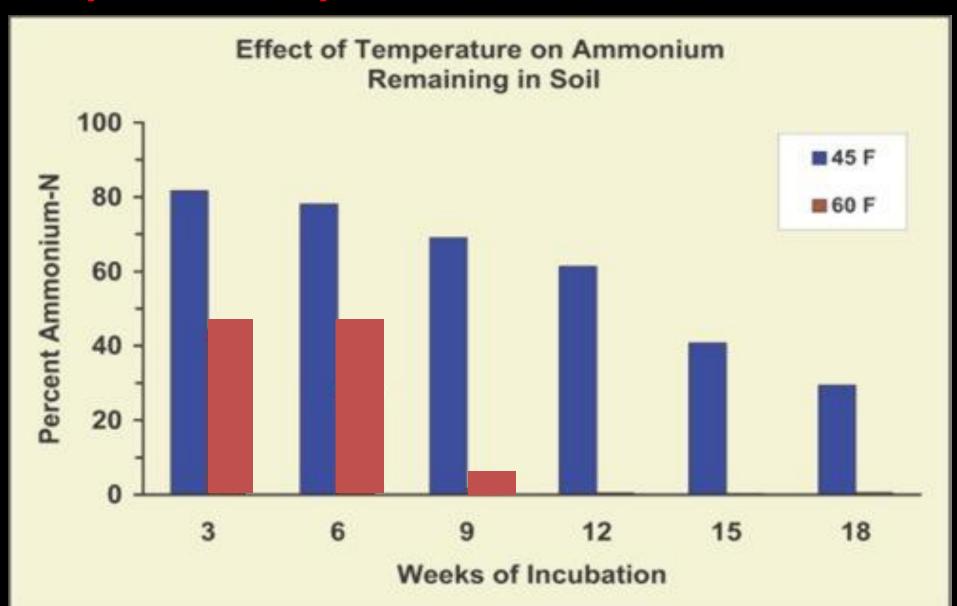

Source: Cornell Recommendations for garlic, used by Agro-One Soil Lab. Based on use of a Morgan extract.

Manage N to optimize shoot growth


Timing—when does garlic actually use N to make shoots?

Rates—how much N does a plant need to optimize bulb size?


Relation of Soil pH to Nitrification


Nitrogen Cycle

Ammonium is converted to nitrate, process is temperature dependent, low <50F

Ammonium is converted to nitrate and is temperature dependent

Spring applied ammonium nitrate

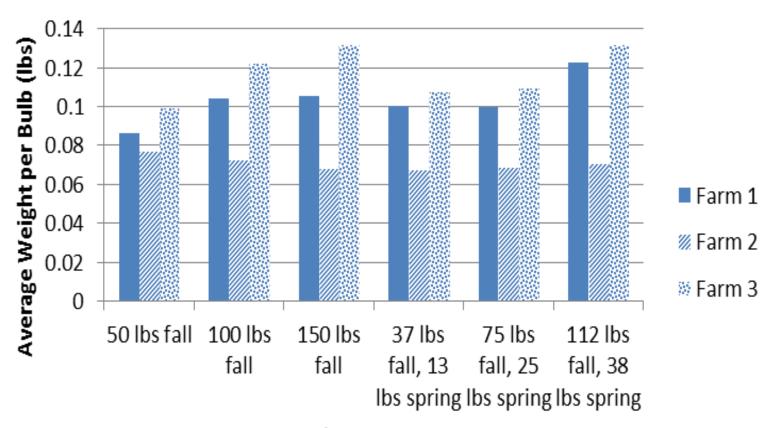
N Rate (lbs/A)	Garlic Yield (lbs/A)
0	16,830
45	19,800
90	19,620
N Rate (Ibs/A)	Garlic Yield (lbs/A)
	Garlic Yield (lbs/A) 17,280
(lbs/A)	

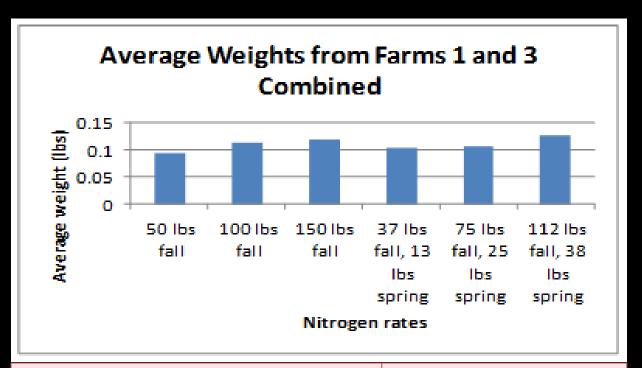
O'Callaghan and Ellerbrock, 1998, 1999.

Leaf Number	Garlic Yield (lbs/A)
3	20,700
5	19,620
7	19,800
10	17,600
10	17,000
Leaf Number	Garlic Yield (lbs/A)
Leaf	·
Leaf Number	Garlic Yield (lbs/A)

O'Callaghan and Ellerbrock, 1998, 1999.

Date	Leaf Number	N (lbs/A)	Garlic Yield (lbs/A)	
3/31	3	90	22,000	
3/31 & 4/23	3/5	45/45	21,600	
3/31 & 5/12	3/7	45/45	21,200	
4/23 & 5/12	5/7	45/45	21,000	
Date	Leaf Number	N (lbs/A)	Garlic Yield (lbs/A)	
4/3	3	90	19,800	
4/3 & 5/3	3/5	45/45	18,900	
5/3 & 6/3	5/10	45/45	17,500	


Fertility Trials Results, 2013


50 lbs total	100 lbs total	150 lbs total
Nitrogen	Nitrogen	Nitrogen
All fall	All fall	All fall
75% fall, 25%	75% fall, 25%	75% fall, 25%
quick split	quick split	quick split
spring*	spring	spring

^{*}All fertility treatments were organic

Average weight per bulb versus N rates

Nitrogen rates

Treatment	Average Weight
50 lbs fall	0.093
100 lbs fall	0.113
150 lbs fall	0.119
37 lbs fall, 13 lbs spring	0.104
75 lbs fall, 25 lbs spring	0.105
112 lbs fall, 38 lbs spring	0.127

Key conclusions:

Fall applications of slow release, organic N fertilizers can be extremely effective

Spring applications of quick release N do not need to be split

Spring N should be applied early

Weed control is as important as fertility

Questions?

