Identification, Assessment and Management of Soilborne Plant Pathogens in Vegetable Production Systems

Symptoms and signs of soilborne pathogens of vegetables

George S. Abawi

Dept. of Plant Pathology & Plant-Microbe Biology Cornell University

James A. LaMondia The Connecticut Agricultural Experiment Station

Project LNE10-296

General field symptoms

Patches and uneven distribution of less vigorous plants

General yellowing and wilting

search & Education

General symptoms of soilborne pathogens

NORTHEAST

Research & Education

Specific soilborne pathogens

Sustainable Agriculture Research & Education

Nematodes

Phytophthora fruit rot (Phytophthora capsici)

Phytophthora blight (Phytophthora capsici)

Oomycete water-mold pathogen

Major disease of pepper and cucurbit crops as well as eggplant, tomato and beans

Symptoms include:

damping-off, root and crown rots, stem and fruit rots

Favorable environmental conditions: warm and wet

Phytophthora blight on pepper

2009 – Wet summer; June 6.3 in & July 11.2 in. rain

and the server of the Property Station

*Phytophthora capsici*20 to 40 zoospores per sporangia

How does Phytophthora blight spread?

Optimum temp 75 to 91°F Saturated soils

Zoospores

Before & after tropical storm Lee and Hurricane Irene

Pictures from the NY Times and Amara Camp, Cornell

How does Phytophthora blight survive?

Photos: Chris Smart, Cornell

Buckeye rot on tomato (Phytophthora parasitica)

- Develops on fruit touching the ground
- **Concentric rings** alt. light and dark
- Initially fruit are firm but become soft and rotted
- Favored by high relative humidity, wet soils and warm tomps
 - temps

Pythium root rot on bean

Pythium root rot (Pythium spp.)

Oomycete water-mold pathogen.

- Hosts include most vegetable crops
- Symptoms include: dampingoff, seedling root rots especially before emergence
- Causes feeder root pruning on older plants

Pythium root rot on bean

Effect of temperature on the development of *Pythium ultimum* type root rot (moisture constant)

Pythium root rot (Pythium spp.)

Pythium root rot on ornamental gourd

Cavity spot on carrot (*Pythium* spp.)

Pythium leak of potato (Pythium spp.)

Rhizoctonia on carrot (*Rhizoctonia solani*)

Rhizoctonia root rot (Rhizoctonia spp.)

- Hosts include most vegetables and many weeds
- Symptoms include: primarily root rots and damping-off
- Soil inhabitant producing sclerotia
- Favored by a wide range of environmental conditions: warm soil and excess nitrogen as well as wounding

Rhizoctonia stem canker and black scurf (*Rhizoctonia solani*)

- Common soilborne pathogen on vegetables
- Subgroups or anastomosis groups
 AG-1
 AG-2
 AG-3 (potato)

Diversity of *Rhizoctonia solani* isolates in culture

angled hypae

Rhizoctonia on snap bean

istainable Agriculture esearch & Education

Web blight (Thanatephorus cucumeris)

Rhizoctonia on beets (*Rhizoctonia solani*)

Rhizoctonia on beets (*Thanatephorus cucumeris*)

Black scurf (Rhizoctonia solani)

- Dark brown to black sclerotia that are irregularly shaped
- Resembles soil that does not wash off

<image>Cracking and used in the seting of the seting of the set of the s

Stem canker on potato (Rhizoctonia solani)

Reddish-brown to black lesions on sprouts, stolons and roots

Can girdle affected area

Research & Education

Rhizoctonia stem canker and black scurf

Fusarium root rot (*F. solani* f. sp. *phaesoli*)

Fusarium root rot (*F. solani* f. sp. *phaesoli*)

Sustainable Agriculture Research & Education

Fusarium root rots (Fusarium solani f.sp. pisi)

- Different species or strains infect many vegetables (f. sp.)
- Symptoms include: damping-off, root, stem, and fruit rots
- Can survive in crop debris and overwinter as chlamydospores
- Favorable environmental conditions: warmer soil temperatures than Pythium

Diversity of Fusarium isolates in culture

Fusarium crown rots on celery

Fusarium crown and fruit rots

Fusarium wilt (F. oxysporum f. sp. nicotianae)

Fusarium wilts (Fusarium oxysporum f. sp. various)

- Different strains are host specific and infect crops like tomato, cucurbits, and spinach
- Symptoms include: wilting and vascular discoloration
- Can survive in crop debris and overwinter as chlamydospores
- Favorable environmental conditions: warmer weather (82-86°F) and acid, sandy soils

Fusarium wilt (*F. oxysporum* f. sp. *phaesoli*)

Thielaviopsis root rot (Thielaviopsis basicola)

Characteristic black roots

Thielaviopsis root rot (Thielaviopsis basicola)

