Internet of Things (IoT) for Precision Irrigation Management in Tree Fruit Orchards

Long He

2021 Cornell NYS Tree Fruit Conference

February 4th, 2021

Challenges for Conventional Irrigation:

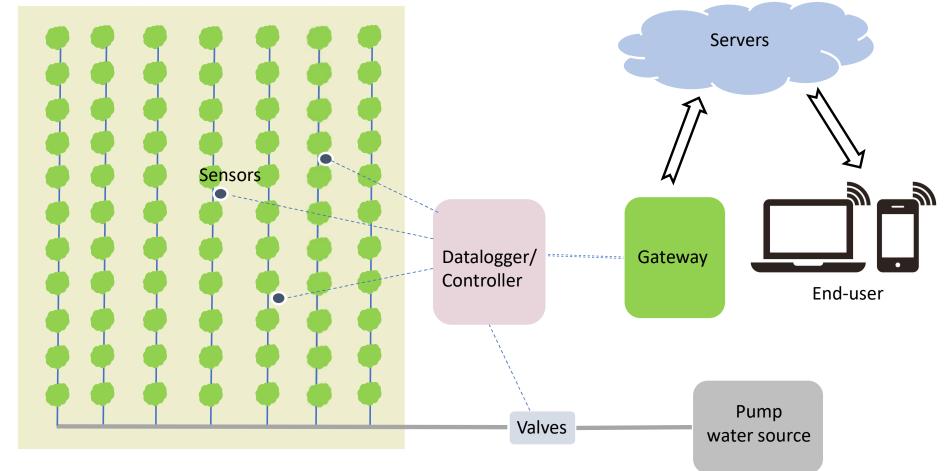
- Rely on human experiences
- Cause over- or under-irrigation

Precision Irrigation:

- Rely on data
- When and how much to irrigate

Benefit of Precision Irrigation:

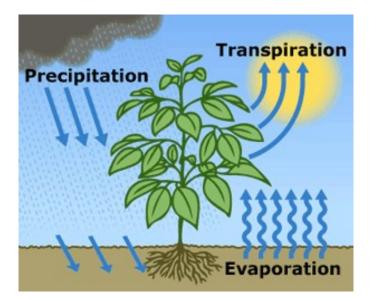
- Improve crop yield and quality
- Conserve water and save energy
- Reduce nutrient leaching and environmental impact

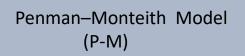


IoT for Precision Irrigation

PennState Extension

Internet of Things (IoT) based Irrigation Management

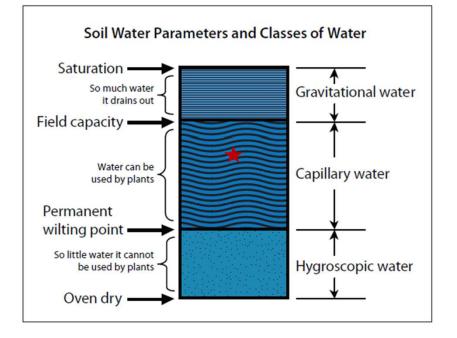

Basics of Irrigation


PennState Extension

Evapotranspiration (ET)

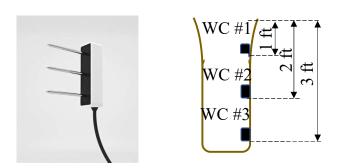
When Transpiration + Evaporation > Precipitation, *Irrigation* is needed.

- **Reference ET**₀
- Estimated $ET = K_c \times ET_0$

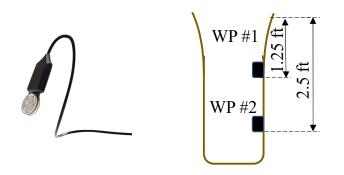

Parameters:

- Maximum air temperature
- Minimum air temperature
- Relative humidity
- Wind speed
- Solar radiation

Soil Moisture Measurement



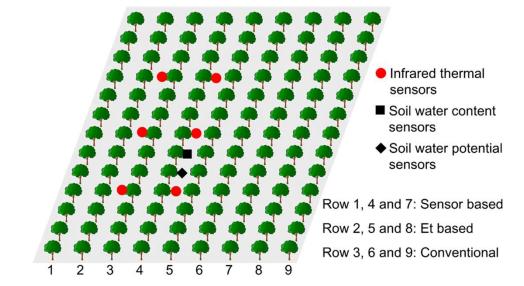
Fundamental Principles



Soil Water Parameters (From: Texas A&M AgriLife Extension, E-618)

Soil Moisture Sensors

Soil water content sensor: TEROS 12 @ QTY 3


Soil water potential sensor: TEROS 21 @ QTY 2

Primary Goal

Investigate an efficient sensor-based irrigation scheduling strategy for apple orchards in Mid-Atlantic region.

