





(Adapt-N.com)

Harold van Es, Shai Sela, Becky Marjerison, Jeff Melkonian, Lindsay Fennel, Aaron Ristow

- Software Updates:
  - VRT utility; integration with other software platforms
  - Enhanced efficiency products
  - Field observations
  - Cover crop version available this fall
- Approved and recommended by NutrientStar program
- Adapt-N vs Grower on-farm strip trials in NY show (WCU 25, 5)
  - Average \$26 higher profits with 38% less N applied
  - Average 39% reduced leaching and gaseous N losses
- Adapt-N vs. conventional Cornell N recommendations (CNC) on-farm multi-rate strip trials (WCU 26, 3)
  - CNC under-recommends EONR by 39 lbs/ac with database yield assumptions (\$44/ac profit loss); CNC over-recommends by 70 lbs/ac with realistic yield assumption (\$38/ac profit loss)
  - Adapt-N under-recommends EONR by 6 lbs/ac (\$9/ac profit loss)
- Adapt-N vs. conventional Cornell N recommendations (CNC) lysimeter studies (WCU 26, 2)
  - \$34/ac higher profit for Adapt-N; 28% reduction in leaching losses
- Midwest studies (IN, OH, WI), comparing Adapt-N vs. State N rates: 39% improved precision (RMSE):



### Use of Adapt-N Results in Better Agronomic and Environmental

#### Outcomes than the Corn N Calculator

Aaron Ristow<sup>1</sup>, S. Sela<sup>1</sup>, H. van Es<sup>1</sup>, R. Marjerison<sup>1</sup>, J. Melkonian<sup>1</sup>, R. Schindelbeck<sup>1</sup>, D. DeGolyer<sup>2</sup>, K. Severson<sup>3</sup>, E. Young<sup>4</sup>, Lindsay Fennell<sup>1</sup>

<sup>1</sup>Soil and Crop Sciences Section - School of Integrative Plant Science - Cornell University, <sup>2</sup>Western New York Crop Management Association, Warsaw, NY, <sup>3</sup>Cornell Cooperative Extension, Auburn, NY, <sup>4</sup>W.H. Miner Institute, Chazy, NY

Nitrogen (N) management is important in corn production systems because of the high cost of N fertilization and public concerns over environmental impacts. Corn response to N is highly variable, so determining the optimum N rate is challenging. The economically optimal N rate (EONR) can often range from 0 to as much as 250 lb/acre for a field depending on many soil and management factors, as well as the weather. This variability leads to uncertainty which often results in excessive application of N fertilizer to reduce yield risks, thus adding unnecessary fertilizer costs and increasing the potential for environmental losses.

Several tools are available for growers to determine optimal fertilizer N requirements. These approaches can be categorized as either static or dynamic. Static tools offer generalized recommendations that do not consider seasonal conditions of weather and variation in crop management, while dynamic approaches account for the variable and site-specific nature of soil N dynamics.

This study focuses on two New York nitrogen recommendation tools: the dynamic Adapt-N simulation model and the static Cornell Corn Nitrogen Calculator. We evaluated whether accounting for weather effects and site-specific conditions improves N recommendation rates. The study had two objectives:

a) To compare the N recommendations of the Cornell Corn Nitrogen Calculator and the Adapt-N tools relative to the optimum rate, and

b) To compare the environmental losses resulting from these recommended N rates.

#### Methods

#### The Corn N Calculator

The Cornell University Corn Nitrogen Calculator (CNC) is a static approach that includes a calculation of N demand (yield-driven crop uptake) and N supply (soil organic matter, manure, previous crops), combined with efficiency factors. The CNC has been the conventional approach to corn N rate calculations in New York for several decades and estimates can be derived from

Nitrogen (N) management is important in corn a spreadsheet downloaded from <u>http://nmsp.cals.</u> production systems because of the high cost of N <u>cornell.edu/software/calculators.html</u>.

Nutrient

Management

The CNC tool allows the use of either a default yield potential from an embedded database, or a manually entered value for yield potential entered by the user. The CNC default yield potential depends on field soil type and drainage status. For this analysis we generated N recommendations using both the default yield potential and a manually entered realistic yield potential based on grower-estimates from historical yield performance.

#### The Adapt-N tool

Adapt-N (<u>Adapt-N.com</u>) is a web-based dynamic simulation tool that combines soil, crop and management information with near real-time high resolution weather data to estimate optimum N application rates for corn. It is intended primarily as an in-season tool to provide recommendations for sidedressing. To generate N recommendations, the tool requires user inputs such as achievable yield, soil texture class or soil series name, organic matter content, crop variety, information on previous crops, manure or pre-plant N applications (if applicable), and the field tillage practice. Combining this information with early season weather data was expected to improve the precision of N recommendations and thus maximize farm profits while minimizing environmental N losses.

Data from 16 replicated field trials from multiple locations in New York between 2011 and 2015 were used to compare the sidedress N recommendations generated by the CNC and Adapt-N tools. The CNC tool generates a total N recommendation for the field conditions regardless of the timing of the N application. Therefore, in the case of the CNC tool, if the grower in the experiment opted to apply some of the N rate as a starter or pre-plant, this rate was subtracted from the total N recommendation and the rest was used as sidedress. For the case of Adapt-N, these early applied N rates were included in the simulations used to generate the sidedress recommendations.

