
T
ab

le
 2

 
Pa

rti
al

 li
st

 o
f s

el
ec

te
d 

no
nh

os
t p

la
nt

s 
us

ef
ul

 in
 c

ro
p 

ro
ta

tio
n

N
em

at
od

e 
sp

p.

B
el

on
ol

ai
m

us
:

B.
 l

on
gi

ca
ud

at
us

B.
 g

ra
ci

li
s

D
ol

ic
ho

do
ru

s 
he

te
ro

ce
ph

al
us

H
el

ic
ot

yl
en

ch
us

 d
ih

ys
te

ra

N
on

ho
st

s 
or

 h
os

ts
*

C
ro

ta
la

ri
a 

sp
p.

, 
C

ro
ta

la
ri

a 
sp

ec
ta

bi
lis

ha
ir

y 
in

di
go

, m
ar

ig
ol

d,
 to

ba
cc

o

C
ro

ta
la

ri
a 

sp
p.

, t
ob

ac
co

, w
at

er
m

el
on

C
ro

ta
la

ri
a 

sp
ec

ta
bi

lis

A
lf

al
fa

, c
or

n,
 f

es
cu

e*

N
em

at
od

e 
sp

p.

M
el

oi
do

gy
ne

:
M

. 
ch

it
w

oo
di

M
. 

ar
en

ar
ia

M
. j

av
an

ic
a

M
. 

ha
pl

a

M
. 

in
co

gn
it

a

M
el

oi
do

gy
ne

 s
pp

.

N
on

ho
st

s 
or

 h
os

ts
* 

R
ef

er
en

ce
s

Pe
a 

vi
ne

 (
La

th
yr

us
 s

pp
.) 

68
su

da
ng

ra
ss

 h
yb

ri
ds

 
11

3
B

ah
ia

 g
ra

ss
, j

oi
nt

 v
et

ch
, v

el
ve

tb
ea

n
A

nd
ro

po
go

n,
 C

ro
ta

la
ri

a 
sp

p.
, c

ot
to

n,
pe

an
ut

, s
or

gh
um

, v
el

ve
tb

ea
n

C
or

n,
 c

ot
to

n,
 g

ra
ss

es
, l

et
tu

ce
, o

ni
on

,
ra

di
sh

, s
ud

an
gr

as
s,

 w
he

at
Fe

sc
ue

, o
rc

ha
rd

 g
ra

ss

C
ro

ta
la

ri
a 

sp
ec

ta
bi

li
s

In
di

go
fe

ra
 h

ir
su

ta
, m

ill
et

, o
at

s,
 w

he
at

*

H
^ oo O
N

W JO tn fe>  * s § 2 O

P
ar

at
ri

ch
od

or
us

 m
in

or
 

C
or

n*
, 

C
ro

ta
la

ri
a 

sp
ec

ta
bi

li
s

H
et

er
od

er
a,

 G
lo

bo
de

ra
: 

H
, 

gl
yc

in
es

H
. 

sc
ha

ch
ti

i

H
. 

ze
ae

b

G
. 

ro
st

oc
hi

en
si

s

H
op

lo
la

im
us

 i
nd

ic
us

B
ah

ia
 g

ra
ss

, c
or

n,
 c

ot
to

n,
 c

ow
pe

a,
 

po
ta

to
, s

m
al

l g
ra

in
s,

 g
ra

in
s,

 to
ba

cc
o,

 
m

os
t v

eg
et

ab
le

s

A
lf

al
fa

, b
ea

n,
 c

lo
ve

r, 
co

rn
, H

es
pe

ri
s

m
at

ro
na

lis
, o

ni
on

 
W

id
e 

ra
ng

e 
of

 c
ro

ps

C
or

n,
 g

re
en

be
an

s,
 r

ed
 c

lo
ve

r 

C
ab

ba
ge

, c
hi

li,
 e

gg
pl

an
t

P
ra

ty
le

nc
hu

s:
 

P.
 l

ei
oc

ep
ha

lu
s 

P.
 p

en
et

ra
ns

P
ra

ty
le

nc
hu

s 
sp

p.

