

FEASIBILITY OF AUTOMATIC MILKING SYSTEMS IN THE MIDWEST

Shaheer Burney^{\psi}} & Luis Peña-Lévano^{\phi}

ΨUniversity of Wisconsin – River Falls

[†]University of California - Davis

Collaborators: Cesar Escalante^{α}, James Salfer $^{\delta}$, Grace Melo $^{\beta}$, Alejandro Gutierrez-Li $^{\gamma}$

^{α}University of Georgia, ^{δ}U. of Minnesota, ^{β}Texas A&M, ^{γ}North Carolina State U.

Funding for this project was provided by the North Central Sustainable Agriculture Research and Education Program

Background

- Wisconsin is characterized by mostly small to medium-sized family farms, unlike other major dairy states like California and New York.
- In 2021, Wisconsin annual production reached 31.7 billion pounds of fluid milk, equivalent to 14% of the U.S. milk output.
- A tightening market for agricultural workers, supply chain bottlenecks, and price volatility have increased farm financial stress and expedited the exit of many small farms from the industry.
- Automatic milking systems (AMS) are seen as an alternative to hired labor.

Acknowledgment

• This research is funded by the North-Central Sustainable Research & Education Grant (NCR-SARE) as part of the project LNC22-467

What is AMS?

- Automatic Milking Systems (AMS, or robotic milkers) use robotic arms to attach teat cups with the help of sensors for a "hands-free" milking operation.
- Depending on type, the AMS may use a sorting gate to control flow of cow traffic into the system.
- Cows are identified using ID tags and the AMS generates a wealth of data on milking frequency, quantity per teat, milk temperature, etc.

The Dairy AMS Survey - 2023

- Conducted in January 2023 by the UW-Survey Research Center
- Distributed to random sample of 2,000 dairy farmers in Wisconsin & Minnesota
- Number of response: 665
- Response rate: 33%
- Farmers with AMS: 39

Who Adopts AMS?

Proportion of AMS Farmers by Herd Size

Who Adopts AMS?

Proportion of AMS Farmers by Years of Experience

Why Adopt AMS?

Reasons for Adopting AMS

Why Avoid AMS?

Barriers to Adopting AMS

Costs Involved in Adopting AMS

Cost of AMS Per Box or Stall

Costs Involved in Adopting AMS

Average Annual Repair Cost by Number of Robots

Costs Involved in Adopting AMS

Other Investments Made When Installing AMS

Health & Wellness of

Cattle

Number of Acres

■ AMS ■ Non-AMS

Herd Size

Improvements in Financial Indicators

Improvements in Hired Labor Characteristics

Increases in Owner's Burden

Impact on Personal Life

Improvement in Personal Life

Conclusion

- In Wisconsin, AMS adoption is not commonplace.
- Labor market volatility is one of the main drivers of adoption.
- The biggest barrier to adoption is installation and maintenance cost.
- Relative to non-AMS farms, over the past 10 years farms with AMS have seen larger improvements in:
 - farm attributes (size, animal health),
 - financial metrics,
 - and farmers' quality of life.

Descriptive Statistics		
	N	%
Sample Size	665	100%
AMS	39	7%
Number of Acres		
0 - 100	81	22%
101 - 200	81	22%
201 - 500	125	34%
501 - 1,000	62	17%
1,000+	15	4%
Number of Cows		
0 - 100	277	54%
101 - 200	106	21%
201 - 300	40	8%
301 - 400	26	5%
401 - 500	26	5%
500+	37	7%

Descriptive Statistics			
	N	%	
Organic Certified	24	5%	
Age of operator			
18 to 24	7	1%	
25 to 34	53	10%	
35 to 44	83	16%	
45 to 55	102	19%	
55 to 65	188	36%	
65+	94	18%	
Annual Household Income			
Under \$15k	26	5%	
\$15.1k to \$35k	82	17%	
\$35.1k to \$50k	71	15%	
\$50.1k to \$75k	98	20%	
\$75.1k to \$100k	72	15%	
\$100.1k to \$150k	53	11%	
\$150.1k to \$200k	32	7%	
\$200.1k+	49	10%	

Descriptive Statistics				
_	N	%		
Off-Farm Employment	94	18%		
Years of Experience				
Less than 5 years	7	1%		
5 to 10 years	24	4%		
11 to 20 years	66	12%		
21 to 30 years	98	18%		
More than 30 years	347	64%		