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Chapter 1: Pasture and forage-based rotations are associated with greater biological 
indicators of soil health than annual cropping systems  
 
Abstract 

Opportunities to build soil health vary across cropping systems due to differences in crop 

rotation, carbon inputs and integration of livestock. The objective of this study was to 

evaluate how biological indicators of soil health compare across four common Wisconsin 

cropping systems: annual rotations with synthetic fertilizer inputs, annual rotations with 

manure applications, forage-based rotations that include a perennial legume or grass, and 

grazed pastures. Data (n=630) were compiled from three recent Wisconsin soil health 

assessments that analyzed soil organic matter (SOM), permanganate oxidizable carbon 

(POXC), autoclave citrate extractable protein (ACE), mineralizable carbon (MinC), and 

anaerobic potentially mineralizable nitrogen (PMN) in the top 15cm of the soil profile. In 

order of increasing values of soil health, systems typically ranked: annual rotations, annual 

rotations with manure, forage-based rotations, and pasture. SOM, ACE, MinC and PMN were 

greater in pastures compared to all other cropping systems and POXC was greater in pastures 

and forage-based rotations compared to annual systems. Additionally, POXC, MinC and 

PMN were greater in forage-based rotations compared to annual cropping systems, whereas 

SOM and ACE were not. POXC and MinC were the only measures that were greater in 

annual systems with manure, compared to those without. This study demonstrated that 

systems that incorporate perenniality and manure inputs were associated with greater 

biological indicators of soil health compared to annual cropping systems.  
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1. Introduction 

Improving soil health in agricultural systems has been a central focus for farmers, 

agricultural and conservation professionals, and researchers. The definition of soil health as 

“the continued capacity of a soil to function as a vital living ecosystem that sustains plants, 

animals and humans” (Natural Resource Conservation Service; “NRCS”), becomes more 

complex when considering how best to apply it to the land. Five guiding principles have been 

identified to build healthier soil within agricultural systems: 1) minimize soil disturbance, 2) 

maximize biodiversity, 3) maximize soil cover, 4) maintain year-round living roots, and 5) 

integrate livestock (Franzluebbers et al., 2012; Karlen et al., 2019; Lehmann et al., 2020; 

Moebius-Clune, 2016; NRCS; Norris et al., 2020; Stott et al., 2021). Integrating livestock, 

which may include manure applications, growing forage crops, or grazing, is a recent addition 

to the soil health principles as a way to recouple plant and animal management for tighter 

nutrient cycling (Franzluebbers et al., 2012; Magdoff & van Es, 2021). 

Opportunities to integrate these guiding principles vary by cropping systems, 

increasing from annual rotations to forage-based rotations, to pasture systems (Table 1.1). 

Grazed, perennial pastures inherently apply all five key soil health principles. Forage-based 

rotations that include a perennial crop have the benefit of living roots, reduced soil 

disturbance, and greater soil cover during that portion of the crop rotation, and typically 

receive manure inputs. Comparatively, annual rotations require intentional management 

decisions to integrate soil health principles into the cropping system. Building healthier soil in 

annual cropping systems can come from reduced tillage, residue management, cover cropping 

and manure use, which are most effective when applied together to the landscape (Culman et 

al., 2013; Morrow et al., 2016; Nunes et al., 2018; Nunes, Karlen, et al., 2020; Sprunger et al., 
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2020). To assess if integrating these principles amounts to measurable impacts to soil health 

and agronomic or environmental benefits, measuring soil health is a valuable tool to monitor 

changes over time. 

Soil health indicators include simple measurements of soil biology, such as labile 

carbon (C) and nitrogen (N) pools, as well as C and N mineralization. Measurements of labile 

soil C and N reflect not only active C and N and potential nutrient availability, but also 

microbial activity, thus serving as biological indicators of soil health. To track changes in soil 

health, promoted measures of labile C and N include: permanganate oxidizable C (POXC), 

autoclave citrate extractable protein (ACE), mineralizable carbon (MinC) and anaerobic 

potentially mineralizable nitrogen (PMN) (Culman et al., 2012; Drinkwater et al., 1996; 

Franzluebbers et al., 2000; Hurisso et al., 2018). These measurements are evidence based, 

logistically feasible, cost effective, responsive to management, and agronomically valuable, 

underscoring their potential as soil health indicators (Amsili et al., 2021; Culman et al., 2013; 

Franzluebbers, 2018; Hurisso et al., 2016; Idowu et al., 2009; Morrow et al., 2016; Nunes et 

al., 2018; Nunes, Karlen, et al., 2020; van Es & Karlen, 2019; Wade et al., 2020). 

In Wisconsin, cash grain and dairy operations are prevalent, and common cropping 

systems include annual rotations, forage-based rotations, and grazed pasture. Given that 

manure is a valuable and accessible nutrient source, annual systems with and without manure 

are well represented in Wisconsin, compared to other Midwestern states where annual 

rotations predominantly rely on synthetic fertilizer. Research at the Wisconsin Integrated 

Cropping Systems Trial (WICST) evaluated biological soil health across common Wisconsin 

cropping systems: three annual grain systems (continuous corn, corn-soybean, and organic 

grain), two forage-based systems with alfalfa (conventional and organic), and a well-
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managed, rotationally grazed pasture. Biological indicators of soil health did not differ among 

annual grain systems, or between forage systems, revealing that subtle shifts in management 

within cropping systems were insufficient to improve soil health (Diederich et al., 2019). 