Pe
an

ut
A

lfa
lfa

*,
 b

ee
t, 

fe
sc

ue
, m

ar
ig

ol
d,

 o
at

s,
su

da
ng

ra
ss

, r
ye

 
L

et
tu

ce
, o

ni
on

, r
ad

is
h

R
ad

op
ho

lu
s 

si
m

il
is

 
C

ro
ta

la
ri

a 
sp

ec
ta

bi
li

s,
 m

os
t 

gr
as

se
s 

R
ot

yl
en

ch
ul

us
 r

en
ifo

rm
is

 
R

ho
de

s 
gr

as
s,

 P
an

go
la

gr
as

s,
 m

ar
ig

ol
ds

 
Ty

le
nc

ho
rh

yn
ch

us
:

T.
 m

ir
za

l 
W

he
at

T.
 b

ra
ss

ic
ae

 
Po

ta
to

, t
om

at
o 

X
ip

hi
ne

m
a 

am
er

ic
an

um
 

A
lfa

lfa
*,

 c
or

n*
 , 

fe
sc

ue
*,

 to
ba

cc
o

33

"P
rim

ar
ily

 a
ft

er
 T

riv
ed

i 
&

 B
ar

ke
r 

(1
58

) 
(S

ee
 th

is
 a

rti
cl

e 
fo

r 
sp

ec
ifi

c 
re

fe
re

nc
es

 p
er

 n
em

at
od

e/
cr

op
 c

om
bi

na
tio

n)
.

bH
os

t r
an

ge
 n

ee
ds

 f
ur

th
er

 s
tu

dy
.

*S
om

e 
po

pu
la

tio
ns

 o
f r

es
pe

ct
iv

e 
ne

m
at

od
e 

sp
ec

ie
s 

w
ill

 re
pr

od
uc

e 
ra

pi
dl

y 
on

 c
ro

p 
pl

an
ts

 s
o 

id
en

tif
ie

d.



NEMATODE MANAGEMENT 187

Crop rotation provides for diversity in time and space and is often the pre­ 
ferred means for nematode management. Rotation, however, may be of limited 
value when several damaging species of nematodes are present or for species 
with broad host ranges. For growers to accept rotation as a viable tool for 
nematode management, suitable crops and land must be available. The rota­ 
tional crop must offer the grower an acceptable return, with similar requirements 
for labor and equipment. The need to rotate specific crops, however, may vary 
with location. For example, corn can be grown continuously in some regions 
with little or no effect on yield (185), whereas the parasitic nematodes pre­ 
dominant in the southeastern United States cause significant yield losses on 
this crop (124). The highly successful practice of rotating tobacco with fescue 
(nonhost for Meloidogyne spp.) has been in place in the southeastern United 
States for some five decades (121). Periodic incorporation of the dense grass sod 
improves the soil structure, increases water-holding capacity, and provides con­ 
trol of associated root diseases including root-knot in the primary crop. Other 
grass fallows that have proven useful in the management of nematodes, es­ 
pecially Meloidogyne spp., include bahiagrass (Paspalum notatum), bermuda- 
grass (Cynodon dactylon), weeping lovegrass (Eragrostis curvuld), Rhodes 
grass (Chloris gayana), Pangolagrass (Digitaria decumbens), and Guinea grass 
(Panicum maximum) (28,137,138). Any significant development of broadleaf 
weeds in these grass fallows can negate their effects in the control of root- 
knot nematodes because many are hosts for these pathogens (15,28). The eco­ 
nomic viability of grass or pasture is enhanced when animals are included 
in the system. An important factor is that many grasses and cereal crops 
may also support reproduction of many plant-parasitic nematodes, including 
Meloidogyne spp.

Many potential rotations or green manure crops that show promise in ne­ 
matode management may be antagonistic to some nematode species or even 
serve as trap crops (92,95,138,158). These plants may be categorized as 
being either active or passive, depending on whether they produce some anti- 
helminthic compounds or are simply unsuitable hosts for nematodes. Selected 
Brassica species, including rapeseed and mustard, may suppress nematode 
populations, soilborne pathogens, and weeds in crop rotations (72,95). These 
plants produce glucosinolates, and their decomposition products are toxic to ne­ 
matodes. Nematode-resistant radish is very effective in suppressing Heterodera 
schachtii on sugar beet (95). In contrast, rapeseed is stunted and supports re­ 
production of M. arenaria (KR Barker, unpublished). Some antagonistic (or 
active) plants, including Crotalaria spp., mustard, African marigold, aspara­ 
gus, castor, and sesame, may be grown as commercial crops, used as cover 
crops, or established in mixed planting with other crops (28,138). Caution 
is needed in selecting from these or other antagonistic plants for cropping
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systems in case they contain negative features or hazards in addition to provid­ 
ing nematode control. For example, some of the Crotalaria species serve as 
excellent trap crops for root-knot nematodes, but they also synthesize potent 
toxins that cause primary tumors or suppress growth of swine, cattle, and poul­ 
try. Although the African marigold Tagetes erecta and other Tagetes spp. may 
provide effective nematode control under some conditions, the efficacy of the 
primary nematicidal component (a-terthienyl) is dependent on light activation 
(9).