Experimental Setup

PennState

College of Agricultural Sciences

5

PennState Extension

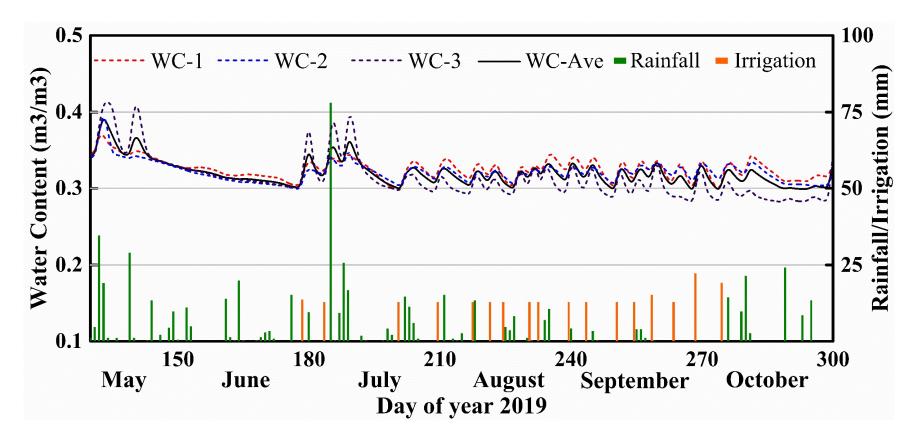
PennState Extension

A Cellular Network based IoT Irrigation System

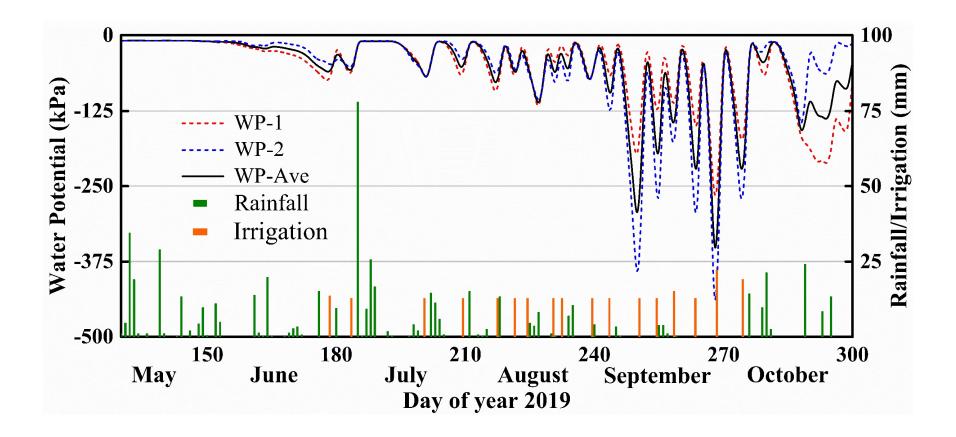
- Soil water content and Potential sensors
- Datalogger to record sensor data
- Cellular network for data communication (cloud server)

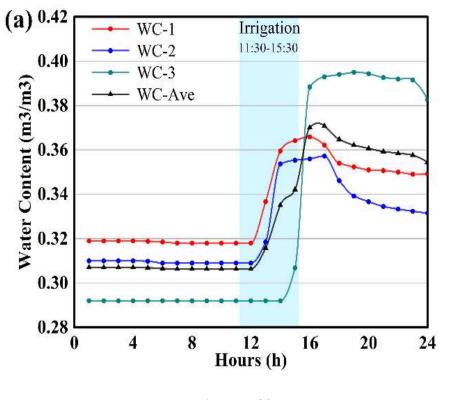
PennState College of Agricultural Sciences