#### Field data

In each of the field trials, multiple N rate applications were used, allowing the EONR of each trial to be calculated



Nutrient

Management

Fig.1 Potential yields estimated by the Grower and those extracted from the CNC database for each field trial.

using quadratic function curve fitting. The economic losses from the EONR resulting from the CNC and the Adapt-N rates were calculated based on a price of \$0.50 per lb of N fertilizer and \$4.95 per bushel of corn. It should be emphasized that the EONR represents the optimum nitrogen rate that is determined at the end of the growing season. It is therefore a reference point made in hindsight for evaluation of N recommendation tools that are used early in the season when fertilizer needs to be applied.

#### Estimation of environmental losses

Leaching losses from the bottom of the root zone and gaseous losses to the atmosphere due to denitrification and ammonia volatilization were simulated by the Adapt-N tool. The trials used for the analysis had different N management approaches, depending on collaborator preferences, such as pre-plant N or manure applications in different quantities. While these management decisions might have led to high simulated N losses prior to sidedress time, these losses would have been the same for the Adapt-N and the CNC tools. Therefore, to compare the simulated environmental losses resulting from the Adapt-N or the CNC sidedress recommendations, only the environmental fluxes that occurred after the application of sidedress N and until the end of the year (Dec 31st) are reported.

#### **Results and discussion**

#### Potential yields and N recommendations

Figure 1 presents a CNC comparison between the default potential yields derived for each field and the realistic estimated yields supplied by the grower (Note: the 1:1 line indicates equal values, and data points below the line indicate lower values for the variable on the Y-axis, and vice versa). The potential yields supplied by the CNC tool were significantly lower (130 bu/ac) than the grower estimates (192 bu/ac), which were generally close to the actual achieved yields recorded at the end of the season (189 bu/ac). This indicates that growers generally have a good sense of a field's yield potential and that the default potential yields in the CNC tool are well below the actual yields.

Choosing between Grower-estimated and default potential yield was found to have a strong effect on



Fig.2 C omparison of sidedress N rate recommended by the Adapt-N and CNC tools. The Adapt-N rate was calculated in both panels using potential yield supplied by the grower. The CNC rate was calculated either using the potential yield supplied by the grower (a) or the default potential yield from the CNC database (b).



recommendations lead to an average profit loss from the EONR of \$44/ac. Conversely, when the CNC tool was supplied with a more realistic grower-estimated potential yield, the CNC recommendations were found to substantially overestimate the optimum rate, with an average of 229 lb N/ac, or 70 lb N/ac above the EONR (Figure 3b), leading to an average profit loss from the EONR of \$38/ac.

Figure 3c presents the relation between the Adapt-N rates and the EONR, and shows that it accurately predicted the EONR with an average N rate of 153 lb N/ac, only slightly below the 159 lb N/ac calculated average value of the EONR. Consequently, the average loss from the EONR was \$9/ac for Adapt-N, a significant improvement over the losses from the CNC rates. By basing recommendations on local conditions, Adapt-N improved the accuracy and precision of the N

Fig.3 C omparison between the EONR and (a) CNC recommendations based on the default potential yields, (b) CNC recommendations based on the Grower potential yields, and (c) Adapt-N recommended rates.

150

Adapt-N total N rate (lbs ac <sup>-1</sup>)

200

250

300

С

100

recommendations in these trials.

50

#### Environmental N losses

0

C

What's Cropping Up? Vol. 26. No. 3 Pg. 39

Simulated environmental losses that occurred following the application of the CNC and Adapt-N sidedress rates were divided almost evenly between leaching and gaseous losses for either tool (Figure 4), which reflects the medium texture of the soil at most sites. Adapt-N rates reduced on average 26 lb N/ac of



50 100 150 200 250 300 350

Sidedress N rate (lbs ac<sup>-1</sup>)

0

leaching losses (Figure 4a, 53% reduction) and 21 lb N/ac of gaseous losses (Figure 4b, 54% reduction) compared to the CNC rates with realistic (Growerestimated) yields. Conversely, when potential yields were derived from the CNC database, the lower CNC N recommendations only marginally reduced the environmental losses compared to the Adapt-N based

What's Cropping Up? Vol. 26. No. 3 Pg. 40

using the CNC tool with more realistic grower-estimated

vield estimates resulted in a substantial overestimation

of the EONR and increased environmental losses.

improves agronomic and environmental outcomes for

Corn N management over static approach" is currently

under review by the Journal of Environmental Quality.