The utilization of certain Sudangrass hybrids as a green manure provides ex­ 
cellent control ofMeloidogyne chitwoodi on potato (113). Sorghum-Sudangrass 
hybrids also suppress this pathogen, but these plants may contain a higher con­ 
centration of dhurrin, a toxin for cattle when these plants are grazed improperly. 
In addition, the antagonism of these plants may be limited to certain nematode 
genera or species, e.g. the lesion nematode Pratylenchus penetrans is affected 
little by the use of these plants as green manure crops (106).

Earlier work on a selective nematicidal component in decomposing rye 
residues indicated that nematodes may have differential sensitivity to these 
products (144). In that work, Meloidogyne incognita proved to be the most 
sensitive to the associated decomposition products, P. penetrans exhibited in­ 
termediate sensitivity, whereas microbivorous nematodes were quite tolerant. 
Thus, lesion nematodes and the bacterivores probably have developed tolerance 
to decomposition products, whereas sedentary endoparasites would likely be 
more sensitive. Butyric acid produced by Clostridium butyricum was iden­ 
tified as one of the major toxic components in the decomposing rye (144). 
However, other compounds may be even more important since only limited 
amounts of butyric acid were detected in leachates from pots with decaying rye 
(RG McBride, unpublished). Rye as a cover crop has both negative and positive 
aspects. Although highly effective against Meloidogyne incognita on cotton, 
it is much less efficacious against the Columbia lance nematode, Hoplolaimus 
columbus (KR Barker & SR Koenning, unpublished). The impact of rye on the 
reniform nematode, Rotylenchulus reniformis, was likely related to suppression 
of dicotyledonous winter weeds (KR Barker & SR Koenning, unpublished). In 
addition, the timing of its incorporation in soil before the establishment of some 
crops, particularly cotton, is important in that the decomposition products may 
prevent the normal germination of cotton seeds.

Other legumes including selected clovers, velvetbean, joint vetch, and Cahaba 
white vetch provide multifaceted contributions to soil health and crop produc­ 
tivity when used in rotation as green manure cover crops. For example, the use 
of velvet bean Mucuna deeringiana in a soybean rotation enhances the activity 
of rhizosphere bacteria antagonistic to the soybean cyst nematode, H. glycines, 
and the southern root-knot nematode, M. incognita (92).
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In addition to suppressing nematodes, certain plant-growth-promoting rhi- 
zobacteria may induce systemic resistance to foliage pathogens such as Pseu- 
domonas syringae pv. lacrymans and Colletotrichum orbiculare on cucumber 
(170). Wei et al (170) suggested that these rhizobacteria may control a spectrum 
of plant pathogens/pests, including fungi, bacteria, nematodes, and insects. In 
a split-root system, treatments with Bacillus sphaericus B43 or Agrobacterium 
radiobacter G12 also induced a significant degree of resistance in potato to 
Globodera pallida (77). These rhizobacteria suppressed infection of potato 
roots by the juveniles, but had no effect on egg production.

The use of resistant cultivars, where applicable, is the preferred and most 
economical means of managing damaging species of nematodes (134,136,160, 
182). With few exceptions, available nematode-resistant cultivars, as summa­ 
rized by Young (182), are limited to nematodes (Meloidogyne, Heterodera, 
Globodera, Tylenchulus, Rotylenchulus spp.) that induce the development of 
feeding cells in their hosts. Exceptions include Ditylenchus dipsaci on alfalfa 
and clover, Xiphinema index on grape (46), and Radopholus similis on banana 
(107) and citrus (DT Kaplan, personal communication). Although host resis­ 
tance is an environmentally friendly means of nematode management (46), 
resistance genes may be considered as a natural resource to be preserved. In 
fact, resistance has proved to be only a temporary solution, particularly in the 
case of r genes used to manage the amphimictic cyst nematodes (182). Thus, 
cropping systems must be designed to protect the durability of resistant culti­ 
vars (4,5,133,181). These r genes should be introduced into agroecosystems 
in concert with other management measures to prevent or delay the emergence 
of biotypes that circumvent the resistance mechanisms. Temporal and spatial 
deployment of resistance genes to H. glycines and H. avenae has been evaluated 
(4,5,133,181). For example, continuous use of//, avenae-resistant cereal cul­ 
tivars may negatively affect their resistance while allowing the lesion nematode 
Pratylenchus neglectus to increase to damaging densities (133). Although the 
durability of host resistance to parthenogenetically reproducing nematodes may 
be affected less than with amphimictic species, monoculture of M. incognita- 
resistant cultivars may still result in the appearance of resistance-breaking host 
races or other species of root-knot nematodes (11,46,163,174). The origin and 
type of host resistance as well as the reproductive biology of the target nema­ 
todes should be considered in addressing the durability of resistance genes (20).

