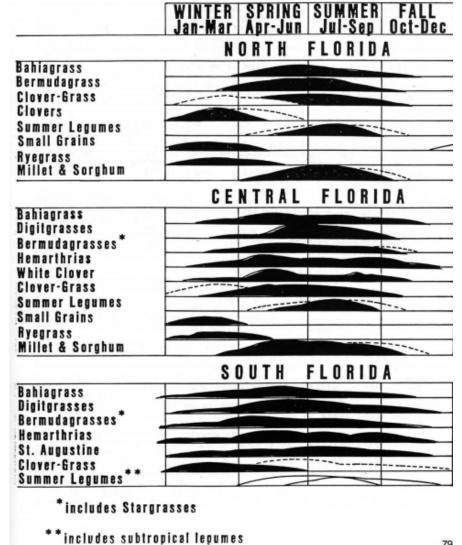
Characterization of Pasture-Based Dairy Farms in Florida and Georgia

Fei Du Department of Animal Sciences University of Florida

Master's defense July 1, 2013



Introduction

- Most dairy farms in the Southeast United States use confinement systems (Fontaneli et al., 2005)
- A lot of capital is tied up in buildings, machinery, and manure management systems
- Cost of purchased feed and fuel has risen rapidly in the last 5 years (USDA, 2013)
- Growing interest in pasture-based dairy farms

Possible advantages of pasture-based dairying

- Long forage or grasses availability
 - 4 to 5 months in WI
 vs. 9 to 11 months in
 FL and GA (Gillespie et al. 2009)
- Low cost (?)

Possible disadvantages of pasture-based dairying

- Milk production is lower (?)
- Reproduction decreased (?)
- Quality of warm season grass is low (Minson and McLeod, 1970)

Florida dairying in 1920-1950

Characteristics of pasture-based farms

- The management of pasture-based dairy farms in FL and GA appears to vary widely.
- Little is known about:
 - Herd management
 - Milk production
 - Reproduction management
 - Use of facilities
 - Pasture management
 - Supplemental feeding

Objective

- To characterize pasture-based dairy farms in FL and GA with regards to young stock, milking herd, pasture and crops, feeding, manure and nutrients
- Not interested in financial data

Materials and methods

- This study is part of a large SARE project
 - LSII-243 Improving the Welfare of Southeastern Dairy Families Through the Adoption of Sustainable Production Systems
 - U of Georgia, U of Florida, Fort Valley State U.

SOUTHEAST SUSTAINABLE DAIRY FARMS PROJECT

Materials and methods

- An 18-pages survey was designed and consisted of 62 questions that covered the 7 areas:
 - farm business structure, young stock, milking herd, pasture and crop, feeding, manure and nutrients, and sustainability

This survey is being conducted by the University of Florida, University of Georgia, and Fort Valley State University to identify current production and grazing practices on dairy farms in the Southeast. Participation in the study is voluntary. All answers to questions in this survey will be kept strictly confidential. Your data will only be used in summarized results. Individual farm information will not be identified in any publication. All producers who complete a survey will receive a S100 reward. Thank you for participating. University of Florida, IRB Exemption of Protocol #2012-U-0206.

SURVEY STARTING TIME:

ENUMERATOR

DATE OF SURVEY:

SURVEY ENDING TIME:

- D.4. How many permanent paddocks (no moving fence line) are on the farm?
- D.5. How many variable sized paddocks (with moving fence line) are on the farm?
- D.6. How are the paddocks laid out?

Comments

	Fixed sized lots	Center pivot + Traditional pie chart	Center pivot Double Circle	Other
Lactating cows				
Dry cows				

FARM:

Data collection

- Dairy farms were invited by phone calls, emails, letters and announcements
 - Recruitment by Extension agents
 - Farm visits to complete survey
 - \$100 for completed survey
- Target time period:
 - Summer 2011 through Spring 2012
- Data collection:
 - 42 farms were contacted
 - 23 farms completed surveys
 - September 2012 April 2013

