# 

# **Can Grazing Selectivity Reduce Fatty Acid Intake Declines in Maturing Annual Forages?** Caleb Goossen<sup>1</sup>, Sidney Bosworth<sup>1</sup>, Jana Kraft<sup>2</sup>

<sup>1</sup>Department of Plant and Soil Sciences and <sup>2</sup>Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT

# This study evaluates the fatty acid decline in annual forages, and their constituent components, as they mature.

### Introduction

- Maximizing grazing availability is important to all organic dairy farmers, and particularly for grain-free "grassmilk" producers.
- Many producers in the Northeast are utilizing annual forage crops to provide supplemental grazing when perennial pasture is less productive (e.g., early spring, mid-summer).
- Cool season perennial forage species are known to diminish in content of fatty acids (FA), particularly alpha-linolenic acid (ALA) as they mature, (Glasser *et al.*, 2013)
- Annual forages are known to quickly diminish in nutritive quality as they



### **Results, continued** Table 1 Rye nutritive quality, sampled at 5 cm NDFD48 Crude Sugars Height dNDF48 Day of (g kg⁻¹ of Protein (g kg<sup>-1</sup> of Component $|(g kg^{-1} of DM)|(g kg^{-1} of DM)|$ (*cm*) grazing (g kg⁻¹of DM) DM) NDF) **Entire plant** 796 136 452 360 164 Day 1 204 Leaf 36.7% 40 354 440 805 124 5/12/16 Stem 63.3% 96 790 459 363 186 750 **Entire plant** 127 514 384 147 Day 5 Leaf 28.8% 57 204 376 472 798 103 5/18/16 Stem 71.2% 729 95 387 531 164

mature, as well as in content of ALA (unpublished data).

- ALA from forage is a key feedstock to, and driver of, the milk FA profile important to the marketing of "grassmilk".
- This study aimed to evaluate the reductions in FA content and nutritional quality of cool season and warm season annual forages of increasing maturity, in regards to both pseudostem and leaf blade fractions, and their summation on a whole plant basis.

## Method

- Overwintered cereal rye (Secale cereale) and June planted pearl millet (*Pennisetum glaucum*) were sampled over the course of 9 and 19 days of grazing, respectively.
- Rye was harvested at 5 cm height and pearl millet at 15 cm height. All samples were divided to "leaf" (lamina) and "pseudostem" ("stem"; petiole + culm) components.
  - Pearl millet pseudostem portion from 1<sup>st</sup> sampling was composited across replications by necessity





| Day 9<br>5/24/16 | 92 | Entire plant | 82  | 627 | 410 | 657 | 122 |
|------------------|----|--------------|-----|-----|-----|-----|-----|
|                  |    | Leaf 15.5%   | 180 | 517 | 391 | 758 | 99  |
|                  |    | Stem 84.5%   | 65  | 647 | 414 | 639 | 127 |

## **Table 2** Pearl millet nutritive quality, sampled at 15 cm

| Day of<br>grazing | <b>Height</b><br>(cm) | Component    | Crude<br>Protein<br>(g kg <sup>-1</sup> of DM) | <b>NDF</b><br>(g kg⁻¹ of DM) | <b>dNDF48</b><br>(g kg⁻¹ of DM) | <b>NDFD48</b><br>(g kg⁻¹ of<br>NDF) | Sugars<br>(g kg⁻¹ of<br>DM) |
|-------------------|-----------------------|--------------|------------------------------------------------|------------------------------|---------------------------------|-------------------------------------|-----------------------------|
| Day 1<br>7/18/16  | 54                    | Entire plant | 184                                            | 573                          | 409                             | 715                                 | 60                          |
|                   |                       | Leaf 95.5%   | 188                                            | 570                          | 407                             | 715                                 | 59                          |
|                   |                       | Stem 4.5%    | 80                                             | 635                          | 446                             | 702                                 | 78                          |
| Day 4<br>7/21/16  | 74                    | Entire plant | 164                                            | 569                          | 393                             | 691                                 | 75                          |
|                   |                       | Leaf 86.7%   | 175                                            | 563                          | 390                             | 693                                 | 74                          |
|                   |                       | Stem 13.3%   | 93                                             | 608                          | 413                             | 679                                 | 79                          |
| Day 9<br>7/26/16  | 107                   | Entire plant | 171                                            | 620                          | 405                             | 656                                 | 48                          |
|                   |                       | Leaf 75%     | 190                                            | 601                          | 401                             | 667                                 | 47                          |
|                   |                       | Stem 25%     | 114                                            | 675                          | 419                             | 621                                 | 50                          |
| Day 12<br>7/29/16 | 117                   | Entire plant | 147                                            | 641                          | 418                             | 655                                 | 43                          |
|                   |                       | Leaf 68.8%   | 175                                            | 613                          | 413                             | 673                                 | 42                          |
|                   |                       | Stem 31.2%   | 86                                             | 702                          | 432                             | 615                                 | 46                          |
| Day 15<br>8/1/16  | 133                   | Entire plant | 120                                            | 667                          | 438                             | 658                                 | 62                          |
|                   |                       | Leaf 62%     | 150                                            | 634                          | 425                             | 671                                 | 58                          |
|                   |                       | Stem 38%     | 71                                             | 722                          | 459                             | 636                                 | 67                          |
| Day 19<br>8/5/16  | 139                   | Entire plant | 90                                             | 693                          | 443                             | 639                                 | 74                          |
|                   |                       | Leaf 43%     | 144                                            | 645                          | 421                             | 653                                 | 58                          |
|                   |                       | Stem 57%     | 49                                             | 730                          | 459                             | 629                                 | 87                          |

![](_page_0_Picture_23.jpeg)

Forage nutritive quality was determined from near-infrared reflectance spectroscopy (NIRS) and FA determined by gas-liquid chromatography of fatty acid methyl esters.

Milk/hectare and milk/tonne forage DM) calculated using the MILK spreadsheet (Schwab and Shaver, 2001; Undersander, 1993).

### Results

- Nutritive quality and FA content declined with advancing maturity on an entire plant basis.
- The proportion of ALA in leaf and pseudostem components remained largely stable.
- On an entire plant basis, decreases in ALA proportion relative to total FA content

### Conclusions

- Whole plant analysis may underestimate the quality and fatty acid content that is actually consumed from grazed annual forages.
- Management that allows for grazing selectivity may ameliorate some of the quality decline of maturing annual forages, as well as the content of fatty acids, particularly ALA, by maintaining a steady leaf intake relative to pseudostem.
- Quality decreases associated with later maturity are resultant from both declines in the nutritive quality of stem and leaf components, and a greater amount of pseudostem material relative to the total.

![](_page_0_Picture_34.jpeg)

### was due primarily to the increase of pseudostem dry matter yield as the plants matured, for both species.

The dry matter yield, nutritive quality , and fatty acid content of leaf components changed minimally over the span of the grazing cycle.

Sugar content of pearl millet pseudostem components appears to have been influenced by both maturity stage, and time of harvest (time data not shown)