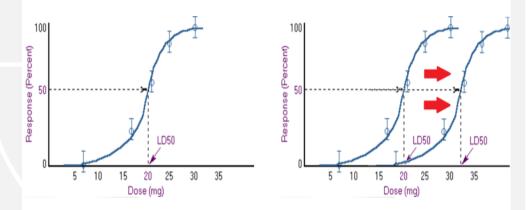


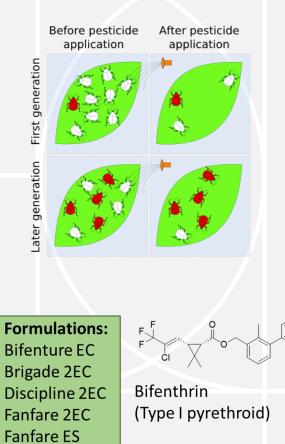
Detection of Clover Seed Weevil Insecticide Resistance and Mitigation Steps


Navneet Kaur, Assistant Professor and Extension Entomologist

Project team: Nicole Anderson, Dani Lightle, Christy Tanner, Seth Dorman, Grace Tiwari, Oregon State University

Oregon Clover Growers Annual Meeting, Feb 1, 2023, Wilsonville, OR

What is Insecticide Resistance?

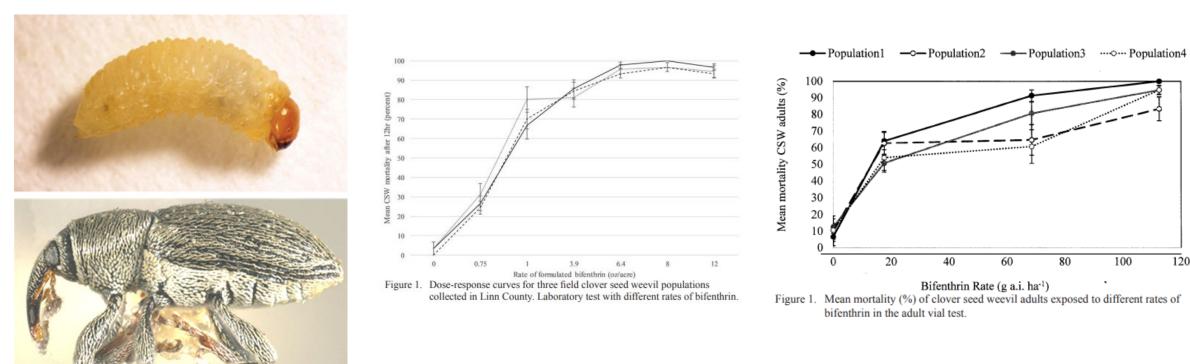

- A heritable change in the sensitivity of a pest population
- reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species
- Risk of **cross-resistance** to other chemistries

What Causes Insecticide Resistance?

Selection Pressure

- Biology of the pest
- multiple generations a year, do not migrate, and have a narrow host range as they have the highest potential for repeated exposure across multiple generations
- the insecticide and its specificity
- single mode of action (MoA) and one target site
- Application strategy used
- Frequency of use and label requirements

Tundra EC


How to Combat Insecticide Resistance?

- Economic threshold
- Use diverse modes of action
- Use recommended rates
- Integrated control strategies
- Preserve susceptible genes

What is the Status of Insecticide Resistance in White Clover Seed Weevil?

- Two laboratory studies were conducted in 2019 and 2020
- Small-scale study and data were not indicative of true resistance development

Kaur et al. 2020. Seed Production Research at Oregon State University.Ext/CrS 164 Kaur et al. 2019. Seed Production Research at Oregon State University • Ext/CrS 162

What is the Status of Insecticide Resistance in White Clover Seed Weevil?