Data analysis

- Descriptive data in Microsoft Excel
- Procedure GLM in SAS

Results

Farm description

Characteristic	Georgia	North	South Florida	Total	P-value
		Florida			(regions)
# of farms	4	13	6	23	
# of FTE	5.1 ± 1.4	7.1 ± 4.2	43.2 ± 60.6	372	0.063
# of heifers	363 ± 25	306 ± 274	1976 ± 3439	17,288	0.158
# of cows*	588 ± 63	569 ± 589	3169 ± 3397	28,768	0.020

* ≈15% of all dairy cows in FL and GA (NASS, 2012)

Record keeping

• II farms participated in DHIA program

Dairy breeds distribution

% of total herd										
Breed or cross	<25	25- 75	>75	Farms #	Cows #	Cows %				
Brown Swiss	4	0	0	4	11	<0.1				
Holstein (H)	3	5	9	17	20,328	70.7				
Jersey (J)	5		0	6	1,257	4.4				
Holstein x Jersey	3	3	0	6	608	2.1				
Jersey x Holstein	2	7	1	10	4,464	15.5				
Montbeliard x H	- I -	0	0	l l	20	0.1				
Norwegian Red x H	1	0	0	I	30	0.1				
J x Milking Shorthorn	0	0	1	l I	31	0.1				
Unsp. crossbreed	1	1	0	2	296	1.0				
H x J x Swedish Red	- I -	0	0	l I	6	<0.1				
J x H x Swedish Red	0		0		125	0.4				
J x H x S/M/A	0	2	0	2	300	1.0				
Other unspecified		0		2	570	2.0				

75% pure breeds, 25% crossbreeds; 19 farms > 1 breed or cross;

Annual cull rate

Breed or cross		Annual cull rate (%)
Brown Swiss		14 ± 10
Holstein		28 ± 10
Jersey		24 ± 6
Holstein x Jersey		21 ± 2
Jersey x Holstein		22 ± 12
Montbeliard x H		20
Norwegian Red x H		17
Jersey x Milking Shorthorn		5
Unspecified crossbreed		27 ± 10
H x J x Swedish Red		22
J x H x Swedish Red		16
J x H x S/M/A		25 ± 0
Other unspecified		20 ± 0
	Average	e 22 ± 9%

Traits

		l	mportance	
Breeding goals	# of farms	# as top 1	# as top 2	# as top 3
Reproduction	11	9	I.	I
Longevity	H	5	2	4
Milk volume	9	4	3	2
Udder	8	0	2	6
Feet and legs	6	0	3	3
Calving ability	5	I.	4	0
Net merit dollars	2	2	0	0
Fluid merit dollars	2	0	2	0
Body capacity	3	0	3	0
Strength	I	I	0	0
Fat and Protein	I	0	0	I
Functional type	I	0	0	

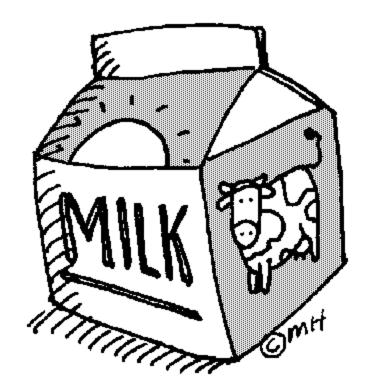
Most important traits from grazing survey (Gay, 2012)

- Genetics survey, including grazing
 - I. Productive life (2)
 - 2. Udder (4)
 - 3. SCC
 - 4. Feet and legs composite (5)
 - 5. Calving ability dollars (6)
 - 6. Daughter pregnancy rate (1)
 - 7. Fat yield and percentage
 - 8. Body size
 - 9. Protein percentage

