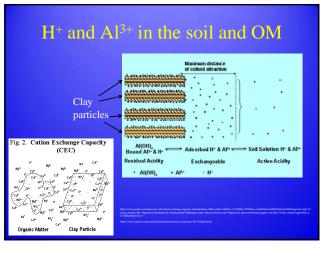
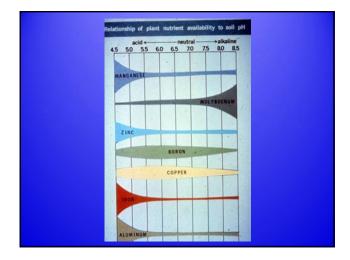

Paulo Pagliari Department of Soil, Water, and Climate University of Minnesota



• pH = - log [H⁺]

• pH decreases as [H⁺] increases: 0.0001 g H⁺ kg⁻¹ soil will have pH of 4; change [H⁺] to 0.001 g H⁺ kg⁻¹ soil pH will go to 3 – ACIDIC

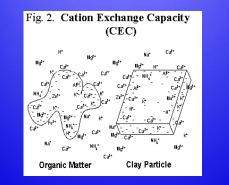
 \bullet pH increases as [H+] decreases: 0.0000001 g H+ kg^-1 soil will have pH of 7; change [H+] to 0.00000001 g H+ kg^-1 soil pH will go to 8 – ALKALINE



Soil pH Effects on Soil Properties

- Availability of most essential and numessential elements
- Activity of microorganisms
- Ability of soil to hold cations
- Herbicide performance

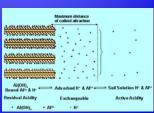
4.5 5.0 5.	5 6.0 6.5		alkaline	
			- 0.9	
	NITROGE	IN		
				1
	PHOSPHOS	RUS		
	POTASSI			
		31 22		
and the second s	CALCIU	M		
				1
		2		1
	MAGNES	UM	-	
1.				200
	SULFU			


Soil pH Effects on Soil Properties

- · Availability of most essential and non-essential elements
- Activity of microorganisms
 - pH 5.5 6.5 best nitrification and OM decomposition rates
- · Ability of soil to hold cations

Soil pH Effects on Soil Properties

- Availability of most essential and non-essential elements
 Activity of microorganisms
 - pH 5.5 6.5 enhance nitrification and OM decompositio
- Ability of soil to hold cations
 - As pH decreases, soil exchange sites get saturated with H⁺ and Al⁺³
 - cations (K*, Ca*², and Mg*²) come off exchange sites and may leach out of soil

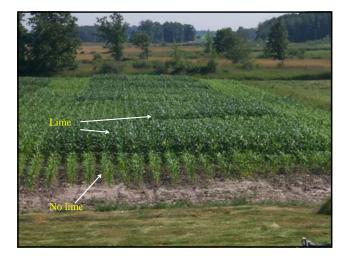

Soil pH Effects on Soil Properties

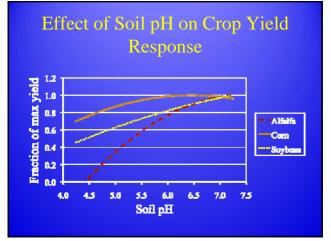
Causes of Soil Acidification

- Acidic parent material
- Leaching of basic cations + Crop removal of cations
- Use of Nitrogen fertilizers
- Other- Acid rain, industrial emissions, internal combustion engines, etc

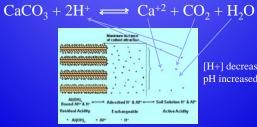
- Nitrification
 - $2NH_4 + 4O_2 \rightleftharpoons 2NO_3 + 2H_2O + 4H_2O$
- NH₄⁺ immobilization
- $NH_4 + R-OH \rightleftharpoons R-NH_2 + H_2O + H$

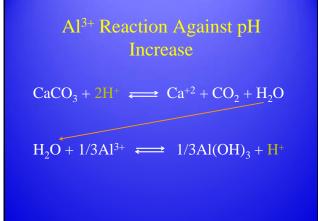
Effect of Nitrogen Fertilizer on Soil pH


Nitrogen Applied each year for 5 years	Soil pH*	Aglime needed to return soil pH to 6.1
(lbs/a)		(ton/a)
0	6.11	0.00
40	6.10	0.31
80	6.02	0.65
120	5.98	0.96
160	5.81	2.03
200	5.68	2.72


Aglime Required to Neutralize Acid Forming N Fertilizers

Nitrogen source	Pounds of aglime needed per pound of Nitrogen ¹				
Ammonium sulfate	7.5				
Diammonium phosphate	7.5				
Anhydrous ammonia	5				
Urea	5				
Solutions (28% - 41% N)	4				
Ammonium nitrate	4				
¹ Approximation					





Liming Reaction in Soil

- Calcium does not change soil pH, rather changes %BS
- The oxide, hydroxide, and carbonate present in the lime are the compounds responsible for changes in soil pH

[H+] decreased pH increased

What Factors Determine the Lime Needs of a Soil

- Soil pH (Active acidity) determined by soil test (pH in water)
- Buffer pH (Residual acidity) determined by soil test (pH in Sikora)
- Target pH determined by crop and crop rotation

Target pH

- Alfalfa 6.8
- Red Clover 6.3
- Soybean 6.3
- Corn 6.0
- Pasture -6.0
- Oats 5.8

Target pH

- Rotation of Soybean, Corn, and Alfalfa
 - Soybean 6.3
 - Corn 6.0
 - Alfalfa 6.8
- Alfalfa is the most sensitive so the target pH for the rotation is 6.8