- Field efficacy trials indicated that adult population in Brigade treated plots rebound after one week of treatment
- Few diamides (Harvanta and Exirel) were identified reducing larval activity

		Mean # adults per plot				Mean # larvae per plot	
Treatment/formulation	Rate (oz/acre)	3 DAT ^a	7 DAT	10 DAT ^a	14 DAT	14 DAT ^a	
Avaunt eVo	6.0	17.3bc	14.8a	14.5a	107.8a	10.0abc	
Besiege	10.0	54.0d	41.8a	112.0b	139.3a	35.5bc	
Brigade 2EC	6.4	9.8ab	20.0a	112.3b	118.5a	32.0bc	
Exirel	20.5	39.0cd	33.0a	43.3b	102.3a	6.8ab	
Harvanta 50SL	16.4	45.3cd	36.0a	60.0b	108.8a	4.8a	
Malathion 8 Aquamul	20.0	4.5a	27.8a	98.3b	129.0a	25.5abc	
Untreated check	na	56.8d	31.0a	52.3b	75.0a	30.5abc	
Warrior II	3.8	39.3cd	23.7a	109.0b	126.7a	57.3c	
P > F		<0.001	0.48	<0.001	0.32	<0.01	

Means within columns followed by a common letter are not significantly different (P < 0.05). ^aln(X + 1) transformed data used for analysis, nontransformed means shown in table.

Mattson et al. 2021. Arthropod Management Tests, 46: tsab164, <u>https://doi.org/10.1093/amt/tsab164</u>

Approaches to Deal with this Problem

01

Target week links in insect life cycle to optimize insecticide application timing

02

Understanding extent of resistance to available chemistries

03

Approaches to Deal with this Problem

01

Target week links in insect life cycle to optimize insecticide application timing 02

Understanding extent of resistance to available chemistries 03

Approaches to Deal with this Problem

01

Target week links in insect life cycle to optimize insecticide application timing

02

Understanding extent of resistance to available chemistries 03

CSW Life Cycle

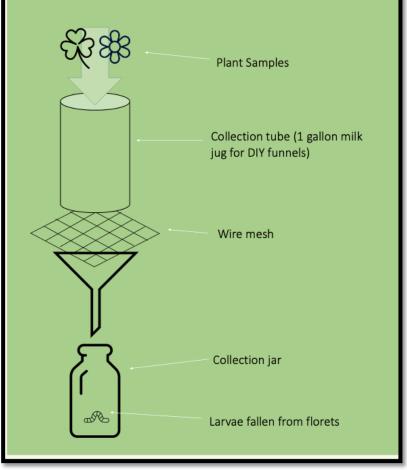
Second generation adults emerges, start dispersing back to overwintering habitats

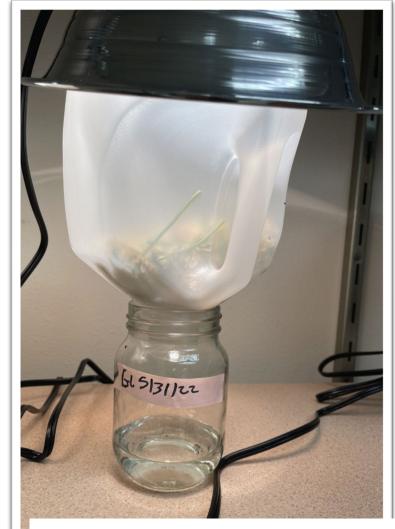
> Larvae feed 2-4 seeds/pod for 2-3 weeks. Mature larvae bore out of pod, drop to soil to pupate

CSW adult overwinters in the non-crop areas

Once clover crop begins blooming, adult CSW start migrating inwards.