- Hosts include many vegetables
- Symptoms include: damping-off and black root rot
- Can survive in crop debris and overwinter as chlamydospores
- Favorable environmental conditions: cool and wet spring followed by high summer temperatures

Thielavopsis on carrot (*Thielaviopsis basicola*)

Thielaviopsis root rot (*Thielaviopsis basicola*)

Pythium

Thielaviopis

Root rot complex

Fusarium

Rhizoctonia

Effect of individual fungal pathogens or combinations of pathogens on snap bean roots

Sclerotinia on carrot (Sclerotinia sclerotiorum)

Lifecycle

Sclerotia germinating and produce apothecia

Spore release coincides with flowering *

Primary infections

stainable Agriculture

Production of sclerotia

Secondary infections**

White mold (Sclerotinia sclerotiorum)

- Soilborne pathogen with a wide host range (400+)
- Severity is highly dependent on favorable weather conditions for the pathogen....wet and 68-77°F

Snap bean, tomato, cabbage, carrot, cucurbits, soybean, sunflower, alliums...most vegetables

White mold on bean (Sclerotinia sclerotiorum)

Sclerotinia head rot (Sclerotinia sclerotiorum)

Timber rot on tomato (Sclerotinia sclerotiorum)

Lettuce drop (Sclerotinia minor)

In the NE, primarily a problem on muck/high organic matter soils.

Clubroot (Plasmodiophora brassicae)

Club root (Plasmodiophora brassicae)

- Hosts include cabbage, cauliflower, broccoli, brussels sprouts, radish, mustard and other brassicas
- Symptoms include: galling on hypocotyl and roots, wilting and stunting

- Obligate pathogen that survives as resting spores
- Favorable environmental conditions: increasing soil moisture as temps increase above 68°F and acidic soils

Common scab of potato (Streptomyces spp.)

- Symptoms include: infects lenticels or wounds in tubers and causes plant suberization
- Survives in soil or crop debris or seed tubers
- Favorable environmental conditions: dry soils with pH above 5.2

Common scab (Streptomyces spp.)

Response of Katahdin (very susceptible) to 2 different isolates

Isolate ME 01-12h

Isolate ID 01-12c

10⁸

L. Wanner 🚪

Common scab (Streptomyces spp.)

➡ Inoculum density is a critical factor in disease severity

uninoculated 9.2×10^6 9.2×10^7

Superior (upper row, more resistant) and Green Mt (lower, more susceptible) inoculated with ID01-16

L. Wanner

9.2 x 10⁸

Common scab (Streptomyces spp.)

Sustainable Agriculture Research & Education

Marlene Cameron, MSU

Verticillium wilt (Verticillium albo-atrum and V. dahliae)

Verticillium wilt (Verticillium albo-atrum and V. dahliae)

- Hosts include many vegetables especially tomato, eggplant, pepper and melons
- Symptoms include: wilt and vascular discoloration however, they are slower to develop
- Can survive as mycelium or microsclerotia
- Favorable environmental conditions: cooler weather and neutral to alkaline soils

Potato early dying disease (PED) (*Pratylenchus penetrans* + *Verticllium dahliae*)

Lesion nematode (*Pratylenchus penetrans*)

Root-lesion nematode (*Pratylenchus penetrans*) in an onion root

Lesion nematode (Pratylenchus penetrans)

- >400+ hosts including fruit trees, grain crops, vegetables and many common weeds
- Symptoms include: poor plant vigor, stunting, wilting, root pruning and discoloration
- Survive as migratory ectoparasites both in the plant root and in the soil
- Favorable environmental conditions: more damage caused in sandy
 soils where water and nutrients are limited

Northern root-knot nematode (*Meloidogyne hapla*)

Northern root-knot nematode (Meloidogyne hapla)

Northern root-knot nematode (Meloidogyne hapla)

- Hosts include most agronomic crops including vegetables and many common weeds
- Symptoms include: stunting, galling, forking, delayed maturity
- Survive mostly in plant roots; short part of lifecycle in soil
- Favorable environmental conditions: more damage caused in sandy soils

Bloat nematode on garlic (*Ditylenchus dipsaci*)

Bloat nematode on garlic (*Ditylenchus dipsaci*)

- Wide host range but especially destructive on garlic, onion and leek
- Symptoms include: bulbs are discolored, shrunken, soft, light in weight, eventually decay
- Survive in a desiccated state in soil for several years

Identification, Assessment and Management of Soilborne Plant Pathogens in Vegetable Production Systems

Questions on symptoms and signs of soilborne pathogens of vegetables?

George S. Abawi Dept. of Plant Pathology & Plant-Microbe Biology Cornell University

James A. LaMondia The Connecticut Agricultural Experiment Station

