Identification, Assessment and Management of Soilborne Plant Pathogens in Vegetable Production Systems

Management of soilborne pathogens and diseases

George S. Abawi

Department of Plant Pathology and Plant-Microbe Biology Cornell University

James A. LaMondia

The Connecticut Agricultural Experiment Station

Project LNE10-296

Soilborne pathogens and disease management

All production practices impact soilborne pathogens.

- Pathogens and their diseases are most damaging in poor soils and on stressed hosts.
- Many pathogens have a wide host range and/or survive for several years in the absence of a host.
- Accurate diagnosis and monitoring of soilborne pathogen(s) is critical for determining management options.

- Quarantines and regulations
- Phytosanitary certifications
- ✓ Fungicide treatments
- ✓ Sanitation practices

Reducing rate of pathogen population increase thus decreasing crop damage

General management strategies

- Cultural practices are often most effective
- Same strategies don't work in all systems or on all pathogens
- Must consider the pathogen(s) and cropping system to determine what combination of strategies are appropriate for your fields and farm

Short-term/in-season practices

e.g. seed trt, fungicide applications, resistant cvs.

Long-term practices

Improve soil condition, reduce inoculum

Management emphasizes...

Crop rotation and cropping sequences

...result in direct effects of the plants on the pathogen, soil acidification, changes in soil physical and chemical characteristics and in change in soil microbial communities!

Crop rotation for disease management

Rotate out of plant families for 2 to 3 yrs

Most effective when implemented before there is a disease problem!

- Efficacy depends on the pathogen
 - How long the pathogen can survive in the soil (soil invader vs soil inhabitor)
 - Host range (including weeds and cover crops)
 - Survival mechanisms btwn susceptible hosts

Methods for managing other sources of pathogen

Snap bean 'Hystyle'

Soybean 'SG1405RR'

Wheat (var. not specified)

Sweet corn 'Bodacious'

Sustainable Agriculture Research & Education

Crop rotation for disease management

- Efficacy also depends on....
 - Movement of equipment within and between fields
 - Disease severity and environmental conditions
 - Other cultural practices employed can be synergistic or detrimental to disease management
 - e.g. tillage spreading pathogens, decomposed green manures at planting

Crop rotation for disease management

Allelopathy...

One organism produces biochemicals that influence the growth, survival and reproduction of other organisms, beneficial or detrimental.

Plant – Pathogen Interactions

Beneficial Interactions

Hatch/germination factors, attraction to roots (could be delivered in conjunction with resistance)

Detrimental Interactions

Production of pesticidal/ toxic compounds that can be delivered by rotation crops, cover crops, intercropping or as a green manure

Crop rotation for disease management

Detrimental Allelopathy = Biofumigation

Naturally occurring nematicidal/ fungicidal compounds in plants like brassicas, Rudbeckia, velvetbean, sesame, sorghosudangrass.

Biofumigants for pathogen management:

- Applied as green manure or seed meal amendments
- ✓ Host status and cultivar effects

Efficacy in microplots and small field plots

Valley Laboratory oilseed plots

Biofumigant oilseed crops

- ✓ 120 glucosinolates (30 40 in Brassica spp.)
- ✓ Develop profiles for cultivars (plants vs seed meals)
- Activity/efficacy against various pathogens,
 nematodes and weeds
- Compare to discover type and amount of glucosinolate(s) associated with efficacy

Necessary for breeding and bioengineering

Sustainable Agriculture Research & Education

Suppressive effect of sudangrass varieties on root-galling severity of lettuce

Biofumigation for disease management

Seed Meal Bioassay: Rates vs Root-knot nematode

Seed Meal Rate cv. Dwarf Essex	Percent Nematode Control			
None				
1 mg/cm ³	22			
2 mg/cm ³	54			
4 mg/cm ³	81			

Biofumigation for disease management

Seed Meal Bioassay: Type vs Root-knot nematode

Seed Meal Type	Percent Nematode Control			
Pacific Gold	93			
Dwarf Essex	84			
Sterling	67			
Ida Gold	39			
Sunrise Spring	17			
Hyola 410	6			