Rather, large shifts in cropping system from annual grain to forage systems were necessary to 

achieve greater POXC, MinC and PMN (Diederich et al., 2019).  

While long-term cropping system trials like WICST are invaluable to evaluate soil 

health while controlling for inherent environmental and soil properties, on-farm soil health 

evaluations are necessary to test these findings across a large network of operational farms 

and improve recommendations to farmers. Further, regional variability in soil health 

measurements attributed to differences in climate, soil, and cropping systems, underscores the 

need for a Wisconsin-specific soil health database (Crookston et al., 2021; Fine et al., 2017; 

Nunes, van Es et al., 2020). We compiled on-farm soil health data from three Wisconsin 

projects with the same research design to evaluate biological indicators of soil health across 

common cropping systems. To do this, fields were categorized into four cropping systems: 

annual rotations with synthetic fertilizer inputs, annual rotations that apply manure, forage-

based rotations that include a perennial legume or grass, and grazed pastures. SOM and 

biological indicators of soil health, POXC, MinC, ACE and PMN, were measured to 

determine if there were measurable differences in soil health associated with cropping 

systems. We hypothesized that biological indicators of soil health would differ with cropping 

system, increasing from annual rotations to forage-based rotations, to pastures.  
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Table 1.1: Integration of key soil health principles by cropping system: annual rotations, forage-based rotations, and 
pasture  

Cropping System  
 

Annual  Forage-based  Pasture 
 

Inherently annual cropping 
systems do not meet soil 
health principles. Intentional 
management is required to 
increase soil health 
promoting practices and 
include: 

Including a perennial in the rotation 
satisfies several soil health principles. 
During the annual portion of the 
rotation, opportunities to manage for 
soil health resemble those of annual 
cropping systems 

Pastures inherently satisfy all soil 
health principles. Best management 
of pastures can improve how well 
these goals are met.  

Increasing integration of soil health principles 

Minimize soil 
disturbance 

Reduced or no-till No-till in perennial crop  No-till 

Biodiversity Diverse crop rotation, cover 
crops 

Includes annual and perennial crops Typically consist of many grass, 
legume and forb plant species 

Soil cover Residue management, cover 
crops 

Soil coverage and protection during 
the perennial crop 

Perennials cover and protect the soil 

Continual 
living roots 

Cover crops A portion of the rotation is perennial Consistent continual living roots in 
perennial system 

Livestock Manure Includes forage crop and (typically) 
manure 

Grazing livestock 
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2. Materials and Methods 

2.1 Study Design & Field Descriptions 

This study used an on-farm, exploratory research design to evaluate soil health across 

Wisconsin agricultural systems (Figure 1.1). From 2015 through 2021, three projects 

employed this research design (see Richardson (2018), Malone (2022), and Augarten (2022) 

for complete details on each project). Richardson collected samples from 2015 through 2017 

in fields planted to corn that year (n=218), Malone collected samples from 2019 through 2021 

in fields planted to soybean that year (n=320), and Augarten collected samples in 2021 from 

pastures that had been grazed for at least one year (n=92). Data from all three studies were 

compiled, then divided into four cropping systems: annual rotations (n=223), annual rotations 

with manure (n=177), forage-based rotations (n=138), and pasture (n=92) (Table S1.1). Sites 

from Richardson (2018) and Malone (2022) included fields in the first three cropping 

systems. Cropping system differences were determined based on agronomic information 

reported by the farmers or crop advisors managing the fields. The majority of annual rotations 

were corn-soybean rotations, approximately half were no-till, and about half used cover crops 

in the past five years. Sites were predominantly silt loam soils (70%). Complete site 
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descriptions are found in Richardson (2018) and Malone (2022).  

 

Figure 1.1: Map of sites included in this study (n = 630), categorized by cropping system. 
Annual, n= 214 (red); annual with manure, n=180 (green); forage-based, n=138 (blue); and 
pasture, n=92 (purple). 
 
2.2 Soil sampling and handling 

Between late April and mid-June (2015-2021) soils were sampled to a depth of 0-15 

cm from a representative area using a probe with an internal diameter of 2.5 cm. Studies 

varied slightly in their soil sampling methodology (see Augarten, Malone, and Richardson for 

complete materials and methods). In brief, Richardson (2018), transferred samples to a freezer 

after sampling and within a month, samples were thawed and dried for one week at 32°C in a 

forced air drier, and ground through a 2-mm sieve. In 2019, Malone (2022) collected and 

immediately air-dried samples for one week before processing. However, in 2020 and 2021, 

samples were collected by farmers or crop advisors and mailed to University of Wisconsin-

Madison prior to drying. Upon receipt, samples were air dried for ~1 week and ground 
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through a 2-mm sieve. In Augarten, samples were kept on ice after sampling, transferred to a 

refrigerator within 12 h and, within 3 d, were dried in a forced air drier at 32°C and ground 

through a 1-mm sieve. 

 

2.3 Soil analyses 

Samples from all studies were analyzed for SOM via loss on ignition, POXC, MinC 

and PMN. Soils in Malone (2022) and Augarten (2022) were also analyzed for ACE protein 

(reduced site numbers for this analysis were: annual (n=174), annual with manure (n=101), 

forage-based (n=45), and pasture (n=92)).  