10. Milk yield (3)

Major culling reasons

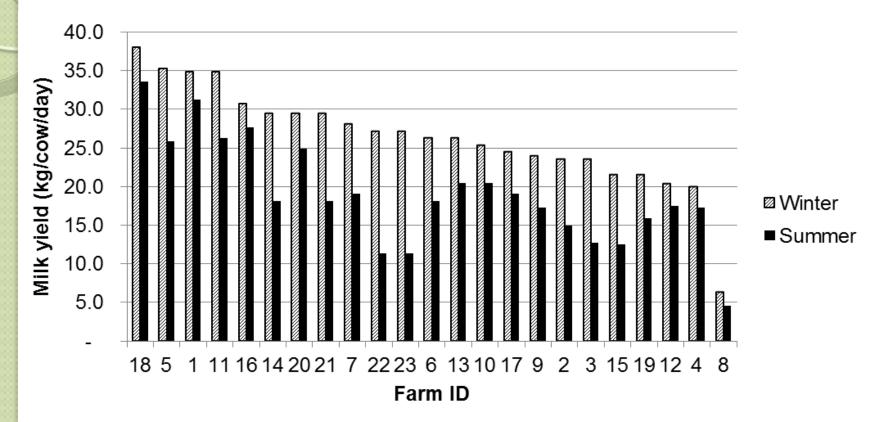
	Importance						
Cull reasons	# of farms	# top 1	# top 2	# top 3			
Failure to get pregnant	19	9	6	4			
Low milk production	14	5	5	4			
Mastitis	11	4	3	4			
Bad udder	8	2	4	2			
Feet and leg problems	8	2	3	3			
Death	5	0	2	3			
Disease	3	0	0	3			
Temperament	I	I	0	0			


Culling reason from Gay (2012)

- Genetics survey, including grazing
- Top 5
 - I. Fertility (I)
 - 2. High SCC (3)
 - 3. Low production (2)
 - 4. Feet and legs
 - 5. Old age

Milk production

Milking procedures

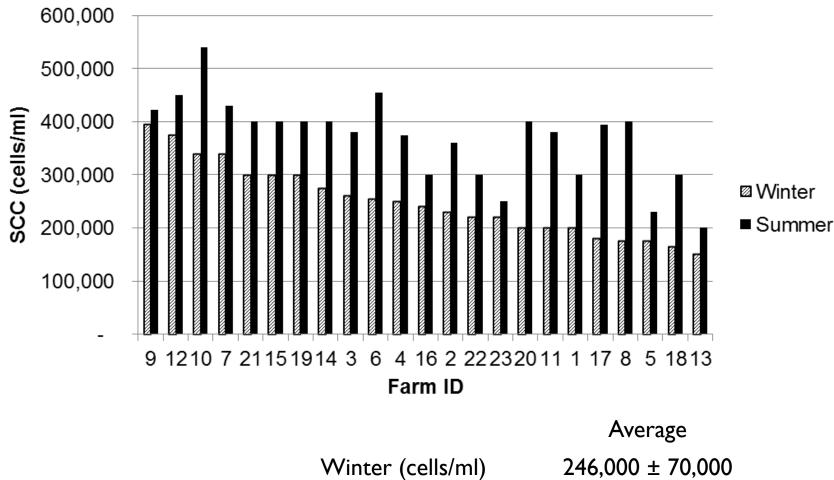

Wash udders	Strip	Pre-dip	Wipe	Post-dip	# of farms
Νο	Yes	Yes	Yes	Yes	7
Yes	Yes	Yes	Yes	Yes	4
No	No	Yes	Yes	Yes	4
Νο	No	Yes ¹	Yes ²	Yes	3
Yes	No	Yes	Yes	Yes	2
Yes	No	No	Yes	Yes	I
No	No	Yes	No	Yes	I

¹On fresh cows or during raining weather only ²When dirty

Milk frequency:

- I farm: I x
- 20 farms: 2x
- I farm: 3x
- I farm: 4x

Milk production


Average

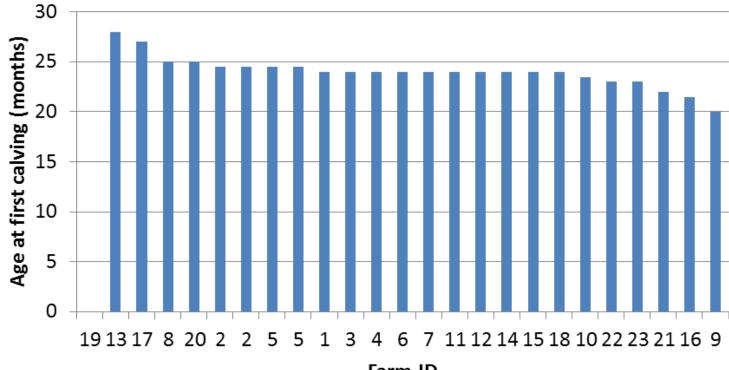
Winter (kg/cow/day) 26 ± 7

Summer (kg/cow/day) 19 ± 7

Somatic cell count

Summer (cells/ml)

