Internet of Things (IoT)-based Precision Irrigation with LoRaWAN Technology Applied to Vegetable Production

Submission ID: 2100877

Presenter: Long He

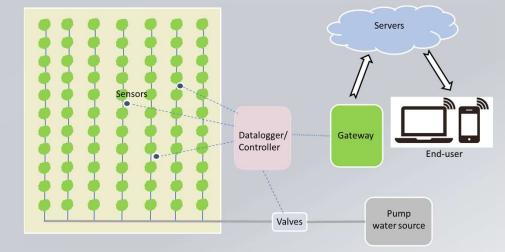
Author: Haozhe Zhang, Long He, Francesco Di Gioia,

Daeun Choi, Paul Heinemann

The Pennsylvania State University

Importance of Precision Irrigation

- Agriculture consumes approximately 80% of water use in the United States.
- Conventional Irrigation: based on experiences, over- or under-irrigation, low water usage efficiency, nitrogen loss.
- Precision Irrigation: determine when and how much to irrigate, which can save water and increase crop production.


Internet of Things (IoT) for Irrigation

IoT system

- Access to sensor data remotely
- Analysis of sensor data
- Remote/automated irrigation control

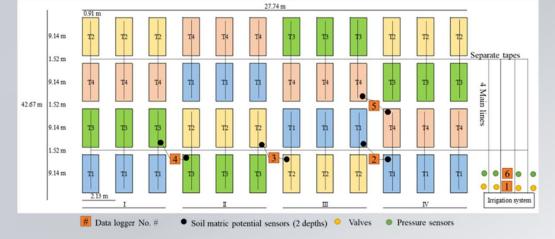
Networks for IoT system

- Wi-Fi, Bluetooth, ZigBee, Sigfox
- Cellular network (GPRS, EDGE, LTE), LoRaWAN

Experiment Setup

Experiment Site

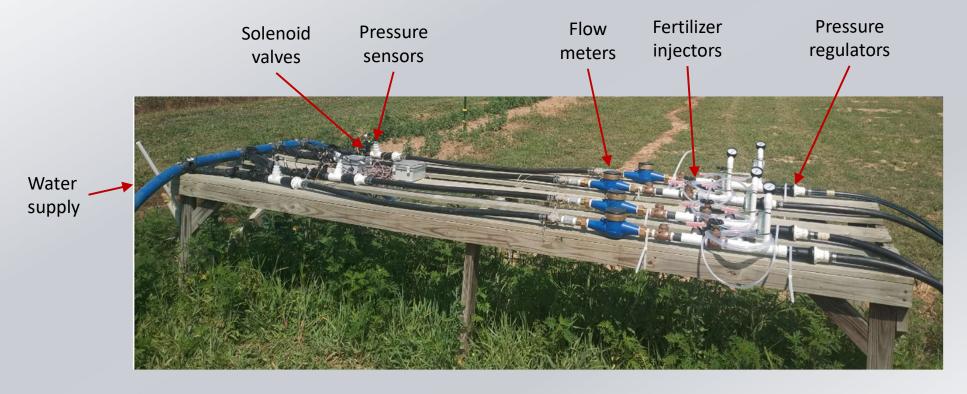
Tomatoes open field at Rock Spring (Furnace, PA)


√

Treatment

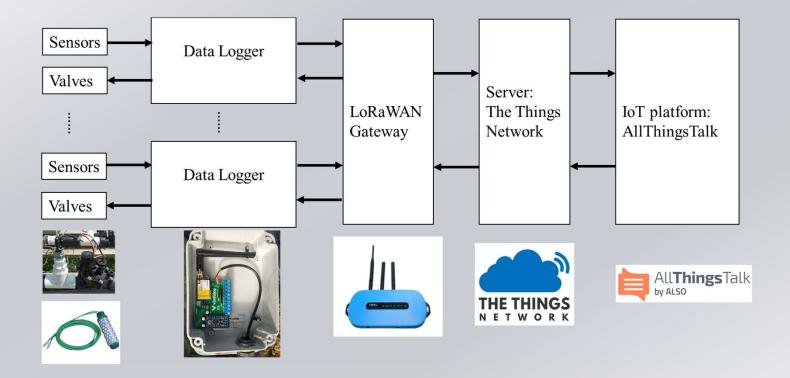
- T1: ET-based (ET) (12 mm)
- T2: MP-based, -60 kPa (MP60)
- T3: MP-based, -40 kPa (MP40)
- T4: GesCoN-based (GesCoN)
- 4 replications, RCBD

GesCoN


GesCoN is a decision support system developed by the University of Foggia (Italy),
which provides daily ET₀ and suggestions for irrigation and fertigation.

Irrigation System Setup

Major Components


- 4 16 Soil MP sensors
 - Watermark 200SS-5, Irrometer, Inc.
 - Installation depths: 20/40 cm
- 4 Pressure sensors
 - 5V, 0-1.2 MPa
- 4 DC latching solenoid valves
 - PGV Series 1 inch
- 6 Data loggers
 - 4 MP sensors
 - 1 Pressure sensors
 - 1 Solenoid valves

IoT System Development

IoT System Interface

Data chart

Pinboard

App notification

Harvest and Evaluation

- ❖ Tomatoes planted on 5/21/2020
- ❖ Data record started on 6/25, 35 Days after transplanting (DAT).
- ❖ Harvest on 78, 90, 103, 113, and 125 DAT.
- Only harvest 10 representative plants in the middle bed from 20 plants.
- Crop yield and water use efficiency were analyzed.

Results: Yield

Treatment	Fruit Fresh Weight (Mg/ha)						
	XL	L	M	Cull	TMY	TY	
T1	46.35 bc	4.52 b	3.34	25.73 ab	54.21 bc	79.95 ab	
T2	52.71 ab	6.46 a	3.26	23.66 b	62.43 ab	86.09 a	
Т3	38.16 с	5.43 ab	3.75	27.49 a	47.34 c	74.83 b	
T4	56.72 a	5.95 a	3.52	20.00 с	66.19 a	86.20 a	
P-value	0.01	0.04	0.66	0.002	0.01	0.06	

■ ET +0%

■ MP60 +15.2%

■ MP40 -12.5%

• GesCoN +22.1%

XL = Extra-Large, L = Large, M = Medium, Cull = Unmarketable,

TMY= Total marketable yield, TY = Total yield

Results: Irrigation Water Use Efficiency (iWUE)

Treatment	Volume (m³ ha-1)	iWUE (kg m ⁻³)
ET	2440	22.22 b
MP60	2357	26.49 ab
MP40	1695	27.94 a
GesCoN	2339	28.38 a

❖Total water usage

-	MP60	-3.4%
-	MP40	-30.5%

■ GesCoN -4.1%

*****iWUE

•	MP60	+19.2%
•	MP40	+25.7%
	GosCoN	⊥ 27 7%

Conclusion – System Feasibility

- The IoT system with LoRaWAN technology monitored the sensors and controlled the valves successfully
- ❖ 5.5% signal loss
- Sufficient battery supply
- Minor misfunction of valve control

Conclusion – Crop Irrigation Evaluation

- ❖ For yield and iWUE, GesCoN was the highest, followed by MP60, then ET. However, MP60 has no significant difference from other two treatments.
- According to the results of MP60, the developed IoT-based system using LoRaWAN technology can be potentially used for precision and automatic irrigation application for practical vegetable production.

Acknowledgement

- ❖ USDA-Northeast SARE, Project No. 19-378-33243
- State Horticultural Association of Pennsylvania (SHAP)
- Pennsylvania Vegetable Growers Association (PVGA)

Thank you!