Samples were sent to the UW Soil and Forage Analysis Lab in Marshfield, WI for 

routine pH, Bray-1 P, Bray-1 K, and SOM-LOI. PMN was analyzed in-house at University of 

Wisconsin-Madison, using the Drinkwater protocol for anaerobic PMN (Drinkwater et al., 

1996). To calculate PMN, a 7-d anaerobic biological incubation was conducted and the 

amount of ammonium in the non-incubated soil was subtracted from that of the incubated 

sample.  

Richardson analyzed POXC and MinC in-house, and Malone and Augarten sent 

samples to Ohio State University’s soil test lab to measure POXC, ACE and MinC as part of 

the “Active Organic Matter'' package. The same protocols were used by both labs. POXC was 

determined through oxidation with 0.2-M KMnO4, according to methods described by 

Culman et al. (2012) (modified analysis of Weil et al., 2003). MinC was measured through a 

1-d incubation on soils at 50% water filled pore space (Franzluebbers, Haney, et al., 2000). 

ACE was measured through a chemical extraction using sodium citrate and autoclaving the 

sample (Hurisso, Moebius‐Clune, et al., 2018).  
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2.4 Statistical analyses 

Differences in soil measurements by cropping system were evaluated using analysis of 

variance (ANOVA). All data analysis was performed in RStudio version 2021.9.0.351 using 

R statistical software version 4.1.1 (R Core Team, 2020). ANOVA was performed using the 

aov() and summary() functions. When there was a statistical difference (p-value <0.05), 

Fisher’s least significant difference (LSD) was used to determine how values differed among 

cropping systems.  

 

3. Results & Discussion  

Biological indicators of soil health increased from annual systems to forage-based 

rotations, to pastures (Figure 1.2, Table S1.2). All measurements, SOM, POXC, MinC, ACE 

and PMN, were greater in pastures compared to annual rotations, and all but POXC were 

greater in pastures compared to forage-based rotations, as well. While the response of SOM 

and ACE was muted and only differentiated between pastures and the other cropping systems, 

MinC, POXC and PMN differed among annual and forage-based rotations. POXC, MinC and 

PMN were greater in forage-based rotations than either annual cropping system. However, 

only the labile C measurements, MinC and POXC, differed between the annual systems and 

were greater in systems that included manure. 

These results aligned with other regional studies in the United States. Findings from 

the Wisconsin Integrated Cropping Systems Trial demonstrated that POXC, MinC and PMN 

were consistently greater in forage and pasture systems compared to annual grain systems 

(Diederich et al., 2019). On-farm soil health assessments in New York reaffirmed the 
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association between agricultural system and soil health and found that generally pastures and 

mixed vegetable systems had greater biological soil health than dairy cropping systems, 

followed by annual grain and processing vegetables (Amsili et al., 2021). Additionally, in a 

long-term cropping systems study in Ohio, Sprunger et al. (2020) observed increases in 

biological soil health in systems with greater crop diversity and perenniality.  

Benefits of perennial pastures to soil C and N pools over row cropping systems are 

well documented (Becker et al., 2022; Franzluebbers et al., 2012; Franzluebbers, Stuedemann, 

et al., 2000; Guillaume et al., 2021; Oates & Jackson, 2014; Rowntree et al., 2020; Sanford et 

al., 2012). Well-managed perennial pastures best integrate soil health building principles 

compared to annual and forage-based rotations; they minimize soil disturbance, maximize 

biodiversity, maximize soil cover, maintain year-round living roots, and integrate livestock. 

Perenniality, in pasture or even just as a rotation in a forage-based cropping system, protects 

the soil surface, reduces soil disturbance and provides extensive above- and below-ground C 

inputs, through continual living roots, longer growing seasons, fine root production and 

turnover, and root exudates (Cates et al., 2016; Franzluebbers & Stuedemann, 2015; Jackson 

et al., 1997; Sprunger et al., 2017; Teague & Kreuter, 2020). What sets pastures apart from all 

other cropping systems is their continuous perenniality, crop diversity (including multiple 

grass, legume, and forb species), and grazing, which stimulates greater above- and below-

ground C inputs and provides manure deposition (Franzluebbers & Stuedemann, 2015; 

Teague & Kreuter, 2020). The adoption of well-managed pasture offers the greatest 

opportunity for improvements in SOM and biological soil health. 

Our findings reflect that biological indicators of soil health have varying sensitivity to 

cropping system and soil health building practices. POXC, MinC, and PMN, were more 
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sensitive to management compared to SOM, as observed in previous research (Culman et al., 

2012, 2013; Hurisso et al., 2016; Stott et al., 2021; Wander & Drinkwater, 2000). MinC was 

the most sensitive indicator and differed across all four cropping systems, aligning with 

findings from other studies (Amsili et al., 2021; Diederich et al., 2019; Sprunger et al., 2020). 

