Eq. # ^a	r^2	RMSE	(opint i und	Slope		Intercept		
1		$kg kg^{-1} DM$	b	$\overline{SE_b}$	Prob. <i>b</i> =1	а	SE _a	Prob a=0
2011 Models tested on 2012 Data								
1	0.64	0.119	1.0418	0.0592	NS	0.0166	0.0336	NS
2	0.67	0.113	1.0463	0.0553	NS	0.0005	0.0321	NS
3	0.68	0.111	1.0047	0.0519	NS	0.0132	0.0307	NS
4	0.67	0.114	0.9885	0.0528	NS	0.0415	0.0303	NS
5	0.69	0.109	1.0535	0.0528	NS	-0.0030	0.0306	NS
6	0.62	0.122	0.9721	0.0580	NS	0.0078	0.0357	NS
2012 Models tested on 2011 Data								
7	0.62	0.0997	0.9599	0.0322	NS	-0.0159	0.0172	NS
8	0.53	0.111	0.8372	0.0336	***	0.0927	0.0162	***
9	0.55	0.108	0.8866	0.0343	***	0.0726	0.0164	***
10	0.49	0.112	0.6994	0.0322	***	0.1158	0.0168	***
11	0.55	0.106	0.6606	0.0241	***	0.1482	0.0138	***
12	0.45	0.116	0.5731	0.0285	***	0.1820	0.0149	***
Split 1 Models tested on Split 2 Data								
13	0.66	0.106	1.0711	0.0403	NS	-0.0373	0.0210	NS
14	0.68	0.103	1.0464	0.0377	NS	-0.0236	0.0197	NS
15	0.69	0.101	1.0227	0.0362	NS	-0.0113	0.0189	NS
16	0.72	0.096	0.9913	0.0323	NS	-0.0007	0.0171	NS
17	0.73	0.094	1.0054	0.0319	NS	-0.0075	0.0169	NS
18	0.76	0.088	1.0128	0.0296	NS	-0.0117	0.0157	NS
Split 2 Models tested on Split 1 Data								
19	0.62	0.106	0.9335	0.0385	NS	0.0348	0.0203	NS
20	0.65	0.102	0.9526	0.0387	NS	0.0242	0.0195	NS
21	0.66	0.100	0.9701	0.0367	NS	0.0152	0.0194	NS
22	0.72	0.091	0.9787	0.0321	NS	0.0144	0.0169	NS
23	0.74	0.088	0.9675	0.0305	NS	0.0195	0.0161	NS
24	0.77	0.083	0.9361	0.0273	*	0.0331	0.0146	*

Table 5 Regression of model predicted values on actual grass fraction (GFRAC) from indicated dataset pairs. Testing was completed with paired data from 1) 2011 and 2012 datasets, and 2) Randomly split datasets from 2011 and 2012 data (Split 1 and Split 2).

^aEquation numbers correspond to equations in Table 4

* Significant at a probability level of 0.05.

*** Significant at a probability level of 0.001.