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Abstract: The introduction of rhizoma peanut (RP Arachis glabrata Benth) into bahiagrass (Paspalum
notatum Flüggé) may require time to develop stable plant–soil microbe interactions as the microbial
legacy of the previous plant community may be long-lasting. A previous study showed that <2 years
of introducing rhizoma peanut into bahiagrass pastures minimally affected soil bacterial diversity and
community composition. In this study, we compared the effects of the long-term inclusion of rhizoma
peanut (>8 years) into bahiagrass on soil bacterial diversity and community composition against
their monocultures at 0 to 15 and 15 to 30 cm soil depths using next-generation sequencing to target
bacterial 16S V3–V4 regions. We observed that a well-established RP–bahiagrass mixed stand led to a
36% increase in bacterial alpha diversity compared to the bahiagrass monoculture. There was a shift
from a soil bacterial community dominated by Proteobacteria (~26%) reported in other bahiagrass
and rhizoma peanut studies to a soil bacterial community dominated by Firmicutes (39%) in our
study. The relative abundance of the bacterial genus Crossiella, known for its antimicrobial traits, was
enhanced in the presence of RP. Differences in soil bacterial diversity and community composition
were substantial between 0 to 15 and 15 to 30 cm soil layers, with N2-fixing bacteria belonging to
the phylum Proteobacteria concentrated in 0 to 15 cm. Introducing RP into bahiagrass pastures is a
highly sustainable alternative to mineral N fertilizer inputs. Our results provide evidence that this
system also promotes greater soil microbial diversity and is associated with unique taxa that require
further study to better understand their contributions to healthy pastures.

Keywords: rhizoma peanut; bahiagrass; alpha diversity; beta diversity; N fixing bacteria

1. Introduction

The integration of legumes into grasslands has gained renewed attention due to
their potential to lower nitrogen (N) fertilizer inputs, improve soil health, enhance nutrient
cycling, and minimize environmental damage associated with the excessive use of inorganic
N fertilizer [1–3]. Rhizoma peanut (Arachis glabrata Benth.; RP) is a tropical perennial
legume well adapted to pasture systems in the southeastern United States. It persists
under grazing [4]. Extensive research has been conducted on the agronomic and livestock
benefits of introducing RP into bahiagrass (Paspalum notatum Flüggé) pastures, a major
warm-season perennial grass also adapted to the southeastern United States [4–8]. When
compared to bahiagrass receiving N fertilizer, RP inclusion into a pasture elevates forage
nutritive value and animal performance [5–7].

Likewise, desirable soil microbial associations with RP have also been observed [9–12].
For example, the presence of RP in bahiagrass systems was associated with increases in soil
microbial diversity and the relative abundance of soil microbes with potential N2-fixing and
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cycling abilities, such as Bradyrhizobium and members of the Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium clade [10,11]. Plants influence soil microbial communities mainly
through rhizodeposition and plant litter accumulation [13]. The impacts of plants on
soil microbes are dynamic, with outcomes that are likely to change as plant growth and
development progresses [14,15]. Kulmatiski and Beard [16] demonstrated that plants
require several years to assemble soil microbial communities and that the development
of plant–soil–microbe feedback should be viewed in a longer-term context in perennial
plant systems. Hannula et al. [17] reported that soil microbiomes are reversible and plant–
soil–microbe feedback characteristics at an early plant development stage can change with
time. In a recent study, we observed that the bacterial alpha and beta diversities and the
relative abundance of individual taxa within the first two years of RP integration into an
existing bahiagrass system were not different from those in bahiagrass monoculture [12].
Rhizoma peanut establishment is achieved through the vegetative propagation of rhizomes
and requires two to three years for stands to fully establish [18,19]. As a result, this longer
establishment period likely delays RP impacts on soil microbial communities.