However, our results also showed that soils from Malone (2022), which represent 81% of 

annual rotations, 57% of annual rotations with manure, and 33% of forage-based rotations, 

had lower MinC on average compared to Richardson (2018) (Table S1.3). We speculate that 

mailing in field moist samples without ice packs suppressed aerobic microbes (Malone, 2022; 

Moebius-Clune, 2016). Additionally, compared to other soil health indicators, MinC is 

associated with higher analytical, temporal and spatial variability and sensitivity (Crookston 

et al., 2021; Hurisso, Culman, et al., 2018; Morrow et al., 2016; Wade et al., 2018). Removing 

Malone MinC data from the statistical analysis revealed a similar trend in MinC, with annual 

rotations having lower values compared to forage-based rotations and pastures. However, 

there was no differentiation between annual systems with or without manure (Table S1.4). In 

the context of this simple system comparison study, we cannot deduce if the Malone data 

skewed the results to detect a difference in MinC between annual and annual with manure 

systems, or if it just provided more data that led to a difference being detected. This aspect of 

our dataset comparison highlights that MinC is sensitive to differences in soil sample 

handling, which needs to be considered for future soil health testing and practical applications 

for farmers.  

Observed differences in indicator response to cropping system reaffirms that these 

measures of labile C and N are capturing nuanced information on soil health. MinC is more 

responsive to practices associated with SOM mineralization, such as manure use, integration 



 12 
of legumes, and perenniality, which likely contributed to greater differences in MinC among 

all cropping systems in this study (Amsili et al., 2021; Culman et al., 2013; Diederich et al., 

2019; Hurisso et al., 2016; Sprunger et al., 2020). Comparatively, POXC is more associated 

with practices that promote SOM accumulation and stabilization, including reduced tillage 

and inputs of stable carbon (Hurisso et al., 2016; Nunes, Karlen, et al., 2020). In this study, 

forage-based rotations and pastures, which have reduced tillage and higher C inputs from crop 

biomass, were associated with greater POXC than annual rotations. Additionally, POXC was 

the only measurement that did not differ between forage-based rotations and pastures, which 

aligns with previous soil health work (Amsili et al., 2021; Diederich et al., 2019; Sprunger et 

al., 2020). Previous studies observed similar results for labile N measures: ACE did not differ 

between annual and forage-based rotations (Amsili et al., 2021), and PMN was more sensitive 

to cropping system or crop rotation, but less sensitive to nutrient source, like manure or 

compost (Culman et al., 2013; Diederich et al., 2019; Morrow et al., 2016).  

Applying manure is a promoted soil health building practice, but in our study only 

POXC and MinC differed between annual systems with and without manure. Hurisso et al. 

(2016) demonstrated greater increases to MinC due to manure use, relative to POXC or SOM. 

In other studies, applying manure was associated with greater POXC (Min et al., 2003; 

Mirsky et al., 2008), or had no effect (Lewis et al., 2011; Wienhold, 2005). While manure is a 

valuable nutrient source in Wisconsin and often is promoted in annual systems to improve soil 

health, there are inconsistent effects of manure use on SOM, and C and N pools in previous 

research. Ten years of dairy manure applications had no effect to SOM in Wisconsin cash 

grain systems (Rui et al., 2020), while a meta-analysis of Midwest farms revealed that manure 

increased surface soil organic carbon by 39% (Nunes, van Es, et al., 2020). Manure type, 
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including livestock species and manure consistency, can influence C accrual; while liquid 

manure has high N content and may promote SOM mineralization, solid manure has higher 

carbon-to-nitrogen ratio, which typically is more conducive to SOM gains (Eghball, 2002; 

Rui et al., 2020).  

Manure applications are associated with greater soil health when used in conjunction 

with C inputs, like cover crops or crop residue (Aguilera et al., 2013; van Es & Karlen, 2019). 

In Wisconsin, Jokela et al. (2009) found that corn silage rotations with cover crops and dairy 

liquid manure had greater POXC than those with just manure. Stacking soil health practices 

like manure use, reduced soil disturbance and C inputs results in additive benefits to soil 

health (Aguilera et al., 2013; Franzluebbers & Stuedemann, 2015; Nunes, Karlen, et al., 

2020).  
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Figure 1.2 Density graphs of SOM, 
POXC, MinC, ACE and PMN by 
cropping system. 
Density refers to the frequency of data for a 
given value. In the legend, letters next to the 
cropping system indicate significant differences 
(p-value < 0.05) as determined through 
ANOVA and Fisher’s least significant 
difference. Cropping systems include: annual, 
n= 214 (red); annual with manure, n=180 
(green); forage-based, n=138 (blue); and 
pasture, n=92 (purple).   
SOM=soil organic matter (%); POXC = 
permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g 
kg-1); MinC = mineralizable carbon (mg kg-1); 
PMN = potentially mineralizable nitrogen (mg 
kg-1) 
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4. Conclusion 

This regional cropping system comparison of biological indicators of soil health 

clearly demonstrated that systems with perenniality are associated with greater soil health. 