3

#### Water Quality Impacts Reduced with Adapt-N Recommendations

Aaron Ristow<sup>1</sup>, Shai Sela<sup>1</sup>, Mike Davis<sup>2</sup>, Lindsay Fennell<sup>1</sup>, and Harold van Es<sup>1</sup> 1Soil and Crop Sciences Section - School of Integrative Plant Science - Cornell University, 2Cornell University Agricultural Experiment Station

Soil nitrogen (N) is both spatially and temporally variable, challenging farmers to meet optimal nitrogen (N) needs and minimize N deficiency risk. N typically Adapt-N is a dynamic simulation tool that combines is a large monetary input for corn production in part soil, crop and management information with weather due to farmer tendency to over-apply N fertilizer and/or data to estimate optimum N application rates for manure to maximize their returns to N applications in the presence of high uncertainty around the optimum N rate. This excessive N maybe be readily lost to the currently calibrated for use on about 95% of the US environment through volatilization, runoff and leaching. Not only do N losses negatively impact yield, we know in-season N application rates, early season weather a significant percentage of total N load is carried by ground water or discharged to streams, causing environmental costs. Therefore, a top priority should be the estimation of the optimum N rate that meets crop production needs while minimizing environmental The Adapt-N tool was compared to CNC impacts.

The optimum N rate depends on numerous factors including the timing and amounts of early season precipitation events, previous organic and inorganic N applications, soil organic matter, carry-over N from previous cropping seasons, soil texture, rotations, etc. There are several approaches to optimizing N rates and minimize N losses. These can be generally categorized as (i) static and (ii) adaptive. Static tools offer generalized recommendations that do not consider seasonal conditions of weather and soil/crop management, while adaptive approaches account for the variable and site-specific nature of soil N dynamics. including the effects of weather. Using data from two seasons of corn silage grown at the Cornell University research farm at Willsboro, NY, we compared the economic and environmental impacts of N rate recommendations from a conventional static approach (the Cornell Corn Nitrogen Calculator; CNC) with the adaptive Adapt-N approach (adapt-n.com).

Adapt-N and the Cornell Corn Nitrogen Calculator The Cornell University Corn Nitrogen Calculator (CNC) is a static approach that includes a basic mass balance calculation of N demand (yield-driven crop uptake) and N supply (soil organic matter, manure, previous crops), combined with efficiency factors. The CNC approach has been the established corn N recommendation approach for several decades, and estimates can be derived from a spreadsheet downloaded from http://

#### nmsp.cals.cornell.edu/software/calculators.html.

Nutrient

Management

corn. Originally developed at Cornell University, the tool has been licensed for commercial use and is corn production area. When using the tool to inform effects and site-specific attainable vield can be incorporated into the recommendation, allowing N management precision to be improved.

recommendations in a spatially-balanced complete block design (4 replications) on two paired experimental sites for the 2014 and 2015 growing seasons. In each trial, the treatments were defined by the total amount of N applied, where the rates were:

(i) the total N rate based on Adapt-N recommendations (including a 15 lbs/ac starter) for the date of sidedress, and

(ii) the total recommended rate of the Cornell Corn Nitrogen Calculator (including a 15 lbs/ac starter), using realistic yield goals (rather than the database yield goals, which would have underestimated real yields for these sites).

The treatments were implemented on 16 plots, each on a Cosad loamy fine sand and a Muskellunge clay loam, in continuous corn (silage), under no-till and plow-till management. Drainage water samples were collected from the lysimeters at key time points in the spring (April 7th and April 23rd) and fall (October 1st, October 29th, and December 3rd). The lysimeters include drainage lines routed to a utility hole to allow for drain water samples to be collected. Nitrate (NO3) and Nitrite (NO2) concentration was quantified from the samples to allow us to assess differences in water quality in Adapt-N vs CNC plots. In this article, we will refer to NO3+NO2 concentrations simply as NO3 or "nitrate", as the NO2 fraction is typically very small.

At the end of the 2014 and 2015 seasons, we measured

# Nutrient

#### Management

corn yields and calculated associated partial profit differences for the two treatments. Corn vields were assessed by representative sampling (four 15 ft long row sections per plot). Partial profit differences between the Adapt-N and CNC practices were estimated using prices of \$0.50/lb N and \$50/T silage.

#### Results

Yield and Profit: The measured agronomic and leaching losses of the two recommendation approaches are presented in Table 1. Adapt-N recommended N rates were substantially lower than the CNC rates with an average reduction of 55 lbs/ac (183 vs 126 lbs/ac), while the average yields did not differ significantly (13.0 vs 13.1 T/ac; p=0.74). Reducing N rates without compromising yields resulted in \$34/ac higher partial profit from the Adapt-N treatment. The economic and agronomic benefits of Adapt-N are similar to those from a larger study conducted in IA and NY using data from 113 on-farm trials (Sela et al., 2016).

Lysimeter measured nitrate concentrations: In addition to the economic benefits, substantial environmental advantages were found with Adapt-N. When both seasons and soil textures were combined, the average NO3 concentration from the grab samples collected from the lysimeters indicated significantly lower water quality impacts under Adapt-N management vs CNC (11.0 and 15.3 mg/L, respectively; p<0.01). On average there was a 28% reduction in NO3 concentration from the Adapt-N treatments. When analyzing the clay loam and loamy sand plots separately but still combining the two seasons. NO3 concentration was significantly higher in the CNC loamy sand treatments (20.1 vs 13.7 for Adapt-N; p<0.01) and they trended toward higher concentrations in the clay loam treatments (10.0 vs 8.0 for Adapt-N: p=0.09).