Soil Moisture Data Monitoring & Recording

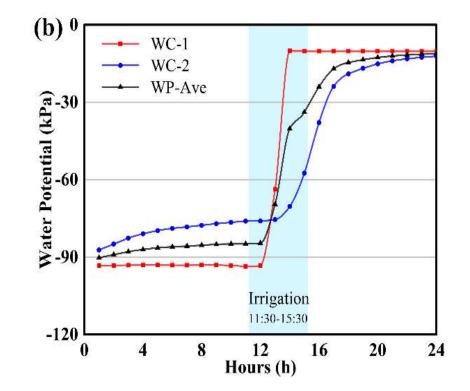

z6-02464		AT&T LTE	3:54 PM	20%
Battery	Storage Space	2	z6-02464	
D 100%	┋ 30%			
Serial Number	Measurement	TEROS 12		Port 1
z6-02464	10 minutes	Water Content	Soil Temperature	
Firmware Version 2.04.2	Last Updated 3:53 PM	and statistic in a late		
2.04.2	3:53 PIVI	0.359 m ³ /m ³	4.9 °C	>
		Saturation Extract E	2	
Actions		0.686 mS/cm		
Q	μ.	TEROS 12		Port 2
Refresh	Configure	Water Content	Soil Temperature	
		0.354 m ³ /m ³	4.8 °C	×
TEROS 12		Saturation Extract E	0	2
Water Content	Soil Temperati	0.500 mS/cm		
0.359 m³/m³	4.9 °C	[_
Saturation Extract E0	0	TEROS 12		Port 3
0.668 mS/cm		Water Content	Soil Temperature	
		0.350 m ³ /m ³	5.0 °C	
		Saturation Extract E0		>
		0.395 mS/cm		

PennState Extension


Results in Research Orchard - Soil Water Content


PennState Extension

Results in Research Orchard - Soil Water Potential

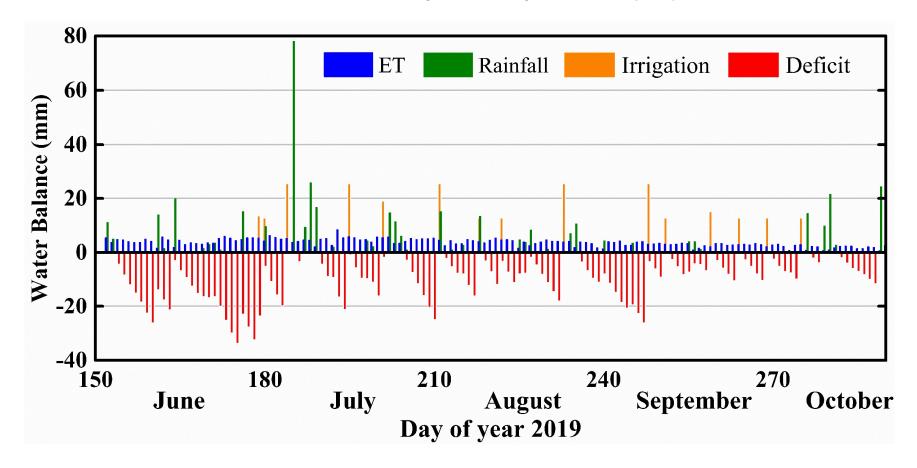


PennState College of Agricultural Sciences

Sensor Data in an Irrigation Event

a). Soil water content

b). Soil water potential



Sciences

PennState Extension

Results in Research Orchard - Evapotranspiration (ET)