365,000 ± 79,000



Reproduction

Age at first calving

Average: 24.0 ± 1.6 months

Farm ID

Farm ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1												
2												
3												
4												
5 ¹												
6												
7												
8 9 ¹												
10 ¹												
11												
12												
13 ¹												
14 ¹												
15												
16												
17 ¹												
18 ¹												
19												
20												
21 ¹												
22												
23												

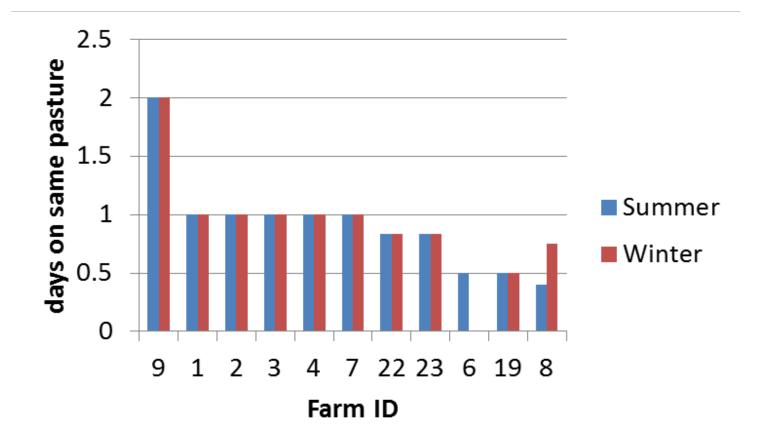
Farm ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1												
2												
2 3 4												
5 ¹												
6												
7												
8												
9 ¹												
10 ¹												
11												
12												
13 ¹												
14												
15												
16												
17 ¹												
18 ¹												
19												
20												
21 ¹												
22												
23												