Figure 1 shows nitrate concentrations for each drain water sample. Generally, there was a large range of losses throughout the year, but they trended up with more applied N. As could be expected, we saw that the loamy sand plots had higher losses, regardless of treatment, due to the lower water holding capacity of the coarse textured soil. Similarly, NO3 concentrations from the clay loam plots were less responsive to the amount of applied N compared to the sandy plots, but there were still substantial losses, especially at the higher rates. We conclude that the lower applied N rate in the Adapt-N treatments resulted in an overall lower concentration of NO3 in leachate from the lysimeters.

#### Conclusions

This study proves both economic and environmental gains from using Adapt-N's adaptive approach to estimating in-season N rates across two distinct soil types in Northern New York. In all, the Adapt-N recommended rates were lower than the CNC rates but maintained the same yield and showed greater profits. Overall, the use of Adapt-N can significantly contribute to nitrogen reduction goals by reducing overall inputs, minimizing environmental losses, and improving farmer profits.

#### Acknowledgements

This work was supported by funding from the USDA-NRCS, New York Farm Viability Institute, USDA-NIFA, and USDA-Sustainable Agriculture Research and Extension, and the Northern New York Agricultural Development Program.

Table 1 2014 and 2015 growing season comparison of N application rates, yield, partial profits, and NO3 concentration. Water quality samples were taken in the spring and fall of 2015 (after the 2014 and 2015 growing seasons, respectively).

| Texture       | #  | Total N Applied (lb/ac) |     |                 | Yield (T/ac) |      |         |                 | Profit (\$/ac)               |                          |                 | NO <sub>3</sub> Concentration (mg/L) |      |         |                 |
|---------------|----|-------------------------|-----|-----------------|--------------|------|---------|-----------------|------------------------------|--------------------------|-----------------|--------------------------------------|------|---------|-----------------|
|               | п  | Adapt-N                 | CNC | Diff<br>(A-CNC) | Adapt-N      | CNC  | p-value | Diff<br>(A-CNC) | Partial<br>profit<br>Adapt-N | Partial<br>profit<br>CNC | Diff<br>(A-CNC) | Adapt-N                              | CNC  | p-value | Diff<br>(A-CNC) |
| Clay Loam     | 22 | 134                     | 194 | -60             | 12.5         | 11.9 | 0.29    | 0.6             | 656                          | 643                      | 12              | 8.0                                  | 10.0 | 0.09    | -1.9            |
| Loamy Sand    | 30 | 123                     | 175 | -52             | 13.3         | 14.0 | 0.12    | -0.7            | 608                          | 552                      | 56              | 13.7                                 | 20.1 | < 0.01  | -6.4            |
| Clay and Sand | 52 | 128                     | 183 | -55             | 13.0         | 13.1 | 0.74    | -0.1            | 632                          | 598                      | 34              | 11.0                                 | 15.3 | < 0.01  | -4.3            |

What's Cropping Up? Vol. 26. No. 2 Pg. 30



Fig. 1 Total Applied N recommended from two tools (Adapt-N and CNC) compared with measured NO3 leaching concentrations over two seasons from two soil textures. In general the Adapt-N recommended lower N applications resulted in lower average NO3 concentrations, and the loamy sand showed greater leaching losses with increasing N rates than the clay loam.

#### References

L. Fennell, S. Sela, A. Ristow, H. van Es, S. Gomes. 2015. Comparing Static and Adaptive N Rate Tools for Corn Production. What's Cropping Up? 25:5

L. Fennell, S. Sela, A. Ristow, B. Moebius-Clune, D. Moebius-Clune, B. Schindelbeck, H. van Es, S. Gomes. 2015. Adapt-N Recommendations Reduce Environmental Losses. What's Cropping Up? 25:5

Sogbedji, J.M., H.M. van Es, J.J. Melkonian, and R.R. Schindelbeck. 2006. Evaluation of the PNM Model for Simulating Drain Flow Nitrate-N Concentration Under Manure-Fertilized Maize. Plant Soil 282(1-2): 343–360

Sela. S, H.M. van Es, B.N. Moebius-Clune, R. Marjerison, J.J. Melkonian, D. Moebius-Clune, R. Schindelbeck, and S. Gomes. 2015. Adapt-N Outperforms Grower-Selected Nitrogen Rates in Northeast and Midwest USA Strip Trials. Agronomy Journal (accepted for publ.)

### **Cornell Soil Health Lab Updates**

(<u>http://soilhealth.cals.cornell.edu/</u>) Bob Schindelbeck, Aaron Ristow, Kirsten Kurtz, and Harold van Es

- New soil health training manual available on-line.
- New web-based software for sample submission and reporting
- New report format
- Updated scoring functions based on data analysis from ~7,000 samples.
- New scoring functions for different Major Land Resource Areas (Northeast, Midwest, Mid Atlantic).
- Newly created Soil Health Institute works with NRCS, Cornell University and other research scientists to develop a national soil health test, mostly based on the Cornell framework.

