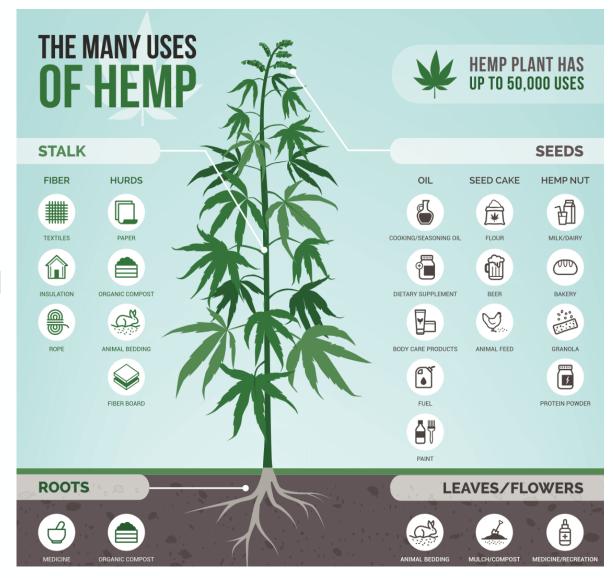
Structural Sugar Profile of Fiber Residues from High-Cannabinoid Hemp and Potential for Value-Added Fermentation

Hanah T. Rheay & Catherine E. Brewer

Association for the Advancement of Industrial Crops, Annual Meeting – August 30, 2023

College of Engineering

Department of Chemical and Materials Engineering

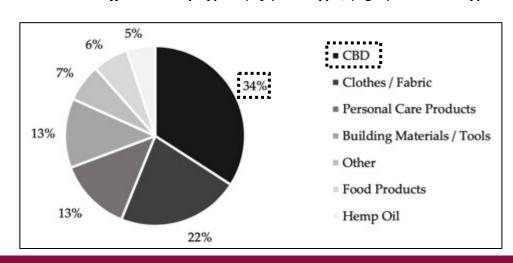

BE BOLD. Shape the Future. **New Mexico State University**

Overview

- Hemp Field Trials at NMSU
 - Challenges with Fiber/Grain Types
 - Yield of High-Cannabidiol Varieties
- Future of Hemp in NM
- Knowledge Gap: Fibers from High-Cannabinoid Crops
 - Waste Fiber Characterization
 - Potential Economic Value-Added
 - Next Steps

Hemp Background

- Hemp is defined as
 Cannabis sativa with
 ≤ 0.3% total
 tetrahydrocannabinol
 (THC)
- U.S. re-legalized crop in 2018, following nearly 70 years of prohibition



Types of Hemp

- Types of hemp:
 - 1) CBD/essential oil;
 - 2) grain;
 - 3) fiber
- Different morphology, physiology, and chemical profile between types
- Current US market is dominated by cannabidiol (CBD) products

Different hemp types: (left) CBD-type; (right) industrial-types

Hemp Research at NMSU

- NMSU initial variety trial work in 2019
 - Support: Navajo Nation
 - Work was not continued
- Phytoremediation trial (2019-20)
 - Support: BHP/Rio Algom Mining
 - Focus on legacy uranium/radium mines in northwest NM
- Expanded variety trials (2021-22)
 - Support: COE (2021), AES (2021-22), CESFAS (2021-22), WSARE (2022-23)

BE BOLD. Shape the Future.

College of Agricultural, Consumer and Environmental Sciences

Agricultural Experiment Station

BE BOLD. Shape the Future.
College of Agricultural, Consumer
and Environmental Sciences

Center of Excellence in Sustainable Food and Agricultural Systems

2022 Field Trials

Plot Management Details							
Location	Planting	Harvest	Treatment Plot	Common Plot			
Leyendecker			Matar strass	Bi-weekly			
Plant Science	April 19 Cont 12		Water stress:	fertilizer			
Research Center	April 18	Sept. 13	50% lower	application			
(south)			frequency	(12-4-8)			
Sustainable			Organic				
Agricultural		Sept. 28	Organic: OMRI certified organic fertilizer	Water			
Science Center	May 13			application			
at Alcalde				minimum once			
(north)			(11-3-8)	per week			

Varieties & Planting Densities						
Variety	Туре	Planting Method				
The Wife	CBD	Transplants, 3 ft				
Sweetened	CBD	spacing				
Orion 33	Fiber/Grain	Divert souded at				
Félina 32	Fiber/Grain	Direct seeded at 40 lbs/acre				
Futura 83	Fiber	40 103/ 001 6				

Challenge: Fiber/Grain Production at Low-Latitudes

- PREMATURE FLOWERING
 - Reproductive structures appear as early as 2 weeks after seeding for some varieties
- Hemp is photoperiod sensitive
- Most industrial genetics are sourced from northern latitudes