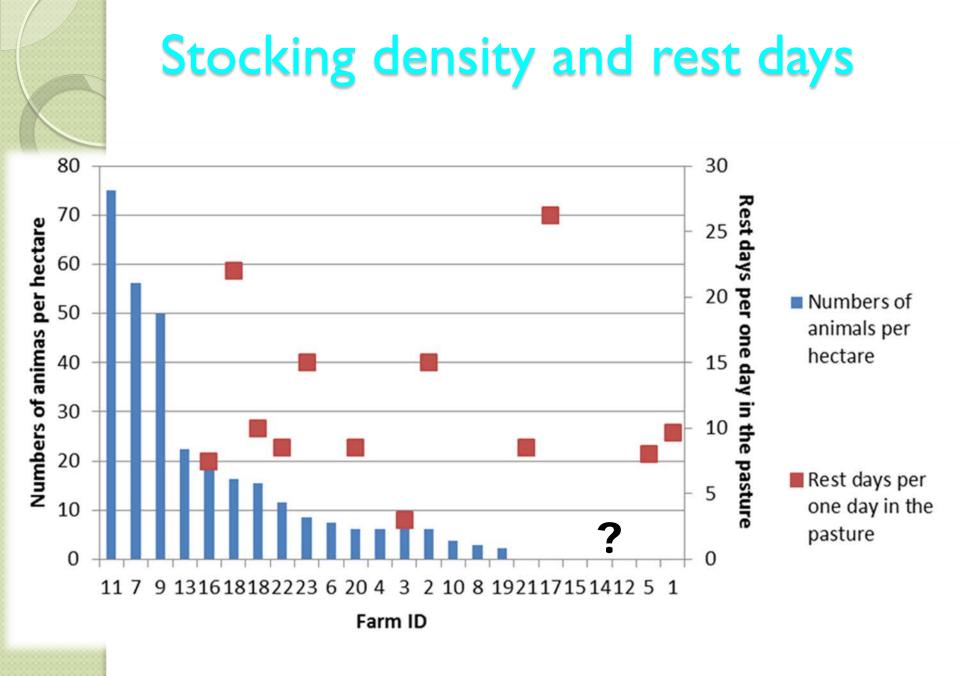
Cow inseminations

Farm	Jan	Feb	Mar	Apr	Mov		Jul	Δυσ	Son	Oct	Nov	Dec
ID	Jan	гер	IVIAI	Apr	May	Jun	Jui	Aug	Sep	OCI	INOV	Dec
1									_			
2 3												
3												
4												
5 6												
6												
7												
8												
9 ¹												
10 ¹												
11												
12												
13 ¹												
14												
15												
16												
171												
18 ¹							-					
19												
20												
21 ¹												
22												
23												

Reasons for not inseminating animals

Reasons	# of farms
Calving problems in the summer	10
Failure to get cows pregnant	7
Quality and quantity of grass	4
Labor availability	4
Maintain seasonality of milk production	4
Heat stress	3
Feed availability	I
Time off or vacation	0