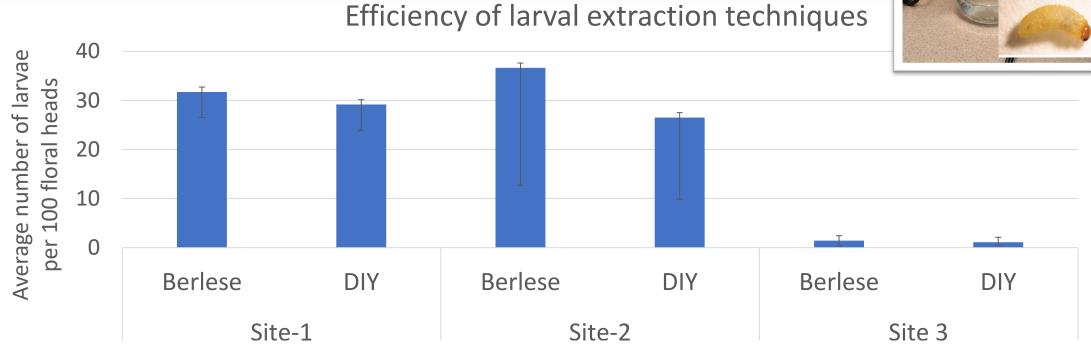
We need to protect for 35-40d (adults take 22d for egg laying and larvae feed up to 13-18d)




Refining Scouting Technique for Larvae Detection

What is a Berlese Funnel/ Tullgren funnel?

It is a method used to count the number of insects/arthropods in plant or soil samples. Sample material is placed in a container above a mesh screen with a collection jar to catch falling insects. The soil or plant-dwelling insects are driven to the bottom of the funnel by a light placed at the top.



DIY Berlese

Standard Berlese

DIY Berlese vs Standard Berlese

Our Approach to Deal with this Problem

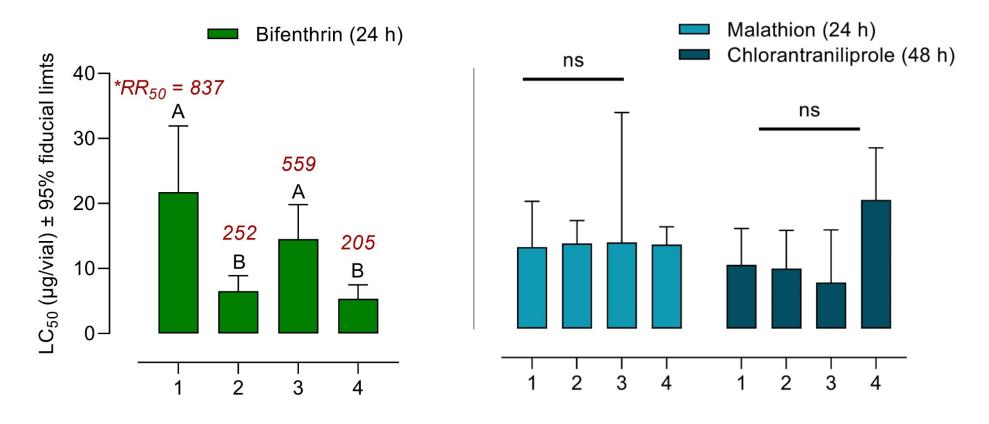
01

Target week links in insect life cycle to optimize insecticide application timing 02

Understanding extent of resistance to available chemistries 03

Toxicology Bioassays-Technical material

- **Treatments:** Technical grade bifenthrin, malathion, chlorantraniliprole
- **Insect source:** 4 Oregon populations, 1 susceptible Canada (5 reps/dose, 5 adults/vial, n=>200/test)
- Dose range: 0.0125 to 128 $\mu g/vial$
- **Solvent:** Acetone solvent (contact); 10% honey-water solution onto floral plug (systemic)
- **Response:** Moribundity at 24 h for contact and 48 h for systemic insecticides
- **Data analysis:** Probit analysis for LC50/RR50 value with 95% fiducial limits; corrected mortality determined using Abbott's formula (Abbott 1925)

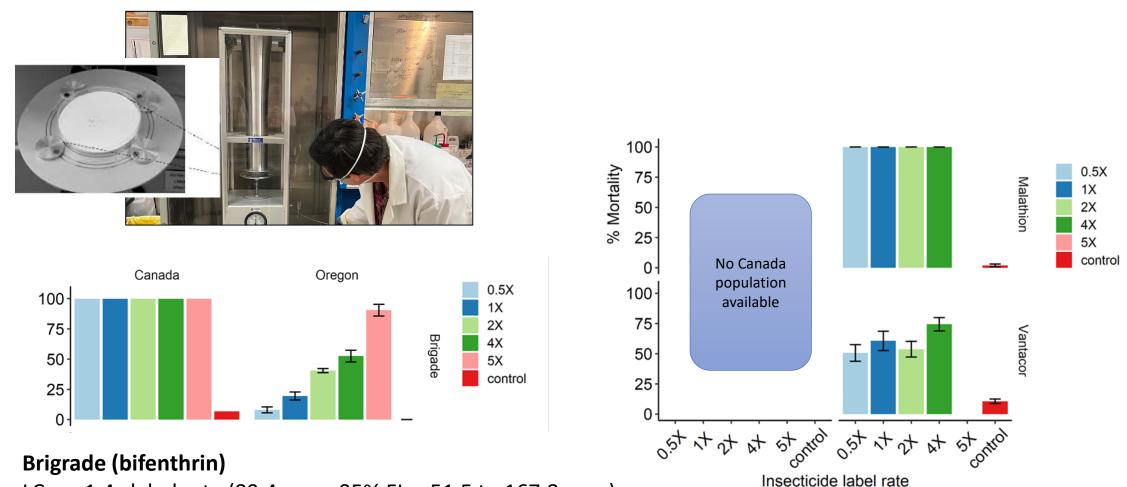

Contact insecticide

Systemic insecticide

Bifenthrin IRAC 3A; Type I pyrethroid Na+ channel modulator Malathion IRAC 1: OP ACHE inhibitor Chlorantraniliprole IRAC 28; Diamide **Ryanodine receptor** modulator

Toxicology Results

Ē


Sampled Oregon population (replicate)

*Compared to susceptible Canadian population (Jennifer Otani's Lab)

LC₅₀ for Canada population: 0.026 ug/vial

Figure: Log-probit bioassays with adult CSW for technical-grade bifenthrin, malathion, and chlorantraniliprole

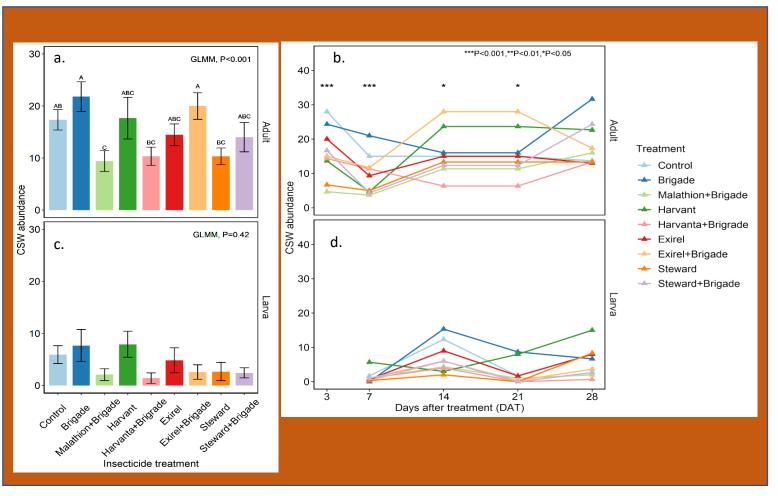
Toxicology Bioassays- Formulated Materials

LC₅₀ = 1.4x label rate (89.4 ppm, 95% FL = 51.5 to 167.8 ppm)

Our Approach to Deal with this Problem

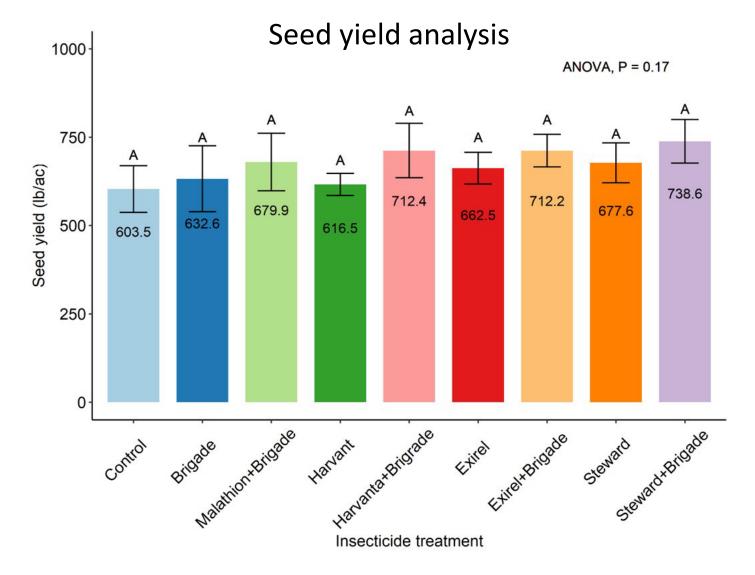
01

Target week links in insect life cycle to optimize insecticide application timing 02


Understanding extent of resistance to available chemistries 03

Field Efficacy Trial

- Experimental design: RCBD (Plot size: 92*9 sq meter).
 White clover cultivar 'Crusade'
- 8 treatments, 3 reps, 2 application timing (first larval detection and 20% browndown)
- ATV mounted boom sprayer at 20 psi, spray volume of 15 gpa
- Larval and adult CSW monitoring using Berlese funnel and straight-line sweeps, respectively
- Seed yield (lb/ac) was determined using weigh wagon


Field efficacy trial

- Overall, the mean number of clover seed weevil adults in insecticide treated plots did not differ significantly from those in the untreated plots except Malathion+Brigade
- At 7 DAT, adult CSW abundance was significantly reduced within insecticide treated plots (P<0.001)
- Although some degree of suppression of larval densities in clover seed heads samples was present at 7 DAT, and 21 DAT, no statistically significant results were detected among insecticide treatments and control plots (P> 0.05)

Field Efficacy Trial

Ę

Approximately 20% increase in seed yield was obtained with the application of Steward and Brigade (738.6 kg/ha) or Harvanta+Brigade or Exirel+ Brigade (712.2 kg/ha) as compared to untreated check (603.57 kg/ha).

Summary

- Elevated levels of bifenthrin resistance compared to susceptible Canada population
- Multiple field trials needed to generate data on optimizing control timing and support the need for diverse mode (s) of action
- Preventing larval feeding damage can reduce seed yields

Acknowledgements

Team Effort at OSU

Collaborators: Jennifer Otani, Agriculture and Agri-food Canada, Alberta

Growers: Clover seed growers for serving on advisory board and participating in this project

Technical Support: Brian Donovan, Alison Willette, Eliza Hernandez

AGRICULTURAL RESEARCH FOUNDATION

An Agricultural Sciences Company

Western SARE Project Evaluation

(i) Start presenting to display the poll results on this slide.

For Producers Only: "In the next year I am likely to use some aspect of this project"

(i) Start presenting to display the poll results on this slide.

For Professionals Only – "In the next year I am likely to use some aspect of this project"

(i) Start presenting to display the poll results on this slide.

Qualtrics Survey for our Project Team

 <u>https://survey.az1.qualtrics.co</u> m/jfe/form/SV 6xpxOOyhrpQp0 aO

Have you ever exp poor clover seed v	
or field failure usin	g Bridage®
or field failure usin or other bifenthrin- products in recent	-base

() A) Yes

() B) No

What might have contributed to the poor control/field failures of CSW in our production systems? Feel free to choose multiple options.

A) Insecticide resistance development
due to over-reliance on synthetic
pyrethroids

B) Poor coverage (Low spray volume