Amount of glucosinolate

Biofumigation for disease management

Biofumigation

- ✓ Highest toxicity levels *B. nigra* and *B. juncea* Pacific Gold contains sinigrin
- Sinigrin levels 3x higher in Pacific Gold, 100% versus 70% mortality at 1.3 g seed/L
- Biofumigation with brassicas has also been shown to reduce *R. solani* and *V. dahliae* in soils
- Microplot research has shown that brassica green manure was more effective against *F. oxysporum* than fallow or host resistance

Additional resources

http://www.sare.org /Learning-Center/Books/Crop-Rotation-on-Organic-Farms

Crop Rotation on Organic Farms A PLANNING MANUAL

Charles L. Mohler & Sue Ellen Johnson, editors

Hardcopy \$24 or download pdf file

APPENDIX 3 Sources of Inoculum for Crop Diseases in the Northeastern United States Compiled by Margaret Tuttle McGrath

Disease	Pathogen Name	Rotation (years) ¹	Seed Borne	Wind- blown Spores ²	Insect Vectored	Weed Hosts
VEGETABLE CROPS						
Asparagus						
Fusarium crown rot	Fusarium spp.	Y (long)	Y (crown)	N	N	wide host range ³
Fusarium root rot	Fusarium spp.	Y (long)	Y (crown)	N	N	wide host range ³
Phytophthora spear rot	Phytophthora spp.	N	Maybe	N	N	common purslane, horsenettle, velvetleaf, eastern black nightshade (P. capsici)
Rust	Puccinia asparagi	Y (3)	Ν	Y	N	no records located

Management emphasizes...

Sanitation

- Pathogen-free, certified seed (when possible) esp. potatoes
- Reduce pathogen inoculum removing culls and incorporating crop residue
- Reduce spread by limiting movement of soil and crop debris on equipment, tools, people

Research & Education

Management emphasizes...

Environmental modification

- Cultural practices...create an unfavorable environment for the pathogen
 - ✓ Maximize air movement around plants
 - ✓ Manage weeds and volunteers
 - ✓ Minimize leaf wetness drip irrigation
 - Optimize/balance fertility
 - ✓ Adequate soil drainage
 - ✓ Good soil tilth
 - ✓ Mulches
 - ✓ Etc.

Soil moisture and temperature

Many diseases are more severe with high soil moistures

Anaerobic conditions damage/weaken roots more susceptible to seed rots, damping-off and root rots

Ridge Tillage

Ridge Tillage

Research & Education

Ridge Tillage

esearch & Education

Effect of tillage systems on snap bean – NYSAES, Gates Farm, 2011

Rotation 1 – Continuous vegetable rotation

Tillage	#Plant/ 10ft	RRS (1-9)	Pod Wt (lb/100ft)
Ridge	46.8	4.2	53.5
Zone-Till	47.5	4.5	45.1
Plow	46.9	5.3	29.8
LSD (P=0.05)	3.85	0.55	10.21

Rotation 2 – Vegetable rotation w/ soil-building crops

Tillage	#Plant/ 10ft	RRS (1-9)	Pod Wt (lb/100ft)
No-Till	41.2	4.3	44.5
Zone-Till	46.6	4.4	55.2
Plow	44.5	4.0	34.1
LSD (P=0.05)	4.2	0.45	11.0

IPM Systems Comparison Site NYSAES, Geneva, NY (C. Petzoldt et al.) 9 2002 8 **2003** a **2004 Root Health Rating** 7 3 ■ 2005 6 ■ 2006 ab bb 5 4 3 2 **IPM-present IPM-future** Conventional Organic **Production System**

Differences in snap bean root rot and yields at IPM systems fields, NYSAES 2008

Production -	Root Healt	h Rating*	Sample wt	Yield
System	Bioassay	Field	(g/ 20 plants) **	(T/A)
IPM present	6.3	4.2	862	3.35
IPM future	5.4	4.5	1298	3.89
Organic	7.0	5.0	743	3.17
Conventional	7.0	4.9	834	2.43
lsd (p=0.05)	0.60	0.54	358.5	0.517

*Rated on a 1-9 scale (1 = healthy to 9 = severely symptomatic, decayed

**IPM future was most mature, IPM present and conventional systems were least mature at harvest.

Management emphasizes...