Rotational stocking management

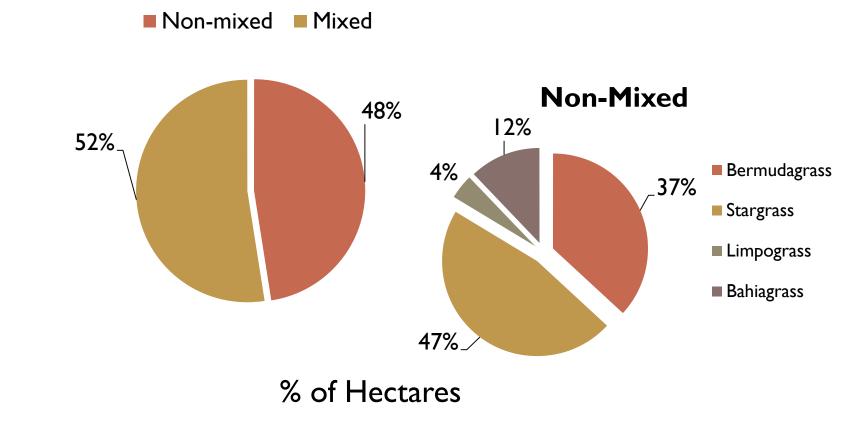


- Summer: 14 (61%) farms
- Winter: I3 (57%) farms

Days on same pasture

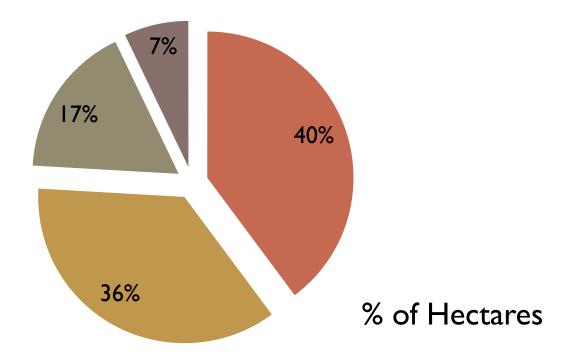
Grass height measurement

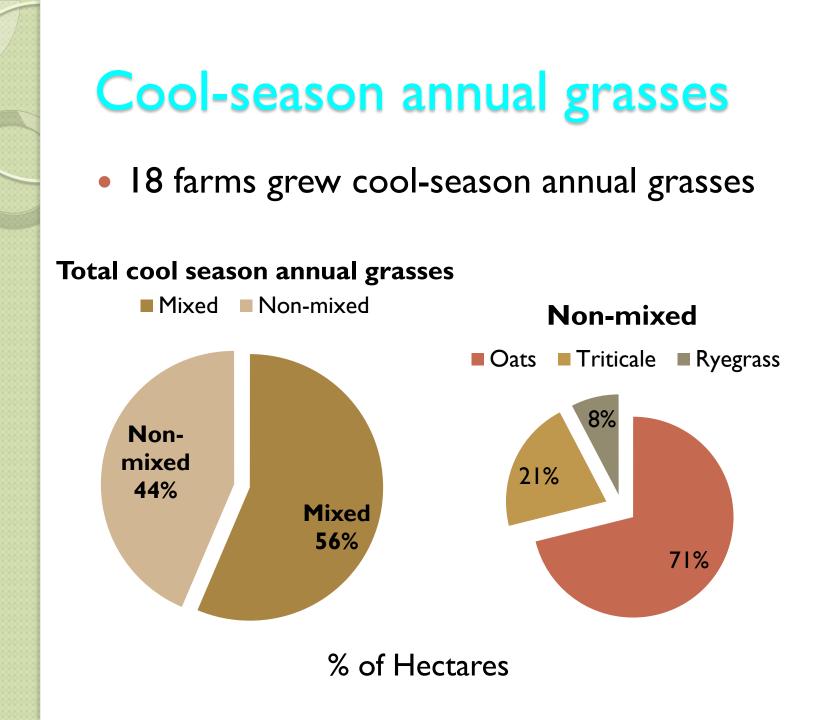
- Regrowth and quality and quantity of grass
- # farms
 - I0 visual estimation
 - 9 no estimation
 - 3 visual estimation + pasture plate meter
 - I pasture plate meter



	Grass/forage		# farms		Total (Hectares)
		Mixture (%) ⁷	Pure ⁸	Unknown ⁹	Irrigated	Non-irrigated
	Annual ryegrass	7 (55 ± 16)	2	2	747	206
	Argentine bahia	6 (32 ± 21)	2	0	38	1,436
-	Arrow leaf clover	l (7.5)	0	0	25	6
	Cereal rye	l (50)	0	0	141	20
	Coastal bermuda	8 (50 ± 29)	3	0	240	385
	Common bermuda	4 (43 ± 25)	I	4	413	I,804
	Corn	0	8	0	947	0
	Crab grass	0	0	4	356	11
	Crimson clover	0	0	2	202	0
	Florakirk bermuda	0	I	0	48	22
	Jiggs bermuda	l (50)	0	I	222	808
	Limpograss	0	I	l I	222	747
	Oats	5 (43 ± 7)	6	2	793	174
	Panicum	0	0	3	251	0
	Pearl millet	0	3	0	153	16
	Pensacola bahia	4 (27 ± 9)	2	0	210	145
	Red clover	l (7.5)	0	0	25	6
	Rye	0	2	0	20	26
	Smut grass	l (25)	0	0	0	1,042
	Sorghum	0	7	0	661	218
	Stargrass	3 (57 ± 35)	2	I	250	2,947
	Tifton 85 bermuda	2 (43 ± 11)	3	3	540	78
	Tifton 9 bermuda	0	I	0	12	47
	Triticale	0		0	145	0
	Wheat	0	I	0	42	48
	White clover	l (33)	0	0	0	53

Hectares

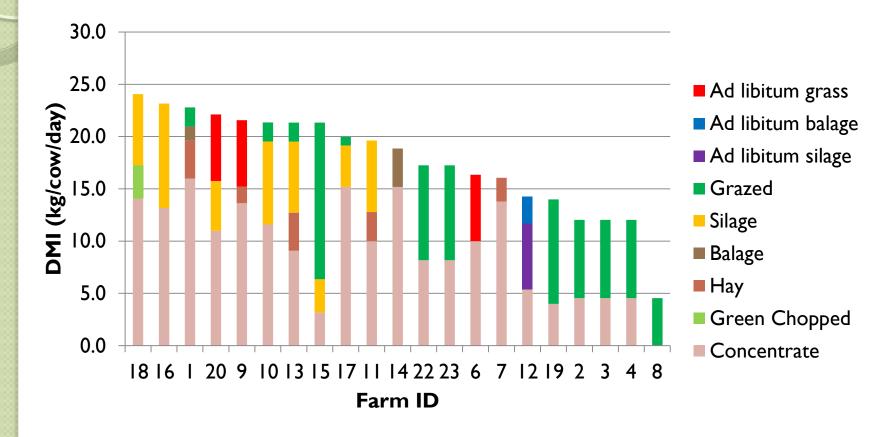

• All farms grew warm-season perennial grasses:



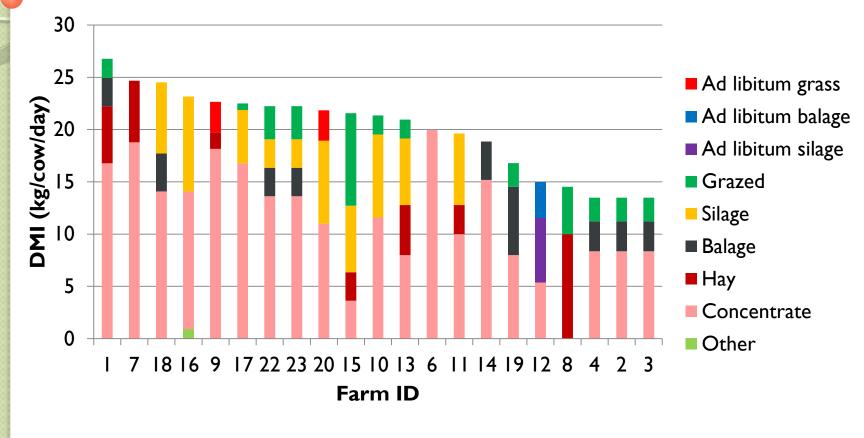
• 14 farms grew warm-season annual grasses

■ Corn ■ Sorghum ■ Crabgrass ■ Pearl millet

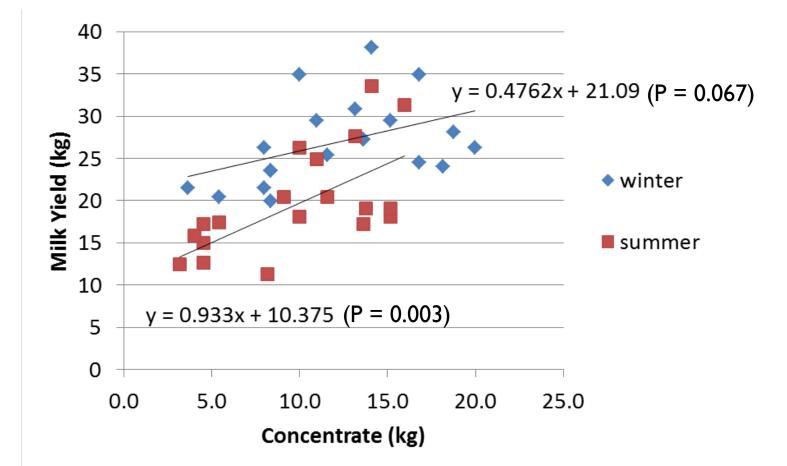
Cool-season perennials


- Example: alfalfa
- Not grown on surveyed farms

Feed intake



Dry matter intake for wet cows in summer


Average DMI: 17.7 ± 4.9 kg/cow/day % concentrate: 49 ± 21

Dry matter intake for wet cows in winter

Average of DMI: 20.0 ± 4.0 kg/cow/day % concentrate: 60 ± 18

Concentrate vs. milk yield

Discussion

- Objective of SARE project:
 - Characterize pasture-based dairy farming in FL and GA
 - Associate characteristics with financial performance
 - Help dairy farms understand best pasture-based practices
- Almost no comparable literature available
- Data collection challenges
 - Farm participation
 - Lack of quantitative answers

Conclusion

 Grass varieties, feed practices, milk production and reproduction all varied widely between seasons and among pasture-based dairy farms in FL and GA.

Acknowledgement

- SARE grant
- Farmers who participated
- Survey design and data collection:
 - Dr. Victor Cabrera, University of Wisconsin
 - Dr. Mike Hutjens, University of Illinois
 - Dr. John Bernard, University of Georgia
 - Dr. Curt Lacy, University of Georgia
 - Dr. Mary Sowerby, University of Florida
 - Keegan Gay
- Karun & Dr.Tao
- My committee:
 - Dr. Yoana Newman
 - Dr. Linda Young
 - Dr. Charles Staples
 - Dr. Albert De Vries