Mean and standard deviation for soil health indicators, based on analysis of ~7,000 samples. Soil health score equals 50 for mean value (Fine et al., 2016).

|                                                   | Texture       |               |               |  |  |  |  |  |
|---------------------------------------------------|---------------|---------------|---------------|--|--|--|--|--|
| Soil Health Indicator                             | Coarse        | Medium        | Fine          |  |  |  |  |  |
|                                                   |               |               |               |  |  |  |  |  |
| Aggregate Stability (%)                           | 52.2 (23.8)   | 42.2 (24.7)   | 41.8 (20.0)   |  |  |  |  |  |
| Available Water Capacity (g g <sup>-1</sup> )     | 0.152 (0.068) | 0.208 (0.068) | 0.219 (0.060) |  |  |  |  |  |
| Penetration Resistance15 (psi)                    | 168 (96)      | 161 (90)      | 161 (95)      |  |  |  |  |  |
| Penetration Resistance 45 (psi)                   | 319 (93)      | 296 (108)     | 297 (138)     |  |  |  |  |  |
| Organic Matter (%)                                | 3.26 (1.89)   | 3.75 (1.52)   | 4.42 (1.36)   |  |  |  |  |  |
| Active Carbon (mg kg <sup>-1</sup> )              | 486.7 (243.0) | 531.2 (182.2) | 608.7 (168.4) |  |  |  |  |  |
| Protein (mg g <sup>-1</sup> )                     | 10.2 (5.7)    | 7.0 (4.4)     | 5.7 (2.4)     |  |  |  |  |  |
| Respiration (mg CO <sub>2</sub> g <sup>-1</sup> ) | 0.64 (0.39)   | 0.62 (0.31)   | 0.61 (0.27)   |  |  |  |  |  |
| Root Health Bioassay (1-9)                        | 4.5 (1.2)     | 4.4 (1.2)     | 4.3 (1.2)     |  |  |  |  |  |
| Pot Mineralizable N (µg N g <sup>-1</sup> )       | 14.2 (16.2)   | 17.2 (20.7)   | 19.5 (15.2)   |  |  |  |  |  |

# **Updated Soil Health Scoring Curves**

(Fine et al., 2016)





c) Penetration Resistance (15 and 45 cm)











f) ACE Protein



g) Respiration



h) Root Health Bioassay



i) Potentially Mineralizable N



# **Previous Format**

**Cornell Soil Health Assessment** 

T.'11

Sample ID:

S 1

Field/Treatment: West Upper

Corey Corn

123 Horizon Rd

377 12026

# 2016 Format

| Comprehensive | Assessment | of | Soil | Health |
|---------------|------------|----|------|--------|
|               |            |    |      |        |



From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu

| Grower:<br>Corey Corn                                                           | Sample ID:    | 51          |
|---------------------------------------------------------------------------------|---------------|-------------|
| 123 Horizon Rd                                                                  | Field ID:     | West Upper  |
| New Iowa, NY 13026                                                              | Date Sampled: | 05/01/2015  |
|                                                                                 | Crops Grown:  | COG/COG/COG |
| Agricultural Service Provider:<br>John Doe<br>Assessments, Inc.<br>john@doe.com | Tillage:      | 7-9 inches  |

#### Measured Soil Textural Class: silt loam

#### Sand: 37% - Silt: 53% - Clay: 10%

| Group      | Indicator                                                  | Value        | Rating | Constraints |
|------------|------------------------------------------------------------|--------------|--------|-------------|
| physical   | Available Water Capacity                                   | 0.15         | 43     |             |
| physical   | Surface Hardness                                           | 87           | 81     |             |
| physical   | Subsurface Hardness                                        | 290          | 53     |             |
| physical   | Aggregate Stability                                        | 22.0         | 30     |             |
| biological | Organic Matter                                             | 2.9          | 45     |             |
| biological | ACE Soil Protein Index                                     | 4.5          | 27     |             |
| biological | Soil Respiration                                           | 0.4          | 24     |             |
| biological | Active Carbon                                              | 450          | 39     |             |
| chemical   | Soil pH                                                    | 6.9          | 100    |             |
| chemical   | Extractable Phosphorus                                     | 4.5          | 100    |             |
| chemical   | Extractable Potassium                                      | 67.8         | 93     |             |
| chemical   | Minor Elements<br>Mg: 419.0 / Fe: 1.1 / Mn: 12.9 / Zn: 1.9 |              | 100    |             |
| verall     | Quality Score: 61                                          | . / Excellen | t      |             |