Many microbial studies on RP have targeted the upper 10 to 15 cm soil depth [9–12].
The surface soil likely harbors greater microbial density because of greater root densities
and plant litter accumulation, which also results in greater soil carbon [20–22]. Microbial
diversity has been linked to the sustainability and productivity of grasslands by enhancing
ecosystem services such as nutrient cycling [23,24]. Microbial diversity and community
composition have differed between 0 to 15 and 15 to 30 cm, showing the differentiation
of these microbial communities between these layers [20,22]. In this study, we compared
the bacterial diversity and community composition in bahiagrass–RP mixtures versus
their monocultures at two soil depths. We hypothesized that compared to bahiagrass
monoculture, a well-established bahiagrass–RP mixed stand will result in greater bacterial
diversity and increase the relative abundance of key soil bacterial taxa, especially near
the surface soil (0 to 15 cm depth). Our objectives were to determine the longer-term
(>8 years) impact of RP introduction into bahiagrass on soil bacterial diversity and com-
munity composition at two soil depths (0 to 15 and 15 to 30 cm). Overall, our results will
provide valuable insights into the bacterial groups and the potential functions promoted
by RP establishment in bahiagrass stands.

2. Materials and Methods
2.1. Experimental Site

The study was conducted in 2020 at the University of Florida, North Florida Research
and Education Center, Quincy, Florida (30◦33′ N, 84◦36′ W). The soil was classified as
Orangeburg loamy sand series (fine-loamy, kaolinitic, thermic Typic Kandiudults) [25].
The average temperature in 2020 was 20.0 ◦C (6.7 and 31.7 ◦C min/max, respectively).
Annual rainfall was 1781 mm in 2020 compared to the 30-year average of 1519 mm [26].
The experimental site was initiated in 2011 and consisted of eight treatments, including
two bahiagrass entries, two RP entries, and their mixtures, arranged in a randomized
complete block design with three replicates. Detailed information on site establishment
and management through 2017 is reported by Santos et al. [6] and Santos et al. [27]. In this
study, only three of the existing forage treatments, Ecoturf RP (Eco), Argentine bahiagrass
(Arg), and their binary mixtures (Arg-Eco), were sampled. Each plot measured 9 m2 with
1.2 m-wide alleys between plots. The average soil fertility of the soil samples collected
from each plot was measured as follows for 0–15 cm and 15–30 soil depths: pH (2:1 water:
soil) = 5.9 and 5.8, total soil carbon = 12 and 6 g kg−1, CEC = 4.6 and 3.4 cmol+ kg−1,
Mehlich-3 extractable P, K, and Mg of 28 and 16, 76 and 49, and 79 and 44 mg kg−1. In 2019,
there was a rotary cut in each plot at the end of the growing season. In March 2020, the
RP monoculture plots were staged in March and treated for winter weeds in April 2020.
Imazapic was applied at a rate of 291 mL ha−1 (0.07 kg a.i. ha−1), and Clethodim was
applied ten days later at a rate of 877 mL ha−1 (0.21 kg a.i. ha−1). The grass monoculture
and binary mixture treatments were mowed but not treated with herbicides.



Microorganisms 2023, 11, 3002 3 of 11

2.2. Soil Sampling and Analysis

Soil samples (combined bulk and rhizosphere) were collected in July 2020 using
a hydraulic soil coring probe (Giddings Machine Company, Windsor, CO, USA). Four
soil cores (4.4 cm dia.) were collected from two soil depths (0 to 15 and 15 to 30 cm)
per plot and composited. Subsamples were placed in 15 mL centrifuge tubes, frozen at
−80 ◦C for 48 h, freeze-dried for 24 h and stored at −80 ◦C until DNA extraction. Genomic
DNA was extracted from soil samples following the DNeasy PowerSoil extraction kit
instructions (Qiagen, Hilden, Germany). DNA quantity and quality were measured using
NanoDropTM One (Thermo Scientific, USA) based on the absorbance ratios (A260/A280
and A260/A230). Bacterial 16S rRNA gene V3–V4 regions were amplified using primer
pairs 341F/806R [28]. Amplicon libraries were prepared using two PCR amplification
steps described by Chen et al. [29] and using a Labnet MultiGene Optimax Thermal Cycler
(Labnet International Inc., Edison, NJ, USA). At the second PCR stage, barcode tags unique
to individual samples were tagged to the tail of the reverse primer. PCR products from
the first and second steps were purified using AMPure XP beads (Beckman Coulter, Inc.,
Indianapolis, IN, USA) following the manufacturer’s instructions and observed on 1%
agarose gels. Generated amplicon libraries were pooled at 20 ng/µL and sent to Duke
Center for Genomic and Computational Biology (GCB) for Illumina MiSeq sequencing
(v3 300 bp, 13 Gb) and paired-end reads were generated.