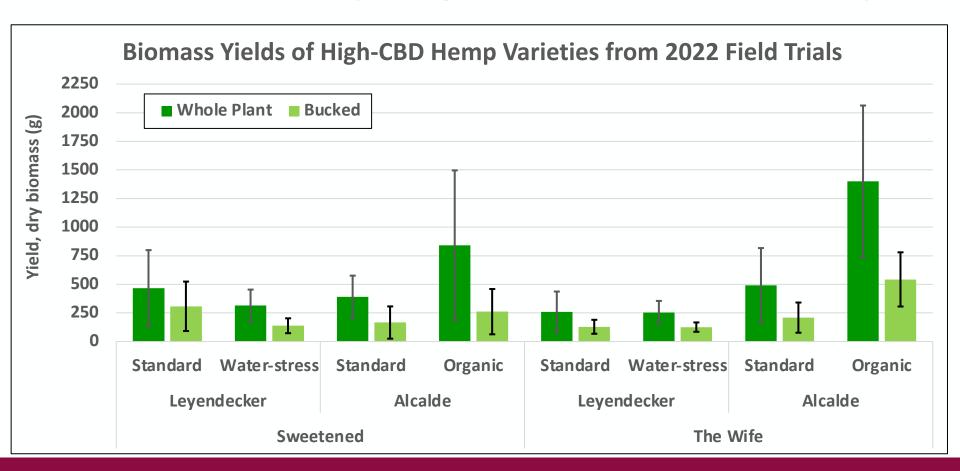
Plants exhibiting premature formation of female (top) and male (bottom) reproductive floral structures

 Vegetative → Reproductive: terminal flowering (CBD/grain) or pollination (fiber) in 50% of individuals

Growth Stages Key	Sowing
	Vegetative Growth
	Reproductive Growth / Maturation
	Harvest

E. Orion 33 (20	Days in Season	April	May	June	July	August	September
Expected	138-143			~ 100 day	/S		
Leyendecker	148		44				
Los Lunas	140		5	50			
Alcalde	138			55			

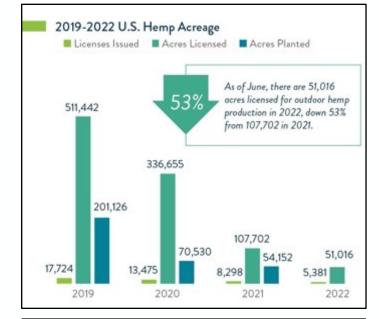
F. Felina 32 (20	022)						
	Days in Season	April	May	June	July	August	September
Expected	133-138		~ 100 days				
Leyendecker	148		44				
Los Lunas	140		5	0			
Alcalde	138			55			

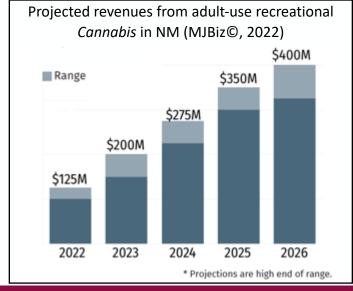

G. Futura 83 (2	022)	165	ro. 10		(4	o o	o 1
	Days in Season	April	May	June	July	August	September
Expected	112-117			~ 100) days		
Leyendecker	148		55				

BE BOLD. Shape the Future.

Total vs. Bucked Biomass

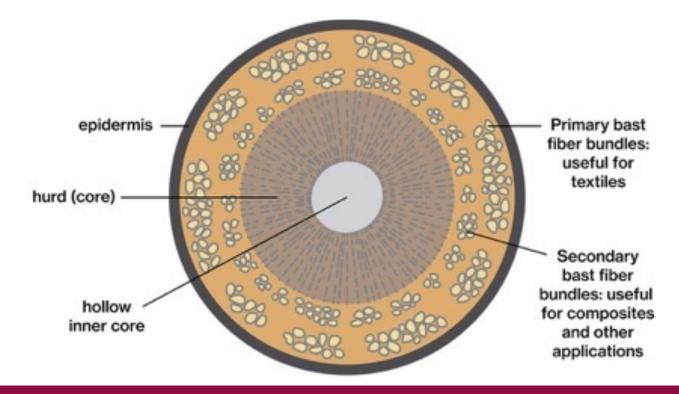
34-69% of total crop weight was fiber across all samples


Bucking: to strip herbaceous biomass from stalks/stems (bucked yield = leaf + flower)


Why does this matter?