Pastures, which include all soil health building principles, had the greatest value for SOM and 

biological indicators. When comparing a single soil health building practice (manure addition) 

in annual cropping systems, only POXC and MinC were greater in the manured sites. This 

supports the idea that single management changes may have limited gains in biological soil 

health. Therefore, within annual and forage-based cropping systems there is emphasis on 

stacking many soil health building practices: reduce soil disturbance, increase biodiversity, 

maintain continual living roots, protect the soil surface, and integrate livestock. As pasture 

soil health continues to serve as a goal for other cropping systems, continued research is 

needed to assess if gains in soil health indicators are feasible or realistic within annual 

cropping systems, or if larger shifts towards pasture-based systems are necessary.   
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Supplementary Materials 

Table S1.1: Site numbers for each cropping system and the proportion of sites from each 
project (Richardson, Malone, Augarten) 
 

Cropping System 

 
Annual Annual with 

Manure 
Forage- 
based Pasture 

Site numbers (n) 214 180 138 92 
Project --------------------------- % --------------------------- 

Richardson 19 43 67 0 
Malone 81 57 33 0 

Augarten 0 0 0 100 
 

Table S1.2: Mean values (SD) and ANOVA results of biological soil health values by 
cropping system.  
All results are significant at a p-value <0.001. Mean values followed by different letters were 
determined using Fisher’s LSD. For SOM, POXC, MinC and PMN, the number of sites were: 
annual (n=214), annual with manure (n=180), forage-based (n=138), and pasture (n=92). ACE 
was only analyzed in two of the projects and reduced site numbers are: annual (n=173), 
annual with manure (n=102), forage-based (n=45), and pasture (n=92). 
 
  SOM POXC MinC ACE PMN 
Cropping System % --------- mg kg-1 -------- g kg-1 mg kg-1 
Annual 2.9b (0.9) 576c (151) 43d (29) 4.5b (1.2) 61c (19) 
Annual with manure 2.8b (1.1) 616b (183) 58c (37) 4.8b (1.9) 65c (25) 
Forage-based 2.9b (0.8) 673a (152) 82b (43) 4.9b (1.3) 74b (24) 
Pasture 4.0a (1.0) 701a (170) 128a (41) 7.6a (2.0) 130a (41) 

SOM= soil organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; 
POXC = permanganate oxidizable carbon; ACE = autoclaved-citrate extractable protein; MinC = mineralizable 
carbon; PMN = potentially mineralizable nitrogen 
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Table S1.3: Mean values and ANOVA results of MinC for between Richardson and 
Malone studies.  
All results are significant at a p-value <0.001. The difference in MinC between the two 
projects was analyzed within each cropping system. Mean values followed by different letters 
were determined using Fisher’s LSD.  
 
MinC (mg kg-1) 

 
Annual Annual with 

manure Forage-based 

Project    

     Richardson 88a 92a 106a 
     Malone 33b 32b 33b 

MinC = mineralizable carbon 

Table S1.4: Mean values and ANOVA results of MinC by cropping system, excluding 
MinC data from the Malone study.  
Results are significant at a p-value <0.001 and mean values followed by different letters were 
determined using Fisher’s LSD. Adjusted site numbers are: annual (n=41), annual with 
manure (n=78), forage-based (n=93), and pasture (n=92). 
 
Cropping System n MinC (mg kg-1) 
Annual 41 88c 
Annual with manure 78 92c 
Forage-based 93 106b 
Pasture 92 128a 

MinC = mineralizable carbon 
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R Code 
 

Univariate Statistics: 

#Example for Annual cropping systems 

#group soil C and N indicators 

library(dplyr)  

Indicators <- Annual %>% 

  dplyr:: select(OM, POXC, ACE, MinC, PMN) 

 

#analysis 

library(pastecs) 

library(psych) 

summary(Indicators) 

describe(Indicators) 

stat.desc(Indicators) 

 

ANOVA 

library(agricolae) 

model <- aov(OM ~ SystemGeneral, data= SystemsData) 

summary(model) 

lsd=LSD.test(model, c("SystemGeneral"), group=T) 

lsd 

 

 

 

 

  



 25 

Chapter 2: Soil health assessment of Wisconsin pastures reveal soil carbon and nitrogen 
metrics are sensitive to inherent soil properties, land use, and management 
 

Abstract 
 
Pastures, which include soil health building practices like perenniality, reduced soil 

disturbance and livestock integration, provide greater opportunities to improve soil health and 

benefit soil carbon (C) storage compared to row cropping systems. Given that most of the soil 

health research has been conducted in row cropping systems, it is vital to explore how grazing 

management can influence soil health and C and nitrogen (N) pools in order to provide 

graziers with best management recommendations. In Wisconsin, 92 pastures were evaluated 

for commonly used metrics, organic matter (OM), total carbon (TC), total nitrogen (TN), and 

carbon to nitrogen ratio (C:N), and four biological indicators of soil health, permanganate 

oxidizable C (POXC), autoclave citrate extractable protein (ACE), mineralizable carbon 

(MinC), and anaerobic potentially mineralizable nitrogen (PMN). The objectives of this study 

were to evaluate relationships and correlations among soil C and N measurements, and the 

relative importance of inherent soil properties, land use history, and management on these 

measurements. POXC, ACE and PMN had strong positive relationships with OM, TC, and 

TN (R2=0.45-0.65), while MinC had weaker relationships with these measurements (R2=0.2-

0.35). Correlations between biological incubations (MinC and PMN, r= 0.82) and chemical 

extractions (POXC and ACE, r=0.68), were stronger compared to those between the two 

labile C (MinC and POXC, r=0.53) or N (PMN and ACE, r=0.58) measurements. These 

relationships suggest the soil health indicators reflect different components of biologically 

active soil fractions. With the exception of C:N, soil C and N measurements were positively 

related to pasture age (R2=0.19-0.37) and were higher in continuously grazed pastures, which 
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tended to be older, compared to rotationally grazed pastures. For rotationally grazed pastures 