Effects of soil nutrients and plant nutrition

NH⁴⁺

NH⁴⁺

NH⁴⁺

Plan

 Roo

H ions released lowering

pH around root zone

- Nutrients affect both plants and pathogens as well as all other soil microbes
- Macro and micronutrients, pH and organic matter
- In general, optimal nutrition promotes plant growth and as a result may reduce the severity of certain diseases.
- Certain diseases may be reduced by targeting the form of specific nutrients like nitrogen, phosphorus, potassium, calcium, etc.

Phosphorus and Potassium

Essential for plant growth and general disease resistance Low P may problems with Pythium & other root rot diseases

Low **K** typically increases diseases caused by *Rhizoctonia solani*

Effects of soil nutrients and plant nutrition...

Calcium

Strengthens cell walls

Optimizing **Ca** fertility **T** resistance to Pythium root rot as well as Fusarium wits and Sclerotinia diseases

Manganese

Controls liginin and suberin biosynthesis

Increased Mn fertility potato scab as well as Fusarium and Sclerotinia diseases

Effects of soil nutrients and plant nutrition...

Boron

Promotes cell wall rigidity and membrane integrity

Increased **B** fertility clubroot of crucifers, *Fusarium solani* root rot of beans and Verticillium wilt in tomato

рΗ

Levels influence nutrient availability

Higher pH reduces F. oxysporum

Lower pH reduces potato scab and black root rot

Effects of soil nutrients and plant nutrition...

Soil pH Common scab of potato (Streptomyces spp.)

dry soils pH 6.0 to 7.0 favor disease so lower pH to reduce disease

Clubroot of crucifers (Plasmodiophora brassicae)

Management emphasizes...

Two types of resistance

Horizontal resistance – partial resistance to multiple strains of a pathogen using many genes (stable)

Vertical resistance –

complete resistance to a single strain of a pathogen using a single gene (unstable)

Select the appropriate cultivars

- \checkmark Adapted to your region
- ✓ Host resistance is one of the most effective ways to manage diseases

Host resistance

Often resistant varieties are not available

Celebrity VFFNTA Hybrid BHN 640 VFFF Hybrid

Host resistance – screening trials

➡ Dry bean variety trial, NYSAES, 2009

Pea variety trial, Genesee Co. NY, 2008

Host resistance – Pea root rot trial, 2010

Host resistance – greenhouse screening

Root rot severity scale

- 1 no visible symptoms
- 3 light discoloration, 10% of root & hypocotyl tissues w/ lesions
- 5 ~ 25% of hypocotyl & root tissues w/ lesions, tissues firm
- 7 ~ 50% of hypocotyl & root
 tissues w/ lesions, some
 softening, rotting & reduction in
 roots
- 9 > 75% of hyptocotyl & root tissues w/ lesions, severe rotting & reduction in roots

Root rot rating scale - soil bioassay w/ bean

Moderate

Host resistance – grafting

Grafting = fusing a scion (young shoot) onto a resistant rootstock

Can protect against several soilborne fungal, bacterial, viral and nematode pathogens

Figure 2. Details of the Grafting Process. Photo courtesy C. Rivard

Host resistance – grafting

Selecting rootstocks - need to have an accurate diagnosis!

Table 1. Rootstock and Disease Resistance

Destateska	TAAV	Corky	Fusarium Wilt		Verticillium	Root-knot	Bacterial	Southern	
KOOTSTOCKS		Root	Race 1	Race 2	Wilt	Nematode	Wilt	Blight	
Beaufort*	R	R	R	R	R	MR	S	HR	
Maxifort*	R	R	R	R	R	MR	S	HR	
TMZQ702**	R	S	R	R	R	R	MR	?	
Dai Honmei***	R	R	R	S	R	R	HR	?	
RST-04-105****	R	R	R	R	R	R	HR	MR	
Big Power****	R	R	R	R	R	R	S	HR	
Robusta*****	R	R	S	R	R	S	S	?	

HK=Highly Resistant

K=Resistant

WIK=Moderately Resistant

S=Susceptible

* = De 'Ruiter Seed Co.

** = Sakata Seed Co.

*** = Asahi Seed Co. **** = D Palmer Seed Co.

***** = Rijk Zwaan

***** = Bruinsma Seed Co.

ADAPTED FROM: RIVARD, C.L., 2010. GRAFTING FOR OPEN FIELD AND HIGH TUNNEL TOMATO PRODUCTION. PhD DISSERTATION. PG 171.