| Agricu<br>Doe, Jo<br>Assess<br>ohn@ | Itural Service Provider:<br>hn<br>ments Inc.<br>doe.com |       | Crops Crown:<br>Date Sampled:<br>Given Soil Typ<br>Given Soil Tex<br>Coordinates: | 1: COG, COG, COG<br>d: 5/1/2015<br>'ype: Lima<br>'exture: Silt Loam<br>42.44790 °N; 76.47570 °W |  |  |  |
|-------------------------------------|---------------------------------------------------------|-------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| M                                   | leasured Soil Textural Class: Silt                      | Loam  | Sand                                                                              | : 37% Silt: 53% Clay: 10%                                                                       |  |  |  |
|                                     | 1                                                       | lest  | Results                                                                           | S                                                                                               |  |  |  |
|                                     | Indicator                                               | Value | Rating                                                                            | Constraint                                                                                      |  |  |  |
|                                     | Available Water Capacity                                | 0.15  | 42                                                                                |                                                                                                 |  |  |  |
| sical                               | Surface Hardness                                        | 87    | 84                                                                                |                                                                                                 |  |  |  |
| Phys                                | Subsurface Hardness                                     | 290   | 50                                                                                |                                                                                                 |  |  |  |
|                                     | Aggregate Stability                                     | 22.0  | 22                                                                                | Aeration, Infiltration, Rooting, Crusting,<br>Sealing, Erosion, Runoff                          |  |  |  |
| Siological H                        | Organic Matter                                          | 2.9   | 32                                                                                |                                                                                                 |  |  |  |
|                                     | ACE Soil Protein Index                                  | 4.5   | 26                                                                                | Organic Matter Quality, Organic N Storage,<br>N Mineralization                                  |  |  |  |
| Biol                                | Respiration                                             | 0.39  | 23                                                                                | Soil Microbial Abundance and Activity                                                           |  |  |  |
|                                     | Active Carbon                                           | 450   | 27                                                                                | Energy Source for Soil Biota                                                                    |  |  |  |
| _                                   | рН                                                      | 6.9   | 100                                                                               |                                                                                                 |  |  |  |
| mica                                | Phosphorus                                              | 4.5   | 100                                                                               |                                                                                                 |  |  |  |
| Che                                 | Potassium                                               | 67.8  | 93                                                                                |                                                                                                 |  |  |  |
|                                     | Minor Elements<br>Mg: 419 Fe: 1.1 Mn: 12.9 Zn: 1        | 1.9   | 100                                                                               |                                                                                                 |  |  |  |
|                                     | <b>Overall Quality Scor</b>                             | 'e    | 58                                                                                | Medium                                                                                          |  |  |  |

As part of the CASH Report Summary indicator scores are assigned a color rating. (Left) The assessment traditionally used a three color system (red, yellow, green for low (0-30), medium (30-70), and high (70-100), respectively). In 2016 the report began using a five-color system - red (0-20), orange (20-40), yellow (40-60), light green (60-80), and dark green (80-100) for very low, low, medium, high, and very high, respectively.

# **Musgrave Farm-Field E**

- Lima silt loam soil Long-term tillage trial COG/COG/COG
- Moldboard PLOW
- Chisel till Ridge till
- Ridge till
- ZONE till
- 2012-15 <u>Tillage effects</u> on grain yields (bu/A) 2012 2013 2014 2015 AVG.
- PLOW till
   147.7
   173.4
   178.5
   93.6
   148.3

   ZONE till
   167.2
   197.1
   174.5
   105.7
   161.1
- 2015 <u>Nitrogen response</u> grain yields (bu/A) 140 bu/A yield target, planted 6-20-15

|           |            | Adapt-N      | NCALC         |
|-----------|------------|--------------|---------------|
|           | <u>0#N</u> | <u>75# N</u> | <u>125# N</u> |
| PLOW till | 84.5       | 109          | 113.9         |
| ZONE till | 97.5       | 111.5        | 109.2         |

# Cover crop interseeding exp.

- Split-plot design, sown at sidedress
- Cocktail mix- vetch, clover, ryegrass
- Soil health parameters effect on soil N response and yield
  - Increasing water holding capacity, aggregate stability
  - Increasing <u>organic matter</u>- active carbon, soil protein, soil respiration



### • Cover crop effects on soil nitrogen and yield (Adapt-N calib.)

|           | 1          | NO cover cr   | ор            | w          | crop         |               |  |
|-----------|------------|---------------|---------------|------------|--------------|---------------|--|
|           |            | Adapt-N NCALC |               |            | Adapt-N      | NCALC         |  |
|           | <u>0#N</u> | <u>75# N</u>  | <u>125# N</u> | <u>0#N</u> | <u>75# N</u> | <u>125# N</u> |  |
| PLOW till | 84.5       | 109           | 113.9         | 91.7       | 119.2        | 126.2         |  |
| ZONE till | 97.5       | 111.5         | 109.2         | 114.3      | 120          | 126           |  |