Combinations of management tactics for nematodes such as the potato cyst 
nematodes (Globodera spp.) often rely on rotation, nematicides with or with­ 
out tolerant cultivars, and/or resistant cultivars (40,87). Although sources of 
tolerance to a few other nematodes such as the soybean cyst and Columbia lance 
nematodes have been identified (25,70), attempts to incorporate tolerance to 
nematodes in other crops have encountered only limited success. Dalmasso
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et al (46) concluded that tolerance to nematodes is an advantageous character 
only when linked to active resistance. If used without resistance, it leads to 
increased nematode population densities and thereby could be a disadvantage. 
Nevertheless, in perennials such as ornamentals, the only practical management 
option is to replace highly susceptible plants with tolerant plants (17).

Another potential nematode-management strategy involves adjusting the 
schedules for susceptible crop production to limit nematode reproduction. For 
example, delayed planting of soybean, which occurs in wheat-soybean double- 
cropping systems, allows for greater nematode attrition in the absence of a host 
and results in lower at-planting population densities of Pratylenchus brachyu- 
rus and H. glycines (96,99). The wheat-soybean double-cropping system was 
shown to be economically superior to a rotation with grain sorghum in Arkansas 
(50). This practice may give variable results over time and region (74) and is 
not well adapted to northerly latitudes where the length of the soybean growing 
season is limited. This approach also has been tried for root-knot nematode 
in carrot. Shifts in the planting and harvest dates of carrot to minimize root- 
knot development caused by M. incognita have produced striking results (135). 
Delaying planting to late autumn or early winter clearly restricts root-gall devel­ 
opment on carrot. Although the efficacy of this management strategy increases 
with lateness of planting, some root galling and crop loss occurred even with the 
best treatments. Thus, this management strategy should be used in concert with 
available, compatible tactics (134). In some regions, early harvest of peanut is 
critical to limiting damage to seeds by Ditylenchus africanus (167). Although 
approaches that limit infection by either promoting greater nematode attrition or 
limiting infection due to physical constraints such as temperature/planting time 
are useful in some nematode-host interactions, they have not been effective in 
limiting damage of Hoplolaimus columbus to cotton or soybean (SR Koenning, 
unpublished; 127).

Many crops vary phenotypically for physiological maturity, a factor that can 
be exploited to suppress final nematode population densities. Soybean culti- 
vars, for example, are classified by maturity groups that range from 000 to 
IX; each group is separated by 1 to 2 weeks. Late-maturing cultivars sup­ 
port greater reproduction of H. glycines in North Carolina (76). The use of 
early-maturing cultivars suppresses nematode-population increase and benefits 
succeeding crops (98). Many other cultivated plants including cotton, corn and 
small grains differ in maturity, and this technique may have wider applicability.

Various types of soil tillage may have different effects on nematodes. The 
"plowing out" of the residual roots of Meloidogyne hosts after the final harvest 
of tomato, tobacco, or other perennial-type crops is a long-established practice 
dating back for 100 years (6,18). This single practice can reduce surviving 
Meloidogyne populations by 90% or more compared to allowing residual roots 
to grow (13). For total nematode and soil fauna-flora abundance, the issue of
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tillage is more complex. Soil tillage also affects beneficial soil organisms, as 
well as suppressing undesirable plant (weed) species and improving plant-root 
growth, the primary reasons for this practice. Improved chemical control of 
weeds and the development of implements capable of ensuring good seed-to-soil 
contact have resulted in a wide variety of types of plant culture defined as no- 
till or minimum-till systems. These systems, often referred to collectively as 
conservation tillage, that eliminate or reduce tillage have become common in 
many regions because of government mandate, and also result in economy of 
time and equipment (129).

Although tillage has long been an important tool in suppressing certain dis­ 
eases and problems associated with plant-parasitic nematodes, numerous ben­ 
efits may accrue from conservation tillage systems. Typically, conservation 
tillage results in increased soil organic matter, with more residue on the soil 
surface, improved soil structure, and infiltration of water (48). Potentially neg­ 
ative effects of reduced tillage include less mixing of soil nutrients, increased 
soil strength with associated higher soil bulk density, lower yields for some 
crops, and greater reliance on herbicides. Secondary effects of changing tillage 
practices may include changes in the weed spectrum, the use of cover crops, and 
alterations in other cultural practices. Depending on the type of implements 
used, nematicide applications may be limited in these systems. Changes in 
soil biota, including nematodes, effected in agroecosystems by different tillage 
practices have been documented (79,126). Earthworms, in particular, tend to 
increase in numbers when tillage is limited (57,79), and they are considered a 
major factor related to improved soil structure. Increases in soil organic matter 
where tillage is reduced generally are reflected in higher numbers of bacterivo- 
rous and fungivorous nematodes (65). Although the available data are diverse 
and sometimes contradictory, the impact of tillage, or the lack thereof, is likely 
related to different soil type/genesis, texture, the organisms studied, and climate.

Research in the United States' eastern coastal plain has shown minimal effects 
of short-term tillage practices on plant-parasitic nematodes (66,109). Thomas 
(157) found higher population densities of plant-parasitic nematodes associated 
with corn in no-till versus conventional till in Iowa. In contrast, population den­ 
sities of H. glycines were suppressed by conservation tillage (97,161). Several 
years of continuous no-till were required before suppression of H. glycines was 
measurable, however. Apparent discrepancies about the impact of tillage on 
nematode communities may be related to the length of time a portion of crop 
land has been subjected to minimum tillage (126). Several reasons for suppres­ 
sion of H. glycines in conservation tillage have been postulated, including the 
impact of the cover crop (8,74), or increases in bulk density of the soil that may 
have restricted aeration (97,180).

Wardle and associates (169) found that cultivation for weed control was an 
important factor influencing the species diversity of the nematode community.
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Increased numbers of fungivorous nematodes were found in one study in 
Georgia in reduced tillage plots compared to conventional tillage (126) during 
the summer, but the reverse was true at other times of year. Similarly, higher 
numbers of the plant parasite Helicotylenchus dihystera, Tylenchus, and Aphe- 
lenchoides spp. and dorylamids and mononchidae were associated with con­ 
ventional till systems in North Carolina (105). Numbers of bacterial feeding 
and total nematode numbers were greatest in a no-till system in Spain (104). 
However, Freckman & Ettema (65) found only small differences in total ne­ 
matode abundance related to tillage; the trophic diversity was increased, and 
the ratio of fungivores to bacterivores was decreased in no-till compared to 
conventional tillage practices. The ratio of fungivores to bacterivores can be 
regarded as an indicator of the decomposition pathway in detrital food webs 
(65). The decrease in this ratio associated with no-till may indicate a shift from 
a bacteria-based food web to a fungus-based food web.

More comprehensive integrated management farming systems that include 
more restricted tillage, fertilization, pesticide use, the addition of organic ma­ 
nure, and undersowing with clover greatly alter the soil fauna and microflora 
(57). For example, the numbers and biomass of earthworms were six times 
greater in the integrated plot with limited tillage than in the conventionally 
managed plot. Predatory mites and microbivorous nematodes (bacterivores 
and fungivores) also are often greatly increased through this type of integrated 
management (57). Population densities of Heterodera avenae and Ditylenchus 
dipsaci were lower in integrated systems with minimal tillage than in conven­ 
tional systems with standard tillage practices (57).

Unfortunately, many new technologies used in intensive production systems 
may result in loss of stability in agriculture (183). Zadoks (183) identified sev­ 
eral developments contributing to this loss of stability; these include increase 
in field aggregation, larger field size, increase in plant density, increase in 
genetic uniformity-crop level, greater farmer specialization (loss of rotation), 
increased mechanization, increase in international exchange of seed and plant­ 
ing stock, and plant breeding. Thus, it is critical to assess the sustainability 
of nematode-crop production systems as more complex and larger production 
systems emerge.

To assess the sustainability of crop-pest production systems, key biophysical 
and socioeconomic factors must be monitored in measurable terms (110). Pro­ 
posed characteristics for monitoring the agroecological sustainability of pro­ 
duction systems and the respective level and time frame of processes encompass 
the following:

1. nutrient balance sheet (farm and regional level: 5-10 years);

2. vegetation cover and species composition (farm and regional level: >5 
years);
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3. water infiltration run-off (farm and regional level: >3 years);

4. replenishment and use of fossil water (regional level: 5-10 years);

5. characteristic in relation to biotic environment economic threshold (farm 
level: <1 year);

6. pest complex and type of outbreak (farm and regional level: >5 years);

7. host-plant resistance (regional level: >3 years);

8. pest resistance against pesticides (regional level: >5 years);

9. biological control agents (crop, farm, and regional levels: <1 year); and

10. pesticide use (crop, farm, and regional level: >1 year).

Economic viability and soil-fauna-flora diversity could also be added to this 
list. Although these factors and processes are beyond the scope of this review, 
their magnitude reflects the huge requirements in developing sustainable crop- 
pest-nematode production systems.

NEW TECHNOLOGIES AND NEMATODE
MANAGEMENT

As sustainable nematode management becomes increasingly based on soil 
biology-health, new complementary technologies are developing. These new 
tools undoubtedly will improve the accuracy of nematode diagnoses and as­ 
sessments of potential problems, and will result in more effective management, 
reduced pesticides, pesticide usage, and less contamination of groundwater with 
agricultural chemicals such as nematicides, nitrogen, and fertilizers.

Precision Agriculture
Modern computerized harvest-management and data systems offer new op­ 
portunities for more precise management of nematodes and general crop pro­ 
duction. This technology has the potential to improve water use and limit 
fertilizer and pesticide application on a spatial and temporal basis as dictated 
by soil fertility and, more important, differential spatial crop yields (45,59). 
Based on early results, this management tool should allow specially prescribed 
nematode control in high-intensive crop production such as Radopholus similis 
on banana (DH Marin-Vargas, personal communication) and root-knot nema­ 
todes on potato in the northwestern United States (59). Approaches that focus 
on a harvest index to locate environmental stress (42) should be able to re­ 
late nematode kinds and numbers to poor yield and other stress factors. This



194 BARKER & KOENNING

approach is now being used in some banana operations in which fruit is har­ 
vested in small subunits and yield data are recorded and analyzed by computer 
(DH Marin-Vargas, personal communication). Poor-yielding sections can be 
examined for nematode densities and other potential problems.

Nematode Identifications and Population Assessments 
The tools of rDNA technology, especially when allied with traditional taxo- 
nomic characters and host differentials, have greatly facilitated identification of 
nematode species and often host race (12,34,58,64,81). Isolated specimens of 
a range of nematode species have been identified by differential isozyme pattern 
and/or specific DNA probes, and there has been some progress in identifying 
and quantifying nematodes from processed soil samples (43).

Continuing restrictions in the size of samples and numbers of nematodes 
that can be examined make it very difficult to fully diagnose the nematode 
species present in large fields. However, this new technology should facilitate 
a more complete characterization of the diverse nematode trophic groups and 
species that are affected by disturbance and management practices in various 
ecosystems (93). The availability of mobile soil-samplers, especially when used 
in precision production systems (175), could facilitate more directed, selective 
sampling for general nematode assays and identifications (10). Geostatistical 
analyses could be interfaced with these improved sampling apparati for more 
precise measurement of data on nematode population (168). Image analysis 
has been adapted to count specific nematodes, but differentiating species with 
computers currently available would be too time-consuming (14).

Genetically Engineered and Traditional Host Resistance 
Although almost 100 years elapsed between the appearance of Mendel's rules 
and the initial discoveries in molecular biology, dramatic progress in the latter 
area has occurred during the last 30 years (128). The increasing complexity and 
costs of genetic engineering of plants for pest resistance or altering biocontrol 
agents make it unlikely that significant economic repercussions of molecular bi­ 
ology will be felt on agricultural production in the near future (128). There has 
been considerable progress made in engineering host resistance to nematodes, 
genetic mapping, and diagnostics (32,34,122,174). However, genetically en­ 
gineered resistance to nematodes is still at the developmental stage in contrast 
to the recently deployed herbicide- and insect-resistant cultivars of cotton, soy­ 
bean, and other crops. One strategy involves transformation of plants with 
a transgene(s) encoding a product detrimental to the target nematode or that 
suppresses the expression of key plant genes involved in the nematode-host 
interaction (122,174). Candidate genes for this strategy include collagenase, 
genes expressed in the development of specialized feeding cells induced by
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species of Globodera or Heterodera (syncytia) and Meloidogyne (giant cells). 
Constructs of the root-specific TobRB7 gene in tobacco have been used to de­ 
velop promising root-knot nematode-resistant genotypes (122). Linking this 
gene with a BARNASE gene resulted in root knot-resistant plants, but dif­ 
ficulties were encountered in recovering resistant lines from progeny of the 
transformants. Transformed plants with an antisense TobRB? construct also 
exhibited root-knot resistance; root-gall development was about 70% less in 
than susceptible plants (122).

A second approach for engineering nematode-resistant plants involves iden­ 
tifying, cloning, and introducing natural plant-resistance genes into susceptible 
crop plants. Exciting results with this strategy were recently reported with Het­ 
erodera schachtii on sugar beet (32). In one major development, Cai et al 
(32) cloned the cyst-resistant gene in wild Beta species. A transformed, nor­ 
mally susceptible sugar beet line exhibited the typical incompatible resistant 
reaction. Similar progress is being made with the Mi gene, which confers re­ 
sistance to the common Meloidogyne species and populations attacking tomato 
(VM Williamson, personal communication; see pp. 277-293). With the wide 
host range of these nematodes, the transfer of the Mi gene to numerous crop 
species, for which root-knot nematodes affect major crop yields, has great 
economic promise. Because populations of M. incognita may overcome this 
resistance, much care is needed in developing cropping systems to prolong the 
durability of this resource in a wider range of genetically engineered resistant 
crops.

New molecular techniques and markers also have positively affected tradi­ 
tional plant-breeding programs related to the development of host-resistance to 
nematodes. Recently, two markers for parasitism in H. glycines were identified 
(52) and molecular markers for crop resistance for various cyst nematodes are 
being investigated. These resistance markers included soybean (H. glycines) 
(41), potato (G. rostochiensis) (131), and wheat (H. avenae) (173). Markers 
for M. incognita races 1 and 3 resistance in tobacco also have been described 
(179). Undoubtedly, combining markers for parasitism (virulence) within dif­ 
ferent nematode populations and host-resistance genes should spur advances 
through traditional plant breeding.

Advisory Programs
Despite the development of nematode advisory programs in some states in the 
United States in the 1960s and earlier elsewhere (13), low-cost, highly effec­ 
tive nematicides remained in use as a form of insurance until recently. The 
unreliability of nematode assays, due to difficulties in sampling the contagious 
infestations, identification of related species, and lack of information on eco­ 
nomic thresholds helped to prolong nematicide use. Nevertheless, advisory
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programs have successfully contributed to lower pesticide usage and greater 
farm profits. For peanut alone, growers in Virginia were able to reduce their 
nematicide use by 35% after a predictive nematode assay program was estab­ 
lished (130). Savings in production costs for 1989 were estimated at $800,000, 
primarily through fewer nematicide applications. Currently, about one half of 
the states in the United States offer their farmers some type of nematode ad­ 
visory program, usually through the Extension Service, State Departments of 
Agriculture, or private consultants. Many growers monitor the relative mag­ 
nitude of nematode problems in given fields by observing root symptoms and 
signs of nematodes and through field histories.

The use of hazard indices in lieu of damage or economic thresholds has 
promoted better communication to growers on the relative nematode-damage 
potential for annual crops in given fields (13). These hazard indices are based 
on the relative damage potential of the nematode species/races present, their 
population densities, the cropping history, and soil type.

Where detailed data on production and nematode populations are maintained, 
more precise approaches in decision-making are becoming available. Burt & 
Ferris (31) developed a sequential decision rule to aid in choosing a rotation crop 
versus host crop where this practice is the management tactic rather than using 
a nematicide. The static model used by Ferris (60) is unsuitable for quantifying 
the optimal dynamic threshold that would be characterized by population den­ 
sities lower than where returns from the nematode host and nonhost are equal. 
A dynamic model for this type of crop-nematode management system was re­ 
cently developed (31). Application of this model should allow better economic 
management of nematodes, but data will still be needed on annual nematode 
population change under host and nonhost crops and the relationships between 
nematode numbers and crop yields. More comprehensive pest-host simulators 
and expert systems (142) have bolstered research in recent years (108).

Management of nematodes, including advisory programs, poses greater chal­ 
lenges for perennial crops than for annual crops. Control options are limited, 
and very low population densities often build up to cause severe damage over 
time. Integrated management, including assays to determine numbers and 
kinds of nematodes present, and appropriate control tactics such as preplan! fu­ 
migation where necessary, use of nematode-free stock, tolerant cultivars where 
available, and organic mulches are useful for woody ornamentals (17).

CONCLUSIONS

New approaches to nematode control hold great promise for sustainable, inte­ 
grated crop-pest-management systems. Rapidly evolving knowledge and un­ 
derstanding of soil biology and crop molecular biology can be exploited in
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highly productive, intensive cropping systems. The challenge is to develop pri­ 
mary cover-crop, animal-waste, tillage systems that result in the build-up of fa­ 
vorable rhizobacteria, fungi, nematodes, protozoa, earthworms, and other fauna 
while also suppressing plant-parasitic nematodes and other crop pathogens. 
Combining this new, integrated soil biology-based nematode-pest-crop man­ 
agement with traditional and/or genetically engineered host resistance and cul­ 
tural practices such as rotation should reduce the need for pesticides. However, 
Kiraly (90) concluded that worldwide the area dedicated to crop production is 
unlikely to expand during the next two decades; on the contrary, there is a con­ 
tinuous and substantial decline in grain-producing area per person. Thus, food 
production per hectare must be increased. The data in Figure 1 may indicate 
that considerable opportunities for this exist in many countries.

Avery (7) claimed that widespread use of pesticides and plastics must be 
employed in intensive agriculture to "save the planet." Although this is an ob­ 
vious overstatement, the use of pesticides in agriculture has indeed been critical 
to large-scale production of inexpensive, high-quality fruits and vegetables for 
human consumption (90). However, we need to weigh the negative effects of 
use of pesticides and excessive tillage on soil organisms (110). Concepts for 
measuring the impact of given practices on sustainability versus instability are 
emerging (110,183), but they remain to be widely adopted.

Exciting new technologies for crop-pest management are on the horizon at the 
same time as new challenges are emerging. In today's global marketplace, any 
incident involving international shipment of produce contaminated with a ne- 
maticide or other pesticide generally elicits a reaction that often has no bearing 
on or recognition of the importance of these products in food production (90). 
This problem is even greater if pests "accompany" the produce. Introduction 
of new crops or even transplants of current crops into an area could well lead 
to the establishment of new nematode species (117). The risks of introducing 
key nematodes such as Bursaphelenchus xylophilus greatly restricts interna­ 
tional shipment of some products (56). Based on analyses by the CLIMEX 
computer program (22), the European virus-vectoring nematode, Xiphinema 
diversicaudatum, could become established in North America, Australia, New 
Zealand, and parts of Asia. Hence, quarantine restrictions on movement of 
plants and soil will likely become more stringent in the face of expanding in­ 
ternational trade and global climate warming. Molecular diagnostics should 
increase the reliability of such nematode-regulatory programs (155).

The predicted global climate warming is being debated as sustainable nema­ 
tode and crop management strategies and tactics are under development. For 
example, an increase of only 1°C could enable the ectoparasite Longidorus 
caespiticola to become established in all of England and most of Scotland (24). 
Currently, the most damaging of nematodes, Meloidogyne spp., generally are
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favored by warm to tropical conditions (160). Will warming in many countries, 
including the United States, be sufficient to effect the spread of the highly ag­ 
gressive root-knot species Meloidogyne javanica and M. arenaria into regions 
presently unsuitable for these pathogens? Such a development would require 
new initiatives in the development of durable heat-tolerant nematode resistance 
in most crop plants and shifts in crop cultivars.

In conclusion, the development of sustainable nematode-management sys­ 
tems is not an option. It is imperative that scientists devise the requisite sus­ 
tainable tactics as one component of the world's complex food-fiber production 
system to meet the pressure of the rapid population increase. Management of 
plant-parasitic nematodes is essential to sustainability, since impaired efficiency 
of plants' water and nutrient utilization caused by these pathogens limits pro­ 
duction and degrades the environment. The proposed strategy of increased use 
of pesticides and plastics to meet this challenge (7) would likely provide only 
short-term benefits. For example, the repeated heavy use of chemicals such 
as methyl bromide essentially sterilizes the soil and eliminates beneficial soil 
microflora and fauna as well. Many other current crop- and pest-management 
practices also contribute to the instability of our food production (83). Fortu­ 
nately, the new technologies forthcoming from molecular and soil biology and 
truly integrated cropping-nematode-pest management systems are providing 
new strategies and tactics that can be linked to traditional nematode manage­ 
ment for more general integrated and sustainable food and fiber production. 
In fact, the wide gaps between and within developing and developed countries 
(Figure 1) indicate that global food production still can be increased.

Visit the Annual Reviews home page at 
http://www.AnnualReviews.org.
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