2.3. Bioinformatic and Statistical Analysis

The prokaryotic 16S rRNA gene sequences were processed in QIIME2 [30]. Primers
were removed using cutadapt version 3.4 in QIIME2 version 2021.4 [30]. DADA2 was used
for quality filtering and removal of chimeric sequences. Sequences at 100% similarity were
assigned to the same amplicon sequence variant (ASV). Silva 138.1 database (version 2020)
was used to assign taxonomic information. Singletons, unassigned, and reads that were
classified as mitochondria and chloroplast were removed.

The ASV table (100% sequence similarity) was rarefied at 5000 sequencing depth
and used for alpha and beta diversity. Alpha diversity indices were measured in QIIME2
using the Shannon index and observed features and analyzed using linear mixed model
in R version 4.2.1 [31]. Forage treatment and soil depths were considered fixed effects
and block was used as the random effect. When the main effect of forage treatment was
significant, pairwise comparisons were carried out using Tukey’s post hoc test. In addition
to graphical observations, Shapiro–Wilk’s test was used to assess the normal distribution
of the residuals of our variables, and Bartlett’s test was used to determine the equality of
variance. Beta diversity was estimated using the Bray–Curtis dissimilarity-based principal
coordinates analysis with the vegdist function in vegan package. A test for homogeneity of
multivariate dispersions (PERMDISP) within treatments was conducted [32] using 9999 per-
mutations. PERMDISP was performed using the betadisper function in the vegan version
2.6-4 [33], and homogenous dispersion was observed within treatments. Dissimilarities of
soil bacterial community composition in response to forage treatments, soil depth, and their
interaction were tested using nonparametric permutational multivariate ANOVA [34] using
9999 permutations with the Adonis function in the vegan package. Pairwise comparisons
were made for significant main effect of forage treatment using ADONIS.

3. Results
3.1. Soil Bacterial Community Composition

Across all forage treatments and soil depths, dominant phyla included Firmicutes
(39 ± 4.3%), Proteobacteria (25 ± 2.3%), Actinobacteriota (15 ± 1.5%), and Acidobacteriota
(7 ± 0.6%). Phyla representing <5% relative abundance included Chloroflexi (3.1 ± 0.7%),
Verrucomicrobiota (2.9 ± 0.3%), Planctomycetota (2.0 ± 0.3%), and Gemmatimonadota
(1.4 ± 0.2%), and Myxococcota (1.0 ± 0.1) (Figure 1). Unassigned and rare (<0.5%) phyla
accounted for 1.8 ± 1.1% of all sequences. Approximately 76% of total sequences were
assigned at the genus level. Bacillus (27.1 ± 3.0; Firmicutes), Rhodoplanes (8.9 ± 1.0; Pro-
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teobacteria), Tumebacillus (3.2 ± 0.8; Firmicutes), Paenibacillus (3.1 ± 0.7; Firmicutes), and
Massilia (3.0 ± 0.7; Proteobacteria) were among the major bacterial genera, with Bacillus
and Rhodoplanes accounting for 36% of the total bacterial genera.

Figure 1. Relative abundance (>1%) of major bacterial phyla under three forage treatments (Arg,
Arg-Eco, and Eco) at two soil depths (0 to 15 and 15 to 30 cm).

3.2. Soil Bacterial Diversity in Response to Forage Treatment and Soil Depth

There were no significant two-way interactions between forage treatment and soil
depth on bacterial alpha diversity measured in terms of the observed features or Shannon
diversity index, but forage treatment and soil depth significantly (p < 0.05) affected bacterial
alpha diversity (Table 1). Among all forage treatments, Ecoturf RP (Eco) and Arg-Eco
mixture exhibited greater bacterial alpha diversity than bahiagrass monoculture (Arg).
Observed features and Shannon diversity were 20 and 6%, respectively, greater in 0 to
15 cm than in 15 to 30 cm.

