Plant Growth Promotion with Compost Extracts

Integrated Crop and Livestock Management workshop Hilo, Hawaii June 7, 2010

> Ted Radovich, Jari Sugano, Archana Pant, Nguyen Hue, Jensen Uyeda

Compost benefits

- Contains most plant nutrients.
- Can improve soil:
 - Structure
 - Moisture holding capacity
 - Nutrient mineralization & retention
 - pH buffering
- Can also suppress some diseases
 - General suppression
 - Antagonism

Compost challenges

- •Transportation costs \$\$
- Quality can be highly variable
- Management for high quality increases costs.
- High rates for short term impact.

Table 1. Some quality characteristics of composts produced in Hawaii. Values are means±standard deviation.

		Total	Total								
Type/ Source/	# of	Carbon	Nitrogen		NO ₃	$\mathrm{NH_4}^+$					
Primary feedstocks	Samples	%	%	C:N	ppm	ppm					
Vermicompost											
	Hawai'i commercial										
Chicken manure	21	20±3	1.6 ± 0.4	13:1	1,748±636	29 ±18					
Rabbit manure	9	21±3	1.8 ± 0.3	12:1	2,391±882	59±50					
Pig manure	6	25±1	2.0 ± 0.1	13:1	2,924±1,542	61±67					
Horse Manure	6	25±1	2.0 ± 0.2	13:1	4,000±1,045	18±18					
	UH experimental										
Food waste	33	26±5	1.8±0.3	13:1	1,212±1,230	122±252					
	Mainland commercial										
Steer manure	6	16±1	1.1 ± 0.1	15:1	629±231	118±50					
Green waste	6	19±2	1.2 ± 0.1	16:1	1,348±49	28±6					
Other compost											
	Hawai'i commercial										
Steer manure/ greenwaste	6	18±1	1.1 ± 0.2	16:1	103±77	58±34					
Greenwaste	7	21±3	0.7 ± 0.5	30:1	118 ± 80	183±24					
Hawai'i farmer produced											
Chicken manure/greenwaste	6	8±1	0.7 ± 0.0	11:1	593±39	23±4					
Chicken manure/mortalities	6	21±0	2.9±0.1	7:1	1,748±553						

4

Commercial green-waste compost Food-waste vermicompost

Material cost per ton (12/1/2008)

Compost "Tea"

•Uses air and water to extract:

- Nutrients
- Organic acids
- Microbes
- Ratio of water to compost ranges 10:1-100:1
- Water is not circulated, only air
- 12-24 hrs

- Many growers add microbial enhancer
- Some reports of aeration not neccessary
- Archana Pant investigates these factors

Compost tea

Quality of tea brewed aerobically with foods (ACTME), aerobically without foods (ACT) or passively (NCT).

Теа Туре	рН		EC		DO		Ν			NO3-N					
Aerated plus "food" 12 hrs	8.3	+	0.1	2600	+	127	7.4	+	0.1	105.55	+	13.6	97	+	13
Aerated 12 hrs	7.8	+	0.1	1267	+I	103	8.3	ŧ	0.1	83.93	H+	9.44	82	±	9.3
Passive (8 days)	7.5	+	0	1273	+1	136	7.8	+1	0	71.70	+1	8.32	70	÷	8.2
Water	8.1	+1	0	391	+	14	8.5	+	0.1	10.96	+	1.17	11	±	1.2

Pant et al. (2009)

College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa 10

Pant et al. (2009)

Pant et al. (2009)

Greenhouse Studies

- Yield was improved
- Largely explained by changes in nitrogen uptake
- Phytonutrients, soil biological activity and root growth also affected
- Results were confirmed:
 - in multiple soils
 - with different composts
- 100 ml tea = 10ml compost = 5 g compost
 = \$0.03 per plant = \$840 per acre

Chicken manure thermophilic compost extract (1:10)

un statistica and and a second

p-

S JUL DO

V m

X

1 11 - 2 - 4 -

Questions

- Can less compost be used?
- Can on-farm composted culls be effective?
- Is there a way to avoid spraying leaves?

Initial trial

- 2 treatments: Tea; No Tea
- 5 replications
- Tea brewed from Ho farm compost
- Brewer constructed from local materials
- 0.5 gallons compost in 50 gal brewer
- Injected weekly into drip lines

Compost "Tea"

College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa 19

Results

- Subtle impact on plant growth
- Fresh weight yield difference 800 pounds (\$400) per acre
- Compost cost
 \$8
- Vermicompost
 \$90

Slide

College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa 21

Summary

- Effect of extracts depend on:
 - Compost quality
 - Amount of compost used in extraction process
 - Nutrient status of plant
- Potential for drip injection
 - Increase quantity of compost
 - Include some vermicompost
 - Evaluate emitter flow rates

Acknowledgements

 Tane Datta Gerry Ross Ian Gurr •Ted Goo Gita Neupane Robert Saito Susan Migita Roger Corrales Servalano Lamer Craig Okazaki USDA Funding:

- TSTAR
- OREI
- WSARE
- •Hatch

Vermicompost