Management emphasizes...

➡ Purpose of seed treatments is...

- Eradicate seedborne pathogens or protect from seedborne pathogens
- ✓ Improve germination rates
- Easy handling and accuracy of planting (pelleting)

Physical seed treatments

- Hot-water seed treatment
- ✓ Bleach seed treatment (disinfest only)

Sally A. Miller Melanie L. Lewis Ivey

http://ohioline.osu.edu/hyg-fact/3000/pdf/3085.pdf

Physical seed treatments Biological seed treatments Kodiak (Bacillus subtilis; Bayer CropSciences) **Mycostop** (Streptomyces grieseoviridis, Verdera) **SoilGard** (*Gliocladium virens*, Certis) **Rootshield** (Trichoderma harzianum, BioWorks) Actinovate (Streptomyces lydicus, Natural Industries)

In general, research studies have yielded inconsistent results with use of these products.

Additional resources

http://web.pppmb.cals .cornell.edu/resource guide/

RESOURCE GUIDE FOR ORGANIC INSECT AND DISEASE MANAGEMENT

Brian Caldwell Northeast Organic Natwork

Emily Brown Rosen Organic Materials Review Institute

Eric Sidemen Maine Organic Farmers and Gardeners Association

Anthony Shelton, Entomology Cornel University/NVSAES

Christine Smart, Plant Pathology Comel University/NYSAES

Chemical seed treatments

										A 1990 1993 1993 1994 1997 1994 1997 1997	
+30	723	Active Ingredient									
	Crop	Thiram	Metalaxyl	Mefenoxam	Captan	Azoxystrobin	Bacillus subtillis	Fludioxonil	Trifloxystrobin + metalaxyl	Bacillus pumilus	
	Bean, snap	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	Beets	Х	Х	Х	Х			Х	Х	Х	TOT
	Carrots	Х	Х	Х				Х			and a second sec
	Cole crops	Х		х	х			Х			R
	Eggplant	Х		Х				х			202
	Peas	Х	Х	Х	Х		Х	Х	Х	Х	
	Pumpkins	Х		Х	Х			х			
RE	Tomato	X		Х				Х			
										V	=

2011 PA Veg Production Guide

Control of pocket rot on beets with different methods of Quadris application.

Organic in-furrow and soil treatments

ActinoGrow (Streptomyces lydicus; SipcamAdvan)

Actinovate (Streptomyces lydicus, Natural Industries)

Evidence of efficacy as a seed trt for damping-off caused by *Pythium* and *Rhizoctonia* spp. on tomato, pepper and lettuce.

Companion (Bacillus subtilis GB03, Growth Products, Ltd)

Contans (*Coniothyrium minitans*, SipcamAdvan)

Evidence of efficacy against Sclerotinia sclerotiorum.

MeloCon (*Paecilomyces lilacinus,* Certis)

Organic in-furrow and soil treatments

Mycostop (*Streptomyces grieseoviridis,* Verdera)

Procidic (Citric acid, Greenspire Global, Inc.)

Promax (Thyme oil, Bio Huma Netics, Inc.) Evidence of efficacy as a seed trt for damping-off caused by *Pythium* spp. and *Fusarium* spp. on cucurbits and tomato.

Rootshield (Trichoderma harzianum, BioWorks)

SafeStrike (Blend natural oils and surfactants; Greenspire Global, Inc.)

Organic in-furrow and soil treatments

Serenade Soil (Bacillus subtilis QST713, AgraQuest)

SoilGard (*Trichoderma virens,* Certis) Evidence of efficacy as a drench for damping-off caused by *Pythium* spp. on lettuce also Phytophthora blight on summer squash

Subtilis Biological Fungicide (Bacillus subtilis MBI600, Becker Underwood)

Tenet (Two *Trichoderma* spp., SipcamAdvan)

TerraClean (Hydrogen dioxide + Peracetic acid, BioSafe Systems) formerly ZeroTol

Chemical soil treatment

- Funigants general biocides that are injected and diffuse upward and laterally and usually require tarping or soil sealing
 - Efficacy is affected by temperature, rainfall, soil texture, etc.

Non-fumigant nematicides – more narrow spectrum of activity and move by percolation in water, active at lower doses and can be applied at planting

General management strategies

- Long-term practices should focus on alleviating soil constraints or barriers to crop production such as:
 - Poor aggregation and soil crusting
 - Soil compaction and poor drainage

Soil erosion, crusting, leaching, etc.

Soil compaction

Pests, diseases and weeds

Soil health concept

Emphasizes integrating and optimizing the biological, chemical and physical properties of soil as they affect farm profitability and environmental sustainability

A healthy soil has....

- Good soil tilth
- Sufficient depth
- Sufficient but not excess supply of nutrients
- Good soil drainage
 - Small population of plant pathogens and other pests
 - Low weed pressure

Large populations of non-pathogenic organisms

 Free of chemicals and toxins that may harm plants

Resistant to degradation

 Resilient when unfavorable conditions occur

Fred Magdoff Univ. of VT (personal communication)

Aspects of soil health

Inherent soil quality Results from natural soil forming processes and factors

Dynamic soil quality Changes due to human use and management

interaction

How do we measure soil health?

Aggregate stability
 Water infiltration rate
 H₂O holding capacity

- ✓ Pore size distribution
- ✓ Soil penetrometer resistance
- ✓ Soil texture / taxonomy

✓ Etc.

Physical Chemical Soil Health ance Biological

✓ % organic matter

- ✓ Cation exchange capacity
- ✓ Total carbon & nitogen
- ✓ Macronutrients
- ✓ Micronutrients
- ✓ Heavy metals, toxins
- ✓ Etc.

✓ pH

- \checkmark Disease suppressive capacity of the soil
- ✓ Specific pathogens (eg. pathogenic nematodes)
- Specific beneficials (eg. earthworms, mycorrhizal fungi, free-living nematodes)
- ✓ Rate of microbial N cycling ✓ Active carbon

✓ Decomposition rate
 ✓ Etc.

- ✓ Respiration
- ✓ DNA profiles

2011 Cornell Soil Health Test Indicators

Soil Indicator

Soil Process (function)

Soil texture and stone content	all				
Aggregate stability	aeration, infiltration, shallow rooting, crusting				
Available water capacity	plant-available water retention				
Soil strength (penetration)	rooting				
Organic matter content	energy C storage, water & nutrient retention				
Active carbon content	organic material to support biological function				
Potentially mineralizable nitrogen	ability to supply N				
Root health rating	soil-borne pathogen pressure				
рн	toxicity, nutrient availability				
Extractable P	P availability, environmental loss potential				
Extractable K	K availability				
Minor element content	micronutrient availability, elemental				

Cornell Soil Health Test Report

- Establish a baseline assessment
- Compare field(s) to benchmark
- Monitor impact of soil management practices
- Conduct on-farm side-by-side comparisons

Nan	ne of Farmer: Chazy Plots			Sample ID: E147	
Location:			Agent: Bob Schindelbeck, Cornell University		
field/Treatment: CH 14			Agent's Email: 0		
Fillage: 7-9 INCHES			Given Soil Texture: SILTY		
Cro	ps Grown: COG/COG/COG			Date Sampled: 4/25/2007	
	Indicators	Value	Rating	Constraint	
_	Aggregate Stability (%)	22	25	aeration, infiltration, rooting	
ICAI	Available Water Capacity (m/m)	0.18	63		
THY	Surface Hardness (psi)	107	78		
	Subsurface Hardness (psi)	400	13	Subsurface Pan/Deep Compaction	
BIOLOGICAL	Organic Matter (%)	2.1	14	energy storage, C sequestration, water retention	
	Active Carbon (ppm) [Permanganate Oxidizable]	462	21	Soil Biological Activity	
	Potentially Mineralizable Nitrogen (µgN/ gdwsoil/week)	2.0	0	N Supply Capacity	
	Root Health Rating (1-9)	2.3	88		
	*pH	8.3	0	Toxicity, Nutrient Availability (for crop specific guide, see CNAL report)	
MICAL	*Extractable Phosphorus (ppm) [Value <3.5 or >21.5 are downscored]	9.5	100		
CHE	*Extractable Potassium (ppm)	20	п	Plant K Availability	
	*Minor Elements		56		
	OVERALL QUALITY SCORE (OU	JT OF 100):	39.1	Very Low	
M	leasured Soil Textural Class:==> SAND (%):	silt loam 17.0	SILT (%):	: 77.0 CLAY (%): 6.0	
Loc	cation (GPS): Latitude=> 0 L	ongitude=	=> 0		