Bacterial beta diversity showed that soil bacterial community composition was sig-
nificantly (p < 0.05) affected by forage treatment, soil depth, and their interaction (Table 2;
Figure S1). At the 0 to 15 cm soil depth, soil bacterial community composition was distinct
within each forage treatment. However, at 15 to 30 cm soil depth, soil bacterial community
composition in Eco was dissimilar from those in the mixture (Arg-Eco) and bahiagrass
monoculture (Arg) (Figure S1). Both Arg and Arg-Eco plots had overlapping soil bacte-
rial communities. Soil depth explained 28% of the variation in soil bacterial community
composition compared to 14% explained by forage treatment (Table 2).
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Table 1. Bacterial alpha diversity indices (observed features and Shannon diversity) under three
forage treatments and two soil depths.

Observed Features Shannon Diversity

Forage treatment (FT)

Arg 353 c 7.3 c
Arg-Eco 481 b 7.8 b

Eco 508 a 8.1 a

Soil depth (D)

0 to 15 486 A 8.0 A
15 to 30 408 B 7.5 B

Source of variation p values 1

FT 0.024 * 0.046 *
D 0.047 * 0.049 *

FT × D 0.439 0.643
1 p values from ANOVA table showing the effect of forage treatment, soil depth, and their interactions on bacteria
alpha diversity. * indicate significance at p < 0.05. Pairwise comparisons were conducted using Tukey’s analysis.
Lowercase letters show significant differences among forage treatments and uppercase letters show significant
differences between soil depths.

Table 2. PERMANOVA partitioning and analysis of forage treatment (FT), soil depth (D), and their
interactions (FT × D) based on Bray–Curtis dissimilarities of amplicon sequence variant counts.

Source of Variation Df MS Pseudo F R2 p

FT 2 0.271 1.822 0.14 0.024 *
D 1 1.097 7.362 0.28 <0.001 ***

FT × D 2 0.244 1.402 0.12 0.047 *
* and *** show significance at p < 0.05 and <0.0001, respectively.

3.3. Core Microbiome and Soil Bacterial Biomarkers

Core microbiomes were identified based on the presence of the ASVs in 50% of the
samples across forage treatments and soil depths. Amplicon sequence variants identi-
fied at genus level included Bacillus (Firmicutes, 27.1 ± 2.9%), Rhodoplanes (Proteobac-
teria, 8.9 ± 1.0%), Tumebacillus (Firmicutes, 3.3 ± 0.8%), Bradyrhizobium (Proteobacteria,
2.2 ± 0.3%), Candidatus Udaeobacter (Verrucomicrobiota, 2.3 ± 1.0%), and Streptomyces
(Actinobacteriota, 2.1 ± 0.8%) (Figure S2). Effects of forage treatment, soil depth, and their
interaction were determined on the relative abundances of the core microbiome (Table S1).
Crossiella and Phenylobacterium were influenced by forage treatment (Figure S3A). Crossiella
was greater in Eco than Arg and Arg-Eco, while Phenylobacterium was enhanced in plots
containing RP (Eco and Arg-Eco). Bradyrhizobium, Crossiella, Lysinibacillus, Paenibacillus,
Rhodanobacter, Sphingomonas, and Subgroup_2 (Phylum: Actinobacteria) were affected by
soil depth (Table S1). Bradyrhizobium, Lysinibacillus, and Sphingomonas were enriched in 0 to
15 cm soil depth and others were dominant in 15 to 30 cm soil depth (Figure S3B). Only
Tumebacillus was affected by the interaction of forage treatment and soil depth (Table S1),
where Eco demonstrated a greater relative abundance than the mixture, followed by Arg
(Figure S3C).