PennState Extension

Performance among Different Irrigation Methods

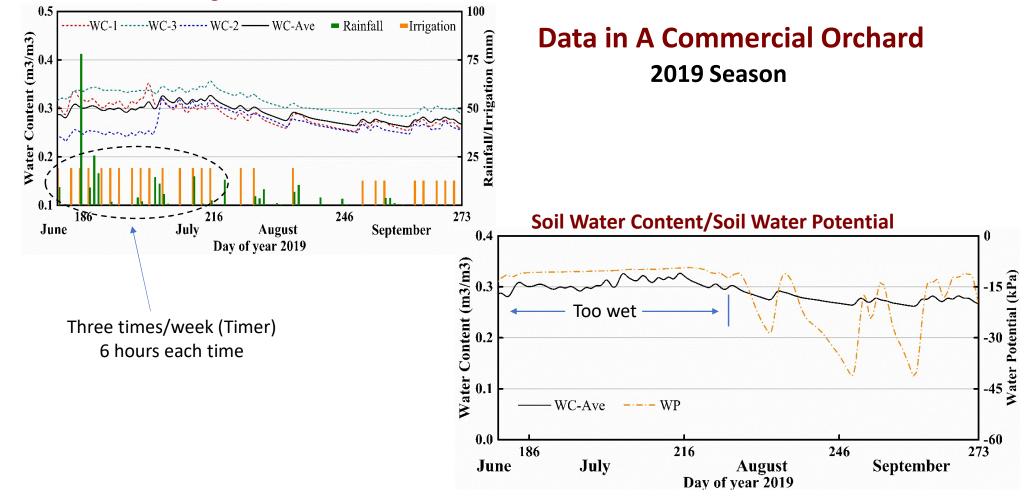
Irrigation strategies	Overall water use (mm)	Crop yield/tree (kg) (Mean±sd)	Crop size (g) (Mean±sd)	Hardness (kg) (Mean±sd)	Soluble solids (oBrix) (Mean±sd)
Moisture-based	235	24.4±3.5a	243.1±22.9a	8.2±0.6a	16.1±0.7a
ET-based	264	23.4±4.9ab	264.4±19.1a	8.2±0.4a	16.0±1.0a
Conventional	247	20.9±3.1b	258.2±15.3a	8.4±0.5a	15.9±0.8a

PennState Extension

Test in Commercial Orchards

Hollabaugh Bro. Inc (Honey Crisp)

Mt. Ridge Farms (Fuji)


Twin Springs Fruit Farm (Crimson Crisp)

El Vista Orchards (Gala)

PennState Extension

Soil Water Content/Irrigation/Rainfall

Day of Year 2020

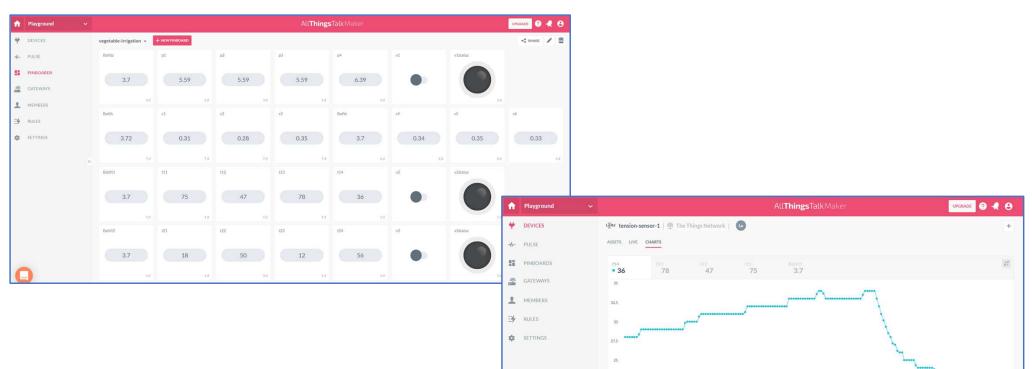
Pe

PennState Extension

Soil Water Content/Irrigation/Rainfall 0.4 40 ----- WC-2 ----- WC-3 Rainfall Irrigation ----- WC-1 Water Content (m3/m3) **Data in A Commercial Orchard** 0.3 Major irrigation period 0.2 2020 Season 0.10 0 Sept. June 180 Julv 210 Aug. 240 270 153 Day of Year 2020 Soil Water Content/Soil Water Potential 0.4 0 Water Content (m3/m3) -20 Water Potential (kPa) 0.3 Vet -40 0.2 -60 0.1 -80 -WC-Ave -WP 0 -100 153 210 270 June 180 July Aug. 240 Sept.

