Ranching in a Variable Climate a practical approach

May 15, 2019

Dan Macon, Livestock and Natural Resources Advisor UCCE – Placer/Nevada/Sutter/Yuba

Overview

- Let's think back to 2013-2014...
- What do we mean by climate variability and how does it impact ranching operations?
- What do you mean I should write it down?! The importance of a plan...
- Coping with Drought on Annual Rangelands
 - What we learned from the 2012-2015 drought
 - Case Study: Weaning Calves Early

February 5, 2014 Rio Vista, CA

What do we mean by "climate variability"?

- What's the difference between weather and climate?
 - "Climate is what you expect, weather is what you get." – Robert A. Heinlein
- Climate models predict greater variability
 - Warmer temperatures
 - Shorter, more intense wet seasons
 - Wetter wet years
 - Drier dry years

5 Years – 5 Different Stories

2006-07: Drought

70 6000 60 5000 Forage Production (lbs/ac) 50 4000 Precip (in) 40 Accumulated 3000 30 Accumulated 2000 20 1000 10 0 0 May Sep Oct Nov Dec Jan Feb Mar Apr Jun Jul Aug 2006-7 Forage _____2006-7 Precip

2006-07 Precipitation & Forage Production

2010-11: Wet

2010-11 Precipitation & Forage Production

2013-14: Record Drought

2013-14 Precipitation & Forage Production

2016-17: Record Wet

2016-17 Precipitation & Forage Production

2017-18: "Normal" – whatever that means!

70 6000 60 5000 Forage Production (lbs/ac) 50 4000 Precip (in) 40 Accumulated 3000 30 Accumulated 2000 20 1000 10 0 0 Oct Nov Dec Feb Mar Apr May Jun Sep Jan Jul Aug 2017-18 Precip 2017-18 Forage

2017-18 Precipitation & Forage Production

Based on these 5 years.... How do we stock our ranches?!

Let's look at drought....

Drought Preparation Strategies

Drought Response Strategies

Drought Recovery Strategies

Drought Impacts on California Ranches (2012 – 2015)

In 2016, we surveyed 48 ranching operations regarding drought impacts, preparation, and response strategies.

- 32 cattle operations
- 28 sheep operations
- 3 goat operations
- 15 multi-species operations

Macon Roche, In prep

Drought Impacts

Impact	%	Severity				
		No Impact 🔶 Severe Impac				
		1	2	3	4	5
Reduced forage availability	98%					
Increased expenses	90%	3.64				
Tree and brush mortality	67%	3.09				
Reduction in surface water	59%	3.75				
Reduction in stock water	57%					
Increase in invasive weeds	57%	3.31				
Decreased weaning weights	46%	3.14				
Reduction in reproductive rates	45%		3.10			
Reduced revenues	45%		3.54			

University of California

Drought Preparation Strategies

Strategy	%	Effectivenes			s Highly		
				Effective			
		1	2	3	4	5	
Incorporate pasture rest	90%			4.25			
Identify animals to sell	76%	3.94					
Stockpile forage	76%	3.89					
Use a conservative stocking rate	67%	4.33					
Purchase forage insurance	41%	3.84					
Multiple <u>classes</u> of livestock	27%	4.08					
Multiple species of livestock	18%			4.44			

University of California

Drought Response Strategies

Strategy	%	Effectiveness				
		NOT EIIE		- Highly Ellective		
		1	2	3	4	5
Purchase feed	82%			4.38		
Reduce livestock numbers	61%					
Develop/haul stock water	55%			4.44		
Rent additional pasture	26%			4.58		
Move livestock to other location	14%			4.57		
Placed livestock in feedlot	14%		4	.17		
Earned off-ranch income	10%			4.8		

University of California

Early Weaning

Type of Producer	%	Effectiveness Not Effective				
		1	2	3	4	5
Cattle Only	67%					
Sheep Only	38%	4.40				
Multi-species	75%					
All Producers	59%		4.	.03		

Early Weaning: Key Considerations

- Weaning calves (or lambs or kids) early can reduce stocking rate while maintaining proven genetics.
- Tradeoffs
 - Lighter sale weights = lower revenue
 - Lower stocking rate = potentially lower supplemental feeding costs
 - Selling weaners vs. selling breeding-age females
- Logistics
 - Should fit with typical production calendar (e.g., weaning could occur at preg check)
 - Wean onto trucks vs. fenceline weaning and backgrounding
 - Wean heavier calves first?
- What are the key dates and trigger points?

University of California

SFREC Research – Early Weaning of Beef Calves

- Early weaning may be an effective strategy for reducing stocking rate without impacting herd genetics.
- However, no research has analyzed the effectiveness of early weaning on annual rangelands, which are a unique system:
 - Typically fall calving operations (to take advantage of winter/spring forage production)
- Western SARE grant providing funding for us to analyze the costs and benefits of early weaning in a fall-calving, annual rangeland system
- Producer steering committee is helping make sure we're asking the right questions <u>and</u> taking a practical approach!

Early Weaning Project - Objectives

- 1. Quantify the influence of early weaning on cow and calf performance, pasture utilization, soil protection, and plant biodiversity.
- 2. Develop decision tools to help producers evaluate the economic and ecological tradeoffs associated with early weaning.
- 3. Create a basic decision support guide to facilitate operation-specific analysis.

Early Weaning Project - Methods

- Randomly assigned 84 cows to early weaning (March) or traditional weaning (late May or June) groups (3 blocks).
- Cattle will graze in six ~100 acre pastures from late March through the onset of calving (September 1).
 Stocking rate (acres/cow) will be similar across pastures.
- Experiment conducted across two grazing seasons.

Early Weaning Project - Measurements

- Cows: BCS (weaning, calving, breeding), Conception Rates
- Calves: Weight (weaning)
- Rangeland: forage production and utilization, forage quality, species composition, and biodiversity
- Economics: Value of calves (early vs. traditional) vs. potential savings (feed costs, retention of genetic potential, post-drought recovery)

Early Weaning Project – Steering Committee

• Committee Members

- Joe Fischer, Bruin Ranch
- Patti Beard, Beard Ranch
- Sue Hoek, Robinson Ranch
- Tim Reid, Reid Ranch
- Greg Lawley, Lawley Ranch

• Committee recommendations

- Early weaning should occur during typical operations (e.g., preg check)
- Trigger condition considerations
 - Feeder cattle cash and futures markets
 - Feed (esp. corn) cash and futures markets
 - Cull cow market
 - Cow age
 - Other risk management strategies
 - Labor costs
 - Will early weaning require additional labor?
 - Will extra feeding require additional labor

Agriculture and Natural Resources

University of California

Early Weaning Project - Update

- Early weaned calves were weaned on March 19 and "sold" on March 26.
- All project cattle placed on project pastures on March 26.
- Traditional weaning will occur on May 30. Calves will be "sold" on June 6.
- Forage production and utilization data collected week of May 28.

Questions?

- What's in <u>YOUR</u> drought toolbox?
 - Preparation tools
 - Response tools
 - Recovery tools
- What questions do we need to be asking?