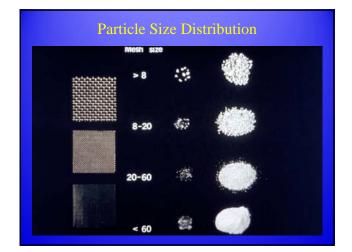
What Determines the Quality of a Liming Material

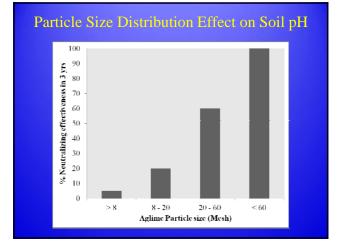
• Purity

– measure of CaCO₃ equivalency

- Fineness a dry sieving process is used
 - exact sieves used vary by state

The Purity Factor (CaCO₃) Equivalent


Table 6-5. Liming materials and their calcium carbonate (CaCO₃) equivalent


Liming material	Neutralizing agent	CaCO ₃ equivalent of pure material (%)		
Dolomitic limestone	CaCO3•MgCO3	110-118		
Papermill lime sludge	Mainly CaCO3			
Marl	Mainly CaCO3	variable		
Calcitic limestone	CaCO3	100-		
Water treatment lime waste	CaCO3	variable		
Wood ash	K2CO3, CaCO3, MgCO3	20-90		
Fly ash	CaO, Ca(OH) ₂ , CaCO ₃	variable		
Hydrated lime	Ca(OH) ₂	135		
Air-slaked lime	Ca(OH) ₂ + CaCO ₃	100-135		

What Determines the Quality of a Liming Material

- Purity

 measure of CaCO₃ equivalency
- Fineness a dry sieving process is used

Fraction	12022025-5000		oil pH'-	and a total
(mesh size)	1 mo	1 yr	2 yr	3 yr
O ton/a lime	State of the	Lio unit	and the second second	1.1.1.1.1.1.1
_	4.96	5.18	5.23	5.30
2 ton/a lime				
20-40	5.04	5.39	5.70	5.91
40-60	5.12	5.52	5.82	6.05
60-100	5.18	5.64	5.94	6.03
< 100	5.44	5.58	5.97	6.03
6 ton/a lime				
8-20	4.98	5.28	5.78	6.10
20-40	5.17	5.66	6.15	6.40
40-60	5.29	5.81	6.40	6.50
60-100	5.33	5.95	6.48	6.60
< 100	5.73	6.19	6.59	6.61
16 ton/a lime				
8-20	5.41	5.66	6.24	6.47
20-40	5.35	5.99	6.50	6.71
40-60	5.56	6.10	6.63	6.81
60-100	5.70	6.21	6.73	6.82
< 100	6.17	6.45	6.97	6.98

Calculating the Neutralizing Index (NI) of a Liming Material

Example 2: Lime B	90% calcium carbonate	equivalent)

Screen size	Screen analysis		Effectiveness factor		
	%		16	i sing	exir etab
greater than 8 mesh	5.0	x	0.0	-	0.0
8 to 20 mesh	25.0	x	0.2	-	5.0
20 to 60 mesh	20.0	x	0.6	=	12.0
less than 60 mesh	50.0	x	1.0	-	50.0
and any and and			Total	-	67.0

Calculating Lime Rate

Soil pH in water (WpH) = 5.90 Soil pH in Buffer Sikora (BpH) = 6.79

LR for pH of 6.8 = 195 - 28.4(BpH) + 0.144(WpH)LR_{6.8} = 3.0 ton/a

Lime recommendation*	40-49	Sones of lim 50-59	60-69	70-79	80-89	90-99	100-109
(tonia)	tonis line to apply						
1	1.4	1.2	1.0	0.9	0.8	0.7	0.6
2	2.9	2.4	2.0	1.7	1.5	1.4	1.2
3	43	3.5	3.0	2.6	2.3	2.1	1.9
4	5.8	4.7	4.0	3.5	3.1	2.7	2.5
5	7.2	5.9	5.0	43	3.8	3.4	3.1
6	8.7	7.1	6.0	5.2	4.6	4.1	3.7
7	10.1	8.3	7.0	6.1	5.4	4.8	43
8	11.6	9.5	8.0	6.9	6.1	5.5	5.0
9	13.0	10.6	9.0	7.8	6.9	6.2	5.6
10	14.4	11.8	10.0	8.7	7.6	6.8	6.2

Choosing Between Liming Materials

- Example
 - 5 tons of 50-59 NI material at \$ 13/ton results in a cost per acre of \$ 65
 - 2 tons of 80-89 NI material at \$ 16/ton results in a cost per acre of \$ 32
 - The cheaper product may not always be the best buy

Can the Soil pH be Lowered ?

- Some crops may have lower optimum pH range
- Soil pH can be lowered by addition of acid-forming fertilizers

Elemental Sulfur (S) $2S + 3O_2 + 2H_2O \rightleftharpoons 2SO_4^{-2} + 4H$ Aluminum Sulfate $[Al_2(SO_4)_3]$ $Al_2(SO_4)_3 + 6H_2O \rightleftharpoons 2Al(OH)_3 + 3SO_4^{-2} + 6H^2$ Ammonium Nitrate $(NH_4)NO_3$ $NH_4NO_3 + 2O_2 \rightleftharpoons 2NO_3^{-1} + H_2O + 2H^2$

Thank you for attending!

Question?