HEAT TH TEST DEPODT (COMPDEHENSIVE

* See Cornell Nutrient Analysis Laboratory report for recommendations

Linking indicators to management

- LOW AGGREGATE STABILITY: reduce tillage, shallow-rooted cover/sod crops, manure, compost
- LOW AVAILABLE WATER CAPACITY: add stable OM (compost); reduce tillage
- HIGH PENETROMETER READINGS: deep tillage/zone building, deep-rooted cover crops
- LOW ACTIVE CARBON: cover crops, sod rotation crops, manure, compost
- LOW POTENTIALLY MINERALIZABLE NITROGEN: add OM, leguminous cover/rotation crops
- HIGH BULK DENSITY: add OM through cover crops, perennial sod crops, manure, compost; limited soil loosening
- HIGH ROOT ROT RATING: proper rotation, cover crops

Effects of Cover Crops on Early Season Weed Suppression

Forage radish

Website

http://soilhealth.cals. cornell.edu

Department of Horticulture, 134A Plant Sciences Blog, Ithaca, NY 14553 USA, email: http://www.liadu/ @ Department of Horticulture, College of Agriculture and Life Sciences, Comell University [Index.html LAMP]

Additional resources

http://www.sare.or g/Learning-Center/Books

BUILDING SOILS FOR BETTER CROPS SUSTAINABLE SOIL MANAGEMENT

BY FRED MAGDOFF AND HAROLD VAN ES

Phytophthora Blight

- First line of defense = Keep Phytophthora out!
 - Don't dispose of culled plants or fruit in a vegetable field.
 - Clean equipment, tools and boots between fields.
 - Know where your irrigation water comes from – surface
 water vs wells.

If you already have Phytophthora....

- Avoid planting severely infested field or low areas of the field.
- Improve soil drainage deep ripping of subsoil, raised beds (not vining crops), avoid water pooling at base of plant, monitor irrigation, plant drives.

If you already have Phytophthora....

Moldboard plow???

Phytophthora blight and mustards

Caliente 199 mustard on Long Island, NY

- ✓ Drill or broadcast early spring or fall (10lb/A)
- ✓ 50 to 100lb N to increase mustard biomass
- Incorporate 5 to 6 weeks following flowering – flail chop then incorporate (cultipack) and seal soil

✓ Plant 2 weeks later

Phytophthora blight and mustards

2008 Trial on Long Island, NY by Meg McGrath

- ✓ 6 May Drilled mustard
- ✓ 7 July Chopped, rototilled, cultipacked, irrigated
- ✓ 23 July Seeded zucchini

If you already have Phytophthora....

Plant tolerant varieties

Variety	Tolerance			
Sweet Peppers	High	Moderate	None	
Intruder	X			
Paladin	X			
Aristotle		X		
Declaration		x		
Revolution		X		
Vanguard		x		
Karisma			X	
Red Knight			X	

Harder rinded pumpkins have a little tolerance.

If you already have Phytophthora....

- Crop rotation every year out of a susceptible host reduces the number of viable oospores
- Manage weed hosts such as American black nightshade, common purslane, Carolina geranium

If you already have Phytophthora....

 Rogue out infected plants when possible
 – the sooner the better!

> Infected plants in the field serve as an inoculum source for later in the season.

- If you already have Phytophthora....
 - Chemical fungicide options

Keep in mind *P. capsici* is a **highly variable**/ changeable pathogen (similar to *P. infestans*)

In NY, most fields had both mating types = oospores = genetic diversity

 Resistance to mefenoxam is very common in US.

- If you already have Phytophthora....
 - Chemical fungicide options
 - For crown and stem rot phase:
 - ✓ Ridomil Gold SL (mefenoxam, FRAC 4
 - ✓ MetaStar AG (metalaxyl, FRAC 4)
 - ✓ Ultra Flourish 2E (mefenoxam, FRAC 4)
 - 3 applications (at transplanting & 30-day intervals)
 - Applied through drip or banded
 - Don't use if mefenoxam resistance

- If you already have Phytophthora....
 - Chemical fungicide options
 For <u>aerial phase</u> SUPPRESSION only:
 - ✓ Presidio(fluopicolide, FRAC 43)
 - ✓ Revus (mandipropamid, FRAC 40)
 - ✓ Forum (dimethomorph, FRAC 40)
 - ✓ Ranman (cyazofamid, FRAC 21)
 - Ridomil Gold Copper (mefenoxam + copper, FRAC 4+M1)

✓ Fixed copper (FRAC M1)

White mold (Sclerotinia sclerotiorum)

- Soilborne pathogen with a wide host range (400+)
- Severity is highly dependent on favorable weather conditions for the pathogen....wet and 68-77°F

Snap bean, tomato, cabbage, carrot, cucurbits, soybean, sunflower, alliums...most

White mold (Sclerotinia spp.)

- Select fields with good air drainage avoid hedge rows, tree lines
- Avoid planting contaminated seed
- Avoid planting in heavily infested fields – extend rotations with non-host grain and corn crops
- If possible, select varieties that bloom evenly and have a short blossom period

– Maximize row spacing to facilitate good air flow and drying of foliage

- Optimize plant fertility over fertilization = lush dense canopy
- Manage weeds potential hosts and creates more favorable microclimate
- Minimize any injury to the crop
- Incorporate crop debris immediately following harvest – facilitates breakdown of sclerotia by microbes
- Apply well timed fungicide sprays at flowering and ensure good blossom coverage

Spray timing for white mold management

Two sprays are still recommended...

1st spray at 10 to 40% bloom

2nd spray 7 to 10 days later

How to determine % bloom?

Count the number of plants with 1⁺ open blossoms on 10 consecutive plants in 10 locations in the field and average the result.

2008 Snap Bean Fungicide Trial H. Dillard & A. Cobb, Cornell

Treatment, rate/A, Application timing ()	Gray m	old (%)	White m	nold (%)
Untreated control	3.9	а	24.3	а
Endura 70WDG, 8oz (A,B)	1.4	cd	5.6	cd
Endura 5 oz + Topsin M 4.5F, 20 fl oz (A,B)	1.6	cd	1.2	d
Rovral 4F, 2 pt (A,B)	1.9	cd	3.3	d
Rovral 1.5 pt + Bravo WS 3 pt (A,B)	1.7	cd	11.9	b
Rovral + Topsin M 14 fl oz (A,B)	1.3	cd	5.1	d
Topsin M 4.5F, 20 fl oz (A,B)	3.3	а	1.5	d
Bravo WS 3 pt + Topsin M 14 fl oz (A,B)	2.1	bc	4.6	d
Switch 62.5WG 12 fl oz (A,B)	1.9	bcd	12.1	b
Champion 3 lb + Endura 5oz (A,B)	1.1	cd	6.6	bcd
Quadris 6.2 fl oz + Topsin M 20 fl oz (A,B)	2.1	bc	2.8	d
Rovral + Headline 8 fl oz (A,B)	3.1	ab	11.4	bc

A = 32% bloom, 7 July **B** = 100% bloom + pins, 14 July 3 to 6% rejection threshold for pods with mold.

Coniothyrium minitans

- Mycoparasite of Sclerotinia spp.
- Commercially formulated and available as Contans WG (distributed by Advan LLC)
- Sold as conidia (spores) that are dried and mixed with glucose
- Product is mixed with water and sprayed on the

Coniothyrium minitans

- Applied in fall just after harvest (1 lb/A) or in spring (2 lb/A) 2 to 3 months before snap bean flowering (excellent coverage required).
- Product is incorporated into the top 1 or 2 inches of the soil....care must be taken to not disturb the soil and expose buried sclerotia.

Does not readily persist in the solution solution to the solution solution the absence of sclerotia.

Sclerotia initials on bean stem colonized by *C. minitans*. (Gerlah et al. Phytopath. 1999) Identification, Assessment and Management of Soilborne Plant Pathogens in Vegetable Production Systems

Questions on the management of soilborne pathogens and diseases?

George S. Abawi

Department of Plant Pathology and Plant-Microbe Biology Cornell University

James A. LaMondia

The Connecticut Agricultural Experiment Station