School of Integrative Plant Science Soil and Crop Science section Harold van Es, professor Aaron Ristow, Extension Associate Chris Pelzer, Technician III Bob Schindelbeck, Extension Associate rrs3@cornell.edu

|                                                                                                                                                                                                                                            |                                                           |                 |                                                                                                               |                                    |                                                       |                                                                                                                                                                                                                                            | 7                 |                                         |                                    |                                   |                                                            |                |            |                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|------------------------------------|-----------------------------------|------------------------------------------------------------|----------------|------------|-------------------|--|
| Comprehensive Assessment of Soil Health<br>From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of<br>Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu |                                                           |                 |                                                                                                               |                                    | Musgrave Farm<br>Field E                              | Comprehensive Assessment of Soil Health<br>From the Cornell Soil Health Laboratory, Department of Soil and Crop Sciences, School of<br>Integrative Plant Science, Cornell University, Ithaca, NY 14853. http://soilhealth.cals.cornell.edu |                   |                                         |                                    |                                   |                                                            |                |            |                   |  |
| Grower:<br>Bob Schindelbeck<br>1004 Bradfield Hall<br>Ithaca, NY 14853<br>rrs3@cornell.edu                                                                                                                                                 |                                                           | Fi              | Sample ID:     NN2190       Field ID:     Aur E PLOW TILL NO COVER<br>CROP       Date Sampled:     05/25/2016 |                                    | Sampled 5-25-16<br>Lima silt loam soil<br>COG/COG/COG | Grower:<br>Bob Schindelbeck<br>1004 Bradfield Hall<br>Ithaca, NY 14853<br>rrs3@cornell.edu                                                                                                                                                 |                   |                                         | Sa<br>Fie<br>Da                    | mple ID:<br>ld ID:<br>te Sampled: | NN2193<br>Aur E ZONE TILL WITH COVER<br>CROP<br>05/25/2016 |                |            |                   |  |
| Long                                                                                                                                                                                                                                       | term moldboar                                             | 'd plo          | W_G                                                                                                           | iven Soil Type:                    | Lima                                                  |                                                                                                                                                                                                                                            |                   | Zone till                               |                                    |                                   | Giv                                                        | ven Soil Type: | Lima       |                   |  |
|                                                                                                                                                                                                                                            | over cron                                                 |                 | С                                                                                                             | rops Grown:                        | COG/COG/COG                                           |                                                                                                                                                                                                                                            |                   | WITH interseeded                        |                                    |                                   |                                                            | Cri            | ops Grown: | COG/COG/COG       |  |
|                                                                                                                                                                                                                                            |                                                           |                 | Т                                                                                                             | llage:                             | 7-9 inches                                            |                                                                                                                                                                                                                                            |                   |                                         |                                    | Trinterseeded                     |                                                            |                | age:       | no till           |  |
|                                                                                                                                                                                                                                            |                                                           |                 |                                                                                                               |                                    |                                                       |                                                                                                                                                                                                                                            | Increasing        |                                         | C                                  | cover crop 20                     | 13-1                                                       | 5              |            |                   |  |
| Measu                                                                                                                                                                                                                                      | red Soil Textural Cla                                     | iss: <b>loa</b> | m                                                                                                             |                                    |                                                       |                                                                                                                                                                                                                                            | Collegebox stores | Mea                                     | Measured Soil Textural Class: Ioam |                                   |                                                            |                |            |                   |  |
| Sand: <b>40%</b> - Silt: <b>38%</b> - Clay: <b>21%</b>                                                                                                                                                                                     |                                                           |                 |                                                                                                               | Sond: 42% - Silt: 38% - Clay: 18%  |                                                       |                                                                                                                                                                                                                                            |                   |                                         |                                    |                                   |                                                            |                |            |                   |  |
| Group                                                                                                                                                                                                                                      | Group Indicator Value Rating Constraints                  |                 | Aggregate stability                                                                                           | Gro                                | oup                                                   | Indicator                                                                                                                                                                                                                                  | Value             | Rating                                  | Constraint                         | s                                 |                                                            |                |            |                   |  |
| physical                                                                                                                                                                                                                                   | Available Water Capacity                                  | 0.13            | 32                                                                                                            |                                    |                                                       | _                                                                                                                                                                                                                                          |                   | phys                                    | sical                              | Available Water Capacity          | 0.18                                                       | 60             |            |                   |  |
| physical                                                                                                                                                                                                                                   | Surface Hardness                                          | 270             | 10                                                                                                            | Rooting, W                         | Vater Transmission                                    |                                                                                                                                                                                                                                            |                   | phys                                    | sical                              | Surface Hardness                  | 280                                                        | 8              | Rooting, W | ater Transmission |  |
| physical                                                                                                                                                                                                                                   | Subsurface Hardness                                       | 350             | 32                                                                                                            |                                    |                                                       |                                                                                                                                                                                                                                            |                   | phy:                                    | sical                              | Subsurface Hardness               | 350                                                        | 32             |            |                   |  |
| physical                                                                                                                                                                                                                                   | Aggregate Stability                                       | 17.0            | 21                                                                                                            |                                    |                                                       | _                                                                                                                                                                                                                                          |                   | phy:                                    | sical                              | Aggregate Stability               | 57.6                                                       | 93             |            |                   |  |
| biological                                                                                                                                                                                                                                 | Organic Matter                                            | 2.5             | 28                                                                                                            |                                    |                                                       |                                                                                                                                                                                                                                            |                   | biolo                                   | gical                              | Organic Matter                    | 2.9                                                        | 44             |            |                   |  |
| biological                                                                                                                                                                                                                                 | ACE Soil Protein Index                                    | 3.5             | 18                                                                                                            | Organic Ma                         | atter Quality, Organic N Storage, N                   | -                                                                                                                                                                                                                                          |                   | biolo                                   | gical                              | ACE Soil Protein Index            | 4.6                                                        | 28             |            |                   |  |
| histogical                                                                                                                                                                                                                                 | Coll Decelection                                          |                 | 20                                                                                                            | Mineraliza                         | tion                                                  |                                                                                                                                                                                                                                            |                   | biolo                                   | gical                              | Soil Respiration                  | 0.6                                                        | 47             |            |                   |  |
| biological                                                                                                                                                                                                                                 | Active Carbon                                             | 0.4             | 30                                                                                                            | Concerne Con                       | unes for Coll Blots                                   | _                                                                                                                                                                                                                                          |                   | biolo                                   | gical                              | Active Carbon                     | 520                                                        | 54             |            |                   |  |
| sheesiaal                                                                                                                                                                                                                                  | Active Carbon                                             | 310             | 15                                                                                                            | Energy Sol                         | urce for Soli Blota                                   |                                                                                                                                                                                                                                            | Increasing        | cher                                    | nicat                              | Soil pH                           | 7.7                                                        | 0              |            |                   |  |
| chemical                                                                                                                                                                                                                                   | SolipH                                                    | 7.9             | 0                                                                                                             | High pH: T                         | oxicity, Nutrient Availability                        |                                                                                                                                                                                                                                            | increasing.       | cher                                    | nical                              | Extractable Phosphorus            | 8.8                                                        | 100            |            |                   |  |
| chemicar                                                                                                                                                                                                                                   | Extractable Phosphorus                                    | 6.9             | 100                                                                                                           |                                    |                                                       |                                                                                                                                                                                                                                            | Organic matter    | cher                                    | nicat                              | Extractable Potassium             | 77.8                                                       | 100            |            |                   |  |
| chemicar                                                                                                                                                                                                                                   | Extractable Potassium                                     | 91.2            | 100                                                                                                           |                                    |                                                       |                                                                                                                                                                                                                                            | Soil protein      | cher                                    | nicat                              | Minor Elements                    |                                                            | 100            |            |                   |  |
| chemicar                                                                                                                                                                                                                                   | Minor Elements<br>Mg: 349.9 / Fe: 0.8 / Mn: 5.6 / Zn: 0.4 |                 | 100                                                                                                           |                                    | Active carbon                                         |                                                                                                                                                                                                                                            |                   | Mg: 337.8 / Fe: 0.6 / Mn: 4.4 / Zn: 0.3 | 5                                  |                                   |                                                            |                |            |                   |  |
|                                                                                                                                                                                                                                            |                                                           |                 |                                                                                                               |                                    |                                                       |                                                                                                                                                                                                                                            | Respiration       |                                         |                                    |                                   |                                                            |                |            |                   |  |
| Overall Quality Score: <b>41</b> / Medium                                                                                                                                                                                                  |                                                           |                 |                                                                                                               | Overall Quality Score: 56 / Medium |                                                       |                                                                                                                                                                                                                                            |                   | um                                      |                                    |                                   |                                                            |                |            |                   |  |
|                                                                                                                                                                                                                                            |                                                           |                 |                                                                                                               |                                    |                                                       |                                                                                                                                                                                                                                            |                   |                                         |                                    |                                   |                                                            |                |            |                   |  |