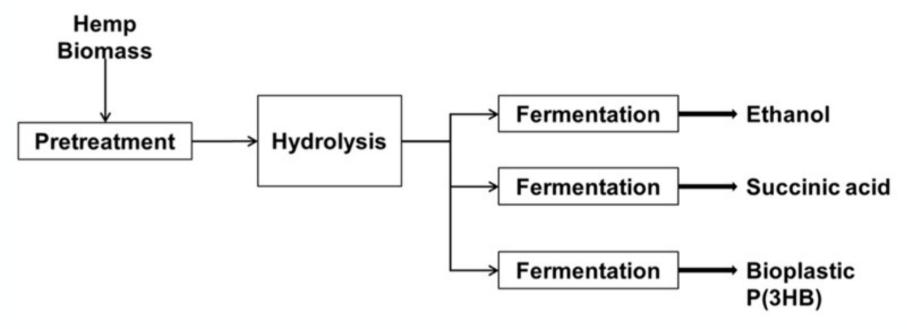
Hemp's Future in New Mexico

- Industrial hemp production slow to develop
 - Difficulty growing grain/fiber varieties at low latitudes
 - Limited access to processing
- Legal recreational/medicinal markets
 - 851 producer/micro-producer licenses issued
- Many hemp growers have switched to recreational production



New Mexico Cannabis Control Division. (2023). https://qimw5q0w5j.execute-api.us-west-2.amazonaws.com/prod/plants.html

Singular, E. (2022). Midterm Review: A 2022 U.S. Hemp Production Outlook. New Frontier Data. https://newfrontierdata.com/cannabis-insights/midterm-review-a-2022-u-s-hemp-production-outlook/


Hemp Fibers

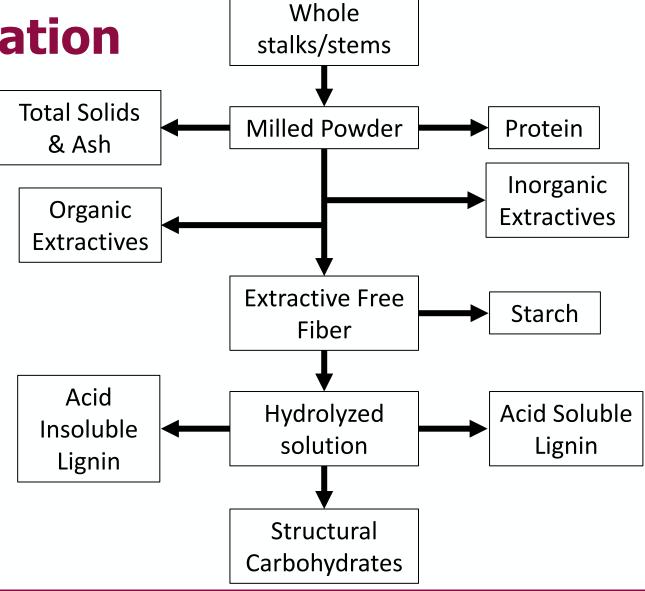
- Traditional processing requires a decorticator to separate bast/hurd
- Minimal information is available on fibers of highcannabinoid varieties

Saccharification and Fermentation to Bio-Based Chemicals

Majority of literature evaluates only industrial hemp varieties

Reported bioprocessing routes for industrial hemp (Ji et al., 2021)

Comparison to Grain & Fiber Type Hemp


Table # – Reported Average Values for Structural Components in Untreated Hemp Fiber Samples							
Fiber Sample	Glucan [%]	Xylan [%]	Lignin [%]	Reference			
Industrial hemp (Futura 75; < 1mm particle size)	36.5	17.0	21.9	Das et al., 2017			
Industrial hemp (11 cultivars)	43.81-51.14	11.63-14.2	15.35-29.35	Das et al., 2020			
Industrial hemp (Felina 32; conventional cultivation)	39.8	14.4	15.0	Kuglarz et al., 2014			
Industrial hemp (Felina 32; organic)	42	14.8	13.2				
Industrial hemp (Fedora 17)	46.4	20.1	15.0	Kuglarz et al., 2016			
Industrial hemp (unspecified variety; hurds only; 40-60 mesh sizes)	42.37	19.2	17.5	Moxley et al., 2008			
Industrial hemp (unspecified variety; powered; bast)	57.5	1.6	16.2	- Singh et al., 2018			
Industrial hemp (unspecified variety; powdered; shives)	42.9	19.9	23.9	- Siligil et al., 2016			
Industrial hemp (4 varieties)	33.56-44.52	10.62-15.48	17.92-21.48	Visuanathan et al. 2020			
CBD hemp (ACDC x Cherry Wine)	32.63	12.90	16.98	Viswanathan et al., 2020			
Industrial hemp (4 varieties)	40.12-42.71	12.53-16.56	14.56-17.79	Zhao et al., 2020a			
Industrial hemp (Tygra)	40.66	13.25	15.74	Zhao et al., 2020b			

How similar are fibers from high-CBD types to fiber/grain types?