Lefse analysis detected two abundant bacterial genera within each forage treatment,
with Lachnoclostridium and Anaerocolumna (Firmicutes) identified in Eco, Massilia (Proteobac-
teria) and Leifsonia (Actinobacteriota) in Arg-Eco, and Arthrobacter (Actinobacteriota) and
Terribacillus (Firmicutes) in Arg (Figure 2A). Fourteen bacterial genera were identified across
soil depths, with six in 0 to 15 cm and eight in 15 to 30 cm (Figure 2B). Apart from Kribbella
(Actinobacteriota), bacterial genera belonging to Proteobacteria were mainly present at
the 0 to 15 cm soil depth and included Skermanella, Mesorhizobium, Phyllobacterium, Inquili-
naceae, and Methylorubrum. Bacterial genera identified at 15 to 30 cm soil depth were a
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mixture of phyla Actinobacteriota (Nonomuraea, Oryzihumus, and Streptacidiphilus), Firmi-
cutes (Fictibacillus, Thermoactinomyces, and Turicibacter), and Proteobacteria (Nevskia and
Pseudoduganella).

Figure 2. Differential abundant bacterial genera among (A) forage treatments and (B) soil depths
based on Lefse analysis. Differences in abundance among forage species (A) and soil depth
(B) are coded by color (see legends). The linear discriminant analysis effect size (LEfSe) of
microbial communities with LDA scores greater than 2.0 was considered.

4. Discussion
4.1. Soil Bacterial Diversity and Community Response

Legumes incorporated into grasslands often enhance soil bacterial diversity and
community composition directly through the supply of N from biological N2 fixation
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and the release of N-rich root exudates and plant litter [13,35,36]. Increased microbial
diversity in agroecosystems has been linked to increases in ecosystem services, such as
nutrient cycling and nutrient availability [24,37], as well as resilience to environmental
disturbances [38,39]. In support of our hypothesis, the long-term (>8 years) incorporation
of RP into a bahiagrass system enhanced soil bacterial diversity and the relative abundance
of core bacterial taxa. This result is in contrast to a previous study [12], where <2 years
of RP establishment in an existing bahiagrass system did not alter soil microbial diversity
relative to the bahiagrass monoculture. Prior existing plant communities can have a strong
effect on soil community composition. However, the association between introduced plant
species and soil bacteria may change over time within the same ecosystem as plant growth
and development advances [40,41]. Schmid et al. [15] showed that the effect of old/existing
grassland communities on soil microbial communities prior to the reassembling of new
plant communities may still be identifiable after 4 years. The authors elaborated that the
impact of a plant community on soil communities is a gradual process and requires more
time to fully develop. In comparison, Hannula et al. [17] discovered that the influence of
prior existing Poaceae and Asteraceae species on soil bacterial communities faded quickly
with the introduction of new Poaceae and Asteraceae species.

Ecoturf RP and its mixture with bahiagrass had greater bacterial alpha diversity than
bahiagrass monoculture. Factors such as soil properties and environmental conditions
can drive microbial community structure in agricultural systems. However, plant species
with divergent above and belowground properties also can exert a strong selective effect
on soil bacterial communities [13,35]. For example, a concurrent study showed that RP
root + rhizomes biomass and N concentrations were greater than bahiagrass root + rhi-
zomes [42]. Furthermore, we found a 71% increase in rhizoma peanut root + rhizome
biomass from 2015/2016 [43] to 2020 [42] on the same study site with greater annual rain-
fall in 2016 and similar temperature across study years. Often, perennial plants tend to
accumulate belowground biomass over several years.

Interestingly, the bacterial community shifted from being dominated by Proteobacteria,
as reported in other RP studies [10–12,44], to Firmicutes in our study. Reasons for the shift
are not well understood, but Firmicutes have been reported in older, stable agroecosys-
tems [45]. Different plant species have been linked to unique microbial taxa due to differ-
ences in plant litter quality and root exudate composition [36,44]. Guerra et al. [10] showed
that Bryobacter, which is associated more with abundant C substrates, dominated a bahia-
grass system, while RP had a greater relative abundance of Crossiella. Similarly, in our study,
the relative abundance of Crossiella was enhanced under Ecoturf RP plots. Crossiella has been
documented to have antimicrobial properties that can inhibit soil-borne pathogens [46].
Crossiella might provide an indirect defense mechanism against pathogens [46,47]. In
our study, we observed that bacterial taxa capable of metabolizing a wide range of plant
polysaccharides were found in bahiagrass and Ecoturf RP plots. For example, in Ecoturf
RP plots, anaerobic, spore-forming bacteria, Anaerocolumna and Lachnoclostridium were
identified. These require amino acids/peptides as a source of N for the decomposition of
plant materials [48,49]. In comparison, the bahiagrass plots contained non-spore-forming
and siderophore-producing Arthrobacter and aerobic Terribacillus, [50,51] known to utilize
different organic compounds and thought to be involved in the transformation of soil
organic matter [52].

4.2. Soil Depth Influences Variation in Soil Microbial Communities

Soil depth had a noticeable influence in shaping soil bacterial communities, as evident
in the 28% variation of soil bacterial communities explained by soil depth. The impact of
soil depth on soil bacterial communities has been attributed to changes in plant root systems
and soil physicochemical properties, including soil C, soil moisture, and soil temperature,
within soil depths [22,53]. Soil bacterial alpha diversity between 0 to 15 and 15 to 30 cm
soil depths showed that 0 to 15 cm had greater bacterial diversity. It is well-established
that microbial diversity is greater in the surface soil due to greater accumulation of organic
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matter inputs [20–22]. Guerra [42] reported that most of the total root length and root mass
density observed for Argentine bahiagrass and Ecoturf RP was in the surface 0 to 15 cm.
Rhizodeposits and root and rhizome litter provide soil carbon and nutrient resources for
soil microbes, thereby likely creating niche differentiation for soil bacteria [20,53].

We found that members of the phylum Proteobacteria were enriched in the 0 to 15 cm.
Interestingly, most of the bacterial genera were potential N2 fixers, including members of
Bradyrhizobium, Skermanella, and Mesorhizobium. The concentration of N2-fixing bacteria
in the surface soil, compared to 15 to 30 cm depth, might be related to a greater presence
of roots/nodules and soil C [54,55]. Bacterial genera differentially selected at the 15 to
30 cm soil depth were a mixture of phyla with diverse putative functions, such as N2
fixation and P solubilization (Paenibacillus; Firmicutes) [56], denitrification (Rhodanobacter;
Proteobacteria) [57], biodegradation (Fictibacillus; Firmicutes) [58], and release of plant
beneficial metabolites (Nonomuraea; Actinobacteriota) [59]. This diversity in bacterial genera
and their functions highlights the complex and dynamic interactions within bahiagrass–
RP mixture, emphasizing the need for further research to unravel soil bacteria roles and
contributions in pasture production.

5. Conclusions

In this study, we found increases in soil bacterial diversity and shifts in community
composition in response to the long-term integration of RP into the bahiagrass system.
There was a shift in previously reported Proteobacteria-dominated early establishment
systems to a Firmicute-dominated system in our study. Substantial microbial differentiation
was observed between 0 to 15 and 15 to 30 cm, with N2-fixing bacteria belonging to the
phylum Proteobacteria dominating surface soil (0 to 15 cm depth). A mixture of bacterial
phyla with diverse plant-promoting abilities was enriched in the 15 to 30 cm soil. Well-
established (several years) RP in bahiagrass pastures increases soil bacterial diversity and
enhance soil microbial taxa that have the potential to improve plant litter decomposition
and suppress plant pathogens present in soil. However, further study is needed to better
understand the roles of these soil bacterial taxa in maintaining efficient and healthy pastures.
Our findings demonstrate the importance establishment time for perennial forages has in
shaping soil microbial community composition. This study, however, only reports data
from one time-point; there is a need to conduct more studies across different time points
and to consider more long-term studies to understand the interactions within soil microbial
communities in perennial forage systems.
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microbiome; Table S1: ANOVA table showing the effect of forage treatment (FT), soil depth (D), and
their interactions (FT × D) on the relative abundance of core soil microbiome at the genus level.
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