### 

## **Precision Agriculture Plan for NYS**

Harold van Es, Joshua Woodard and Michael Glos

- PA defined as "the use of advanced technologies to precisely match agricultural inputs with needs". This applies to crop and animal systems, and reflects an approach that moves from generalized (field, herd, annual, etc.) towards more specific, individualized, and real-time management.
- Full day workshop in December, 2015 in Geneva and all day session at the 2016 New York Farm Show
- Discussion of PA technologies on different farm types
- Current state of PA in New York; survey of NY farmers
- Technological and socio-economic barriers
- Recommendations for advancing PA in New York

# Selected results of online survey of NY producers about their use of Precision agriculture, based on 182 useable responses.

- Corn and soybean producers are the largest adopter of high-precision GPS services (RTK, DGPS etc.) among other agricultural goods producers with nearly 40% of the respondents using it.
- Within the corn and soybean producers, access to high speed internet on the farm is high, nearly 90% among the 38 respondents while over 94% of the other row cop producers have high speed internet.
- Use of Yield monitors, with or without GPS, is high among the corn and soybean producers compared to the other producers, almost 34% compared to 9% among all other respondents.
- 32% of corn/ soybean producers use field imagery from satellite, planes or UAVs, while juice and wine grape producers are the most prolific users (47%)
- 32% of juice and wine grape producers use soil maps created by grid soil tests or electrical conductivity measurements with GPS compared to only 18% of corn and soybean producers.
- Corn and soybean producers are, by far, the largest users of variable rate chemical applicators with GPS, auto steer technology and soil mapping using soil tests with 29%, 34% and 47% respectively answering positively.
- Corn and soybean producers adopt PA for higher profits (81%), reduced environmental impacts (60%) and personal time savings (58%)