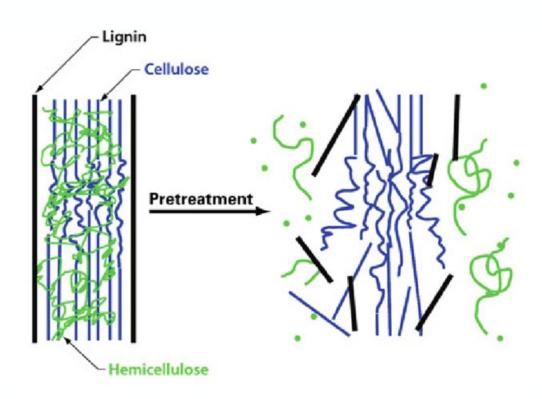
Characterization of Waste Total Solid & Ash

 Supplemental feedstock for other hemp bio-based chemicals?

NREL Summative Mass Balance

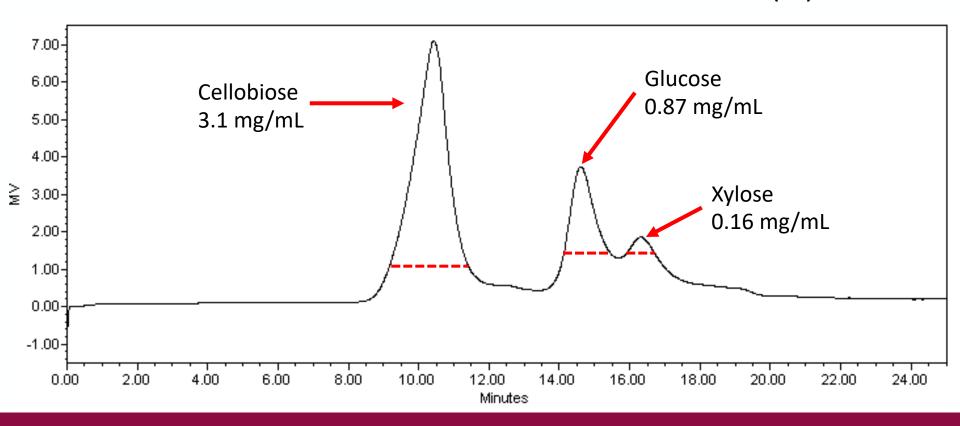
Average Solids, Ash, and Extractives Content (w/w%)

- Total Solids: oven 105 °C for 4 h
- Ash: muffle furnace at 575 °C for 4 h
- Total Extractives: Soxhlet extraction refluxed with water for 6-8 h; followed by ethanol for 12-16 h


Location	Variety	Treatment	Total Solids	Ash	Total Extractives
	Sweetened	Standard	94.6	5.2	16.4
Lovendecker		Water-stress	94.0	6.0	10.8
Leyendecker	Wife	Standard	93.7	5.4	15.1
		Water-stress	93.9	4.8	12.2
Alcalde	Sweetened	Standard	94.6		14.3
		Organic	94.3	-	-
	Wife	Standard	94.8	-	13.4
		Organic	95.4	-	13.3

Structural Components

ONGOING


- Dilute acid assisted hydrolysis
 - 72% H₂SO₄, 30 °C water bath for 1 hr
 - 4% H₂SO₄, autoclave,
 121 °C for 1 h

 Determine lignin from acid soluble/insoluble fractions and total sugars (glucose + xylose) in hydrolysis liquor

Structural Sugar Profile

- High performance liquid chromatography (HPLC):
 - Shodex sugar column
 - Water mobile phase
 - Refractive index (RI)

Can fibers from high-CBD hemp be used alongside industrial types as feedstock for bio-based chemicals?

Conclusion

Values in major compositional categories fall within ranges of reported for other industrial hemp types (so far)

Potential Economic Value-Added

 How much residual fiber material is available from high-cannabinoid production?

Given: 520,105 plants (current state count, NM Cannabis Control Division)

Assuming: Average flower yield of 1.5 lb as 60% of total plant weight

Biomass Availability:

40% of 2.5 lb gives 1 lb fiber per plant 1 lb/plant * 520k plants = 520k lb fiber

- → Estimate ~500k lb of fiber waste available annually
- → What is the value of biomass for bioconversion?

Next Steps

- Need to verify consistent behavior during pretreatment/conversion
 - Influence of physical properties on mixing?
 - Reactor design?
- What hydrolysis conditions result in the highest sugar yield?
 - Costs association with processing steps?

Additional Acknowledgements

 Dave Lowry, Ryan Garcia, and Rob Heyduck; additional superintendents, farm managers, and staff at field trial locations

 Undergraduate students from Brewer Research Group

 Rich Global Hemp for providing hemp material

Questions?

Contact Information

Hanah Rheay

New Mexico State University

Department of Chemical and Materials Engineering

handsr@nmsu.edu