College of Agricultural Sciences

LoRa (Long Range) IoT Irrigation System



1 week (showing min/max/average) 0 ← 22. Nov 2019, 00:01 - 29. Nov 2019, 00:01 →

PennState Extension 1

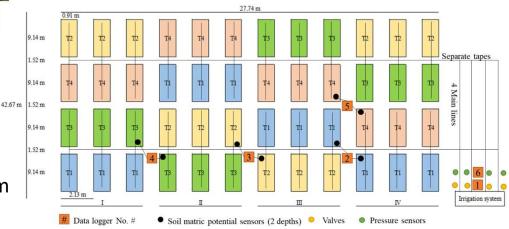
Frida

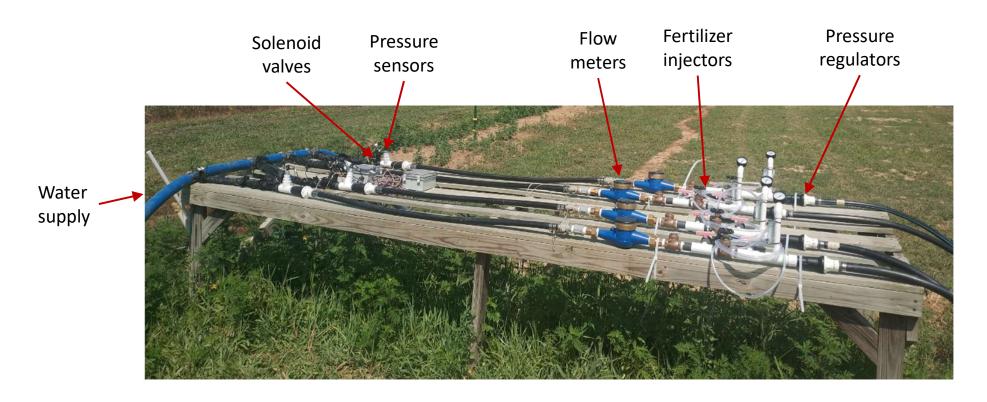
Interface of the IoT irrigation System

Remote/Automated Irrigation Operation!

College of Agricultural Sciences

PennState Extension


Field Test in A Tomato Field


• Four Treatments:

- Treatment #1 (T1): ET based irrigation
- Treatment #2 (T2): Soil water potential (-40 kPa)
- Treatment #3 (T3): Soil water potential (-60 kPa)
- Treatment #4 (T4): GesCon decision support system

- Tomatoes were transplanted on May 21st, 2020
- There were 48 sections with 20 plants at each section
- Sub-surface drip irrigation
- Same nutrient level applied to the whole field
- Harvest dates: 8/7; 8/19; 9/1; 9/11; and 9/23

Irrigation System Setup

PennState Extension

1

PennState College of Agricultural Sciences

Sensing/Control System Setup

PennState Extension

Experiment Results

Treatment	Т1	Т2	тз	Т4
Water use efficiency (kg/m ³)	22.22	26.49	27.94	28.30

Crop Yield and Quality

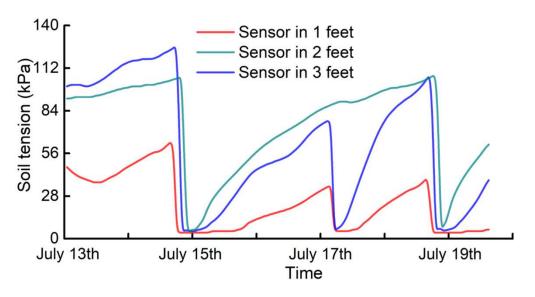
Treatment	Total Harvest (Mg ha ⁻¹)					
	XL	L	М	Cull	TMY	ΤY
T1	46.35	4.52	3.34	25.73	54.21	79.95
T2	52.71	6.46	3.26	23.66	62.43	86.09
Т3	38.16	5.43	3.75	27.49	47.34	74.83
T4	56.72	5.95	3.52	20.00	66.19	86.20

XL – extra large; L – large; M – medium; TMY – total market yield; TY – total yield

1

PennState Extension

A Preliminary Study in A Peach Orchard



PennState Extension

A Preliminary Study in A Peach Orchard

- Water supply with an electric pump controller
- Tested the irrigation with soil moisture level
- Remotely controlled the valve
- A water pressure valve shows the status of the valve (on/off)
- Possible to run automatically

IoT Based Precision Irrigation

Conclusions

- Soil moisture is an easy and direct measurement for precision irrigation
- Soil moisture levels in the field can be accessed remotely through an IoT system

PennState

College of Agricultural Sciences

PennState Extension

Soil moisture-based irrigation was proved to be effective

A Few other thoughts:

- The cost of the system
- The location of the sensors to represent the crop root zoom
- Variation in soil types and orchard terrains
- Fully automated irrigation

Acknowledgement

PennState Extension

Funding Sources:

State Horticultural Association of Pennsylvania (SHAP) Northeast SARE, Project No. 19-378-33243

Thanks to: Dr. Francesco Di Gioia and his students, Dr. Daniel Weber, Dr. Lihua Zeng, Haozhe Zhang, Xiaohu Jiang.