(n=78), the relative importance of inherent soil properties, land use history, and management 

on soil C and N measurements was evaluated using random forest analysis. Pasture age 

explained more variation in OM, TC, TN, POXC, ACE, MinC, and PMN compared to all 

other factors. Random forest partial effects revealed rapid gains in predicted soil values after 

pasture establishment, with potential plateaus. Texture was important for MinC and PMN, 

with coarser soils corresponding with lower values, and C:N, which conversely, had a positive 

relationship with sand content. In rotationally grazed pastures, grazing management factors 

were important, especially for TC, TN, POXC and ACE, and predicted values corresponded 

with moderate to high grazing pressure over shorter grazing intervals with sufficient rest. 

Relationships among soil C and N metrics and soil and management factors demonstrated the 

importance of pasture age, texture, and well-managed rotational grazing on pasture soil 

health.   

1. Introduction 
 

There is increasing urgency to build soil organic matter (SOM) and soil health in our 

agricultural systems to provide essential ecosystem services such as water and nutrient 

cycling, agronomic performance, carbon sequestration, water quality, and erosion control 

(Gregorich et al., 1994; Idowu et al., 2009; Morrow et al., 2016; Wander & Drinkwater, 

2000). The integration of pasture and grassland on the landscape allows for ample 

opportunities to provide these services, as well as the additional benefits of plant and 

microbial biodiversity, habitat, cultural and aesthetic opportunities, and economic resilience 

(Franzluebbers et al., 2012; Havstad et al., 2007; Teague & Kreuter, 2020). 
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In assessments of soil carbon and soil health, pastures typically outperform grain and 

forage cropping systems. Soil health research has identified five key soil health principles, all 

of which are included in well-managed pastures: 1) minimize soil disturbance, 2) promote 

biodiversity, 3) maximize soil cover, 4) maximize continuous living roots, and 5) integrate 

livestock (Franzluebbers et al., 2012; Karlen et al., 2019; Lehmann et al., 2020; Moebius-

Clune, 2016; Natural Resource Conservation Service; Norris et al., 2020; Stott et al., 2021). 

Long-term trials (Diederich et al., 2019; Machmuller et al., 2015; Sanford et al., 2012; 

Sprunger et al., 2020), paired pasture-row crop studies (Becker et al., 2022; Franzluebbers, 

Stuedemann, et al., 2000; Nunes, Karlen, et al., 2020) and on-farm soil health assessments 

(Amsili et al., 2021;  Augarten thesis chapter 1) demonstrate that pastures and/or perennial 

systems out-perform row cropping systems in SOC and biological soil health. However, given 

the diversity of pasture systems, there is potential for pasture- and grazing- specific 

management factors to influence soil C and soil health.  

Grazing systems are dynamic and adaptive, ranging from continuous grazing to 

managed intensive rotational grazing (MIRG) and varying in grazing intensity (stocking 

density and residual pasture height) and grazing frequency (time in paddock and paddock rest 

period) (Lyon et al., 2011; Teague & Kreuter, 2020; Undersander et al., 2002). Understanding 

if, and how, grazing management practices influence soil health is imperative to provide 

farmers with research-based recommendations to improve economic and environmental 

outcomes. Previous research has elucidated that the effect of grazing management practices 

on surface soil organic carbon (SOC) is complex due to sensitivity to climate, soil type, 

pasture composition, grazing management, research design, and the interactions among these 

factors (Abdalla et al., 2018; Conant et al., 2017; Derner & Schuman, 2007; McSherry & 
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Ritchie, 2013; K. Zhang et al., 2015; Zhou et al., 2017). This underscores the need for 

regional assessments to improve our understanding of how these various factors can influence 

soil C and N pools.  

Prior research in row cropping systems found that evaluating soil health revealed 

insight into the relationship between management and soil C and N, beyond that learned from 

solely measuring SOM or SOC. While it may take years to detect improvements in SOM due 

to shifts in management, labile pools of C and N, which cycle more readily, are sensitive to 

management and have proven effective as early indicators to changes in SOM (Culman et al., 

2012, 2013; Hurisso et al., 2016; Wander & Drinkwater, 2000). Labile soil C and N 

measurements not only reflect active C and N and potential nutrient availability, but also 

microbial activity, thus serving as biological indicators of soil health. For soil health 

indicators to be valuable they must be logistically feasible, cost-effective, accurate and 

precise, sensitive to management, and of agronomic, economic or environmental value 

(Idowu et al., 2008; Moebius-Clune, 2016; Morrow et al., 2016).  

Measures of labile C and N that meet these criteria and are often used in soil health 

assessments include two chemical extractions, permanganate oxidizable C (POXC) and 

autoclave citrate extractable protein (ACE), and two biological incubations, mineralizable 

carbon (MinC) and anaerobic potentially mineralizable nitrogen (PMN) (Culman et al., 2012; 

Drinkwater, et al., 1996; Franzluebbers et al., 2000; Hurisso et al., 2018). While all indicators 

represent soil C and N pools, they each relate differently to biological soil properties. POXC, 

often termed active carbon, reflects a more processed pool of C and is linked to soil C 

stabilization (Culman et al., 2012; Hurisso et al., 2016; Weil et al., 2003). MinC, or soil 

respiration, reflects the pool of C accessible to microbes and the potential microbial activity in 
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the soil (Franzluebbers et al., 2000; Gregorich et al., 1997; Hurisso et al., 2016). ACE 

measures soil protein, which constitutes a large pool of soil organic N and has a strong 

association with SOM and soil aggregation (Hurisso, Moebius‐Clune, et al., 2018). Lastly, 

PMN is a measurement of plant available N as a function of anaerobic microbial activity 

(Drinkwater et al., 1996; Gregorich et al., 1997).  

Extensive research on these four indicators has been conducted in grain and forage 

cropping systems and demonstrated their responsiveness to management practices including 

tillage intensity, crop rotation diversity, organic amendments, residue management, and 

perenniality (Amsili et al., 2021; Hurisso et al., 2016; Idowu et al., 2009; Morrow et al., 2016; 

Nunes et al., 2018; Nunes, Karlen, et al., 2020). Additionally, they have been linked to corn 

and soybean yield and nutrient use efficiency (B. Crookston et al., 2022; Culman et al., 2013; 

Franzluebbers, 2018; Oldfield et al., 2022; van Es & Karlen, 2019; Wade et al., 2020). 

However, biological soil health research in pastures is lacking (Franzluebbers & Stuedemann, 

2015), particularly in cool-season, temperate pastures (Arndt et al., 2022), which leaves 

untapped potential to better understand relationships among inherent properties, pasture and 

grazing management practices, and soil carbon and nitrogen pools in the Upper Midwest.  

Measuring biological soil health in pasture systems through on-farm research serves as 

a complement to current research on pasture management and SOC. While long-term 

cropping system trials are invaluable to track changes to soil health over time, few studies 

extend beyond 20 years after pasture establishment (Byrnes et al., 2018). Controlled research 

studies on grazing management typically are for a few years, only providing short-term 

research findings (Teague et al., 2013). Additionally, compared to standardized management 

found in controlled research designs, on-farm assessments offer opportunities to evaluate a 
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range of grazing management practices used by producers (Teague et al., 2013). In 

Wisconsin, grazing management varies, ranging from continuous grazing to 2-3 daily 

rotations, and includes variation in stocking density, rest period and residual pasture height 

(Lyon et al., 2011; L. Paine & Gildersleeve, 2011.; Undersander et al., 2002). A regional soil 

health assessment specific to cool-season, temperate pastures, and representative of regional 

climatic, soil and management factors can provide relevant information to Wisconsin graziers.  

This study explored how soil C and N measures, OM, TC, TN, C:N, POXC, ACE, 

MinC, and PMN, varied across Wisconsin pastures of differing soil types, land use history 

and pasture and grazing management. The objectives were: i) to determine the relationships 

between bulk C and N measures, SOM, TC, TN, and C:N, and labile C and N measures, 

POXC, ACE, MinC, and PMN, and assess the value of biological indicators of soil health, 

and ii) to evaluate the relative importance of inherent soil properties, land use history and 

management practices on these metrics. Based on previous WI soil health assessments, for 

objective one we hypothesized that the biological indicators of soil health are related to the 

total C and N pools, but differ enough to suggest they reveal new information regarding C and 

N bioavailability. For objective two, we hypothesized that soil texture and pasture age are 

influential to soil C and N measures, but that certain management practices may be identified 

as beneficial to biological soil health, as well.  

2. Materials & Methods 
2.1 Study Design 
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The study used an on-farm, exploratory research design. Research was conducted in 

two regions in Wisconsin: “Kickapoo”, named after the Kickapoo watershed, and 

“Marathon”, comprising of sites mainly in Marathon County (Figure 2.1). Thirty-two farmers 

from these regions chose to participate in the study after discovering the project through local 

grazing networks, producer led groups, land and water conservation districts, and NRCS 

agents. A total of 92 pastures were sampled, all of which had been grazed for at least one 

year. Participants selected pastures based on their interests and to capture variation on their 

farm attributed to management, land history, soil type or productivity.   

Figure 2.1: Map of sites included in this study (n = 92), grouped by two regions: 
Kickapoo (green), Marathon (orange).  
 

2.2 Management Data Collection & Site Descriptions 

Participants completed a comprehensive management questionnaire that included 

questions on land use history, pasture management and grazing practices specific to sampled 

pastures or paddocks. The questions were used to identify long-term, short-term, and 

immediate factors that may influence soil health indicators. With the understanding that 

grazing management and systems are dynamic and adaptive, producers reported typical values 
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or averages across the season for their current operations. Table 2.1 includes a complete list of 

inherent properties and management practices included in the analysis.   

Most sites were silt loam soils (73%) and well drained (57%). Farms included dairy 

(17%), dairy heifers (11%), beef (including cow/calf, stocker and finishing operations) (57%), 

and multispecies (15%) grazing. About half of the pasture sites were less than ten years old, 

with the remaining pastures ranging widely from 10 to 100 years old. 88% of the sites were 

rotationally grazed, while the remaining sites were continuously grazed. Sites varied in 

pasture and grazing management practices, including outwintering, nutrient inputs, haying, 

and stocking and rotation factors (Tables S2.1-S2.5).   
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Table 2.1: Soil, land use and management variables included in the data analysis.  
Sand, silt, clay, and pH were directly measured, and drainage class was identified using the 
Web Soil Survey. Land use history, grazing and pasture management factors were provided 
by the farmer. Stocking rate, stocking density and seasonal grazing pressure were calculated 
using animal units (total livestock weight in kg divided by 454 kg) and paddock size (ha). 
 
