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Introduction/ Background
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Introduction:
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Other 
S69 Billion

Other 
$50 Billion

Tree fruit
$18 Billion

Specialty 
Crops

S68 Billion

Farms Contribution to the US Economy
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$14.99 
Billion
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$3.01 
Billion

Tree Fruit Industry in the US Economy

(USDA-NASS, 2019)

Specialty Crop Industry (U.S.)
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Production cost breakdown in percentage for each category Gallardo et al., (2010)  

• Pruning ~ 20% of total labor 

cost

• ~ 80-120 working hours per 

hectare

Available labor decreasing!

Introduction: 

(Mika et al. 2016)

Cost Breakdown and Labor Availability

22% 
Pruning

30% Harvest 
activities

48% Other 
activities



• Robotic pruning → selective pruning 

• Challenges in robotic pruning
• Detection and identification of pruning 

branches

• Spatial requirements and path planning of 
manipulation system

• Researchers developed vision algorithms 
using different camera sensors 

• No study has been reported on path 
planning for tree pruning
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Botterill et al., 2016

Introduction:

(Zahid et al., 2020)

Potential Solution and Challenges



Objectives of the study
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1. Developing a simplified virtual environment including a robotic manipulator 
and a tree section for simulation in MATLAB

2. Establishing a collision-free trajectory for reaching the targeted pruning 
points
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Objectives of the study



Methodology
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3D CAD ModelSimulation Model Establishment: 
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End-effectorRobotic Manipulator



Kinematic Model
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Denavit-Hartenberg ParametersCoordinate Frames of the Manipulator  

Joints Joint angle 
θi (rad)

Link length 
ai-1 (m)

Link offset 
di (m)

Link twist
αi−1 (rad)

Joint 1 (Base) θ1 0 0.1625 π/2

Joint 2 
(Shoulder) θ2 -0.425 0 0

Joint 3 (Elbow) θ3 -0.3922 0 0

Joint 4 (Wrist) θ4 0 0.1333 π/2

Joint 5 (Wrist) θ5 0 0.0997 -π/2

Joint 6 (End-
effector) θ6 0 0.0996 0

(UR-Robotics, 2020)

Simulation Model Establishment:

• Find the inverse kinematics of the manipulator

• Trajectory generation in Matlab
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• 13 obstacles (→ 1 trunk and 12 primary branches)

• Canopy height = 600 mm

• Canopy depth = 700 mm 

Virtual Tree ModelSimulation Model Establishment:
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• Reachable workspace 

width = 800 mm

Integrated Environment

Workspace Envelope Simulation Environment

• Manipulator position → (x, y) = (0,0) mm

• Virtual tree position → (x, y) = (400,400) mm

Simulation Model Establishment:



Path Planning Algorithm:  

14

RRT Path Exploration

• Starting from the node kinitial

• From krand tree expanded to knearest

• If exist in collision free space, knew

is added

• Path is found by connecting all knew

Path Planning Method

Collison Checks

• Collision free path for the end effector tool

• Manipulator body side collision with branches

RRT Path Planning
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Path Optimization

RRT Smoothing

• Distance between three consecutive nodes 

• If the new distance is less to the sum, 

collision check performed

Path Planning Algorithm:  

• Non-linear optimization algorithm

• Objective function, and constraint functions

• Other parameters: Lower and upper boundaries, and min. distance from obstacles

Illustration for Path Smoothing

Path Planning Method



Simulation for Branch Accessibility: 
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Side View Top View

• Three target branches selected 

(branch 2, 6 and 8)

• Target point: 50 mm from the trunk

• Pose approach: Ideal cutting pose

(Cutter plane perpendicular to branch axis)

• No. of simulation trials = 10 

Ideal Pose



Simulation for Branch Accessibility: 
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1st Pose 2nd Pose

• Rot (XT) = +45o

• XT and XB parallel

• Rot (YT) = +30o

• XT to XB deviates equally

Alternate Poses



Results
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Comparison for RRT, RRT Smoothing, and Optimization Results

RRT Path RRT Smooth Path

Optimized Path



Lowest cv and St. dev

Results and Observations

• Smoothing reduced length→ 34% and 22% for branch 2 and 6 respectively 

• Optimization reduced length → 29% and 20% for branch 2 and 6 respectively

• Computational time depends on the step size, number of obstacles, distance 

between start and endpoint of the path 

*Fail to find the path

Simulation results for path planning and smoothing for different target branches

Minimum path length

Maximum path length

Comparison for RRT, RRT Smoothing, and Optimization Results
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Branch No. No. of Obstacles RRT path 
(mm)

RRT smoothing path Optimized path (mm)

Length 
(mm)

Time 
(Sec)

Length 
(mm)

Time 
(Sec)

Length 
(mm)

Time 
(Sec)

2 1 390 19 257 21 278 36

8 1 * * *

6 2 496 25 382 29 397 24

Method Branch 2 Branch 6

Variation coefficient (CV)

RRT path 0.066 0.058

RRT smoothing path 0.042 0.039

Optimized path 0.037 0.031



Effect of Approach Angle
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Results

Rot (XT) = +45o Rot (YT) = +30o



Simulation results for RRT path planning and smoothing for different target branches

Effect of Approach Angle Results
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Branch No. No. of Obstacles Approach pose with x-
axis rotation (XT = +45o)

Approach pose with y-
axis rotation (YT = +30o)

Length (mm) Time (Sec) Length (mm) Time (Sec)

2 1 427 28 382 27

8 1 485 27 478 23

6 2 531 31 566 29

Successful to find path 

Results and Observations

• Improves the path finding success

• Smoothing reduced the path length considerably

• Computational time was approximately similar for all approaches

• Computational time depends on how much manipulator move sideways for each pose



Path planning using UR5Validation:

Hardware Interface



Path planning using UR5Validation:



Conclusions

• The RRT algorithm was successful in finding a collision-free path

• The smoothing method successfully reduced the RRT path lengths

• The alternate poses improves the path finding success

• A modified RRT is suggested with optimization algorithms (Genetic Algorithm) 

to stabilize and improve the obstacle avoidance
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Future Work: Tests will be conducted to validate the simulation results using a UR5 

manipulator
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Thank you!