Variable Category Variable  

Soil Properties 

pH  
sand (%) 
silt (%) 
clay (%) 
Drainage Class 
Texture Group* 

Land Use  

Region 
Land ownership (owned or rented)* 
Farm Operation Type 
Pasture age (years) 
Previous land use 

Grazing 
management 

Grazing management category (rotational vs. continuous)** 
Days between grazing and soil sampling (days) 
Number of rotations 
Stocking Rate (animal units/total pasture hectares) 
Stocking Density (animal units/paddock hectares) 
Seasonal Grazing Pressure (stocking density x grazing days per season) 
Time in paddock per grazing event (days) 
Paddock rest period (days) 
Residual pasture height (cm) 

Pasture 
Management 

Percent legume cover 
Outwintered in the past five years 
Hay frequency in the past five years 
Synthetic fertilizer use in the past five years 
Synthetic fertilizer applied this year prior to sampling 
Synthetic fertilizer application frequency in the past five years 
Manure use in the past five years 
Manure applied this year prior to sampling* 
Manure application frequency in the past five years 
Lime applied in the past five years 

*variables excluded in random forest analysis because greater than 90% of the data were the 
same value  
**variables excluded in random forest, which only included rotationally grazed pastures 
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2.3 Soil sampling & in-field data collection 

Soil samples were collected 2-11 June 2021. Within each pasture, a 50m x 50-m area 

was selected that was a uniform soil type and representative of the pasture. Coordinates from 

the center of the sampling area were recorded and used to retrieve drainage class from the 

NRCS Web Soil Survey. 

At each site, 20 soil cores were taken to a depth 0-15 cm using a probe with an internal 

diameter of 2.5 cm, then combined into one composite sample. Samples were kept on ice for 

up to 12 hours and then transferred to a refrigerator for up to three days. Roots were removed 

from the soil sample and samples were then air dried and ground to pass through a 1-mm 

sieve.  

At the time of soil sampling, visual in-field estimates of percent legume cover were 

taken using a 0.25-m2 quadrat. Quadrats were laid out using three transects spaced 15 m apart 

and 5 replicates spaced 10 m apart within each transect. The 15 replicates were averaged, and 

this average was used for data analysis.  

 

2.4 Soil Analysis 

Soil samples were analyzed for pH, Bray-1 P, Bray-1 K, OM-loss on ignition (LOI), 

percent sand and clay, nitrate and ammonium, TC, TN, POXC, ACE, MinC and PMN. 

Samples were sent to the UW Soil and Forage Lab in Marshfield, WI for routine pH, Bray-1 

P, Bray-1 K, OM-LOI, and texture analysis. Particle size analysis was conducted via the 

hydrometer method (Bouyoucos et al., 1962).  
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TC and TN were measured with a dry combustion method, using a Flash EA 1112CN 

Automatic Elemental Analyzer. Between 24.5 and 25.5 mg of finely ground soil was packed 

into 10 x 12 mm tin capsule prior to combustion. Total C was considered the same as organic 

carbon, after conducting an HCl fizz test, which demonstrated the lack of inorganic carbon in 

the samples.  

Three of the soil health analyses, POXC, ACE and MinC were conducted at Ohio 

State University’s soil test lab as part of the “Active Organic Matter” package. POXC was 

measured using protocols by Culman et al. (2012), adapted from Weil et al. (2003) protocol, 

where the carbon is oxidized with 0.2-M KMnO4 and the color change is read on a 

spectrophotometer. MinC is determined through a one-day incubation. Soils were rewetted 

and incubated at 25°C for 24 hours, and then CO2 evolution measured using an infrared gas 

analyzer (Franzluebbers, Haney, et al., 2000). Lastly, ACE was measured by adding sodium 

citrate, autoclaving the sample, extracting protein, and quantifying the concentration 

compared to a standard with a spectrophotometer (Hurisso, Moebius‐Clune, et al., 2018). 

PMN was analyzed in house at University of Wisconsin-Madison using the 

Drinkwater protocol for anaerobic PMN (1996). PMN was calculated by measuring the 

ammonium produced during a 7-d anaerobic incubation and subtracting from this the amount 

of ammonium already in the soil. For the incubated samples, 10mL of deionized water was 

added to 5mg of dried and ground soil, and then incubated at 40°C for 7 d (+/- 2 hours). After 

incubation, ammonium was immediately extracted by adding 40 mL of 2.5-M KCl to the 

sample, shaken for 1 h, centrifuged, and filtered. For the incubated samples, there were two 

technical replicates. The nonincubated samples were analyzed according to the same 

procedure, except that 10ml of deionized water and 40 mL of 2.5-M KCl were added to 5mg 
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of soil just prior to shaking, without any incubation. The supernatant was stored frozen and 

sent to the UW Marshfield Soil and Forage Analysis lab within one month to quantify 

ammonium. The ammonium present in the nonincubated sample was subtracted from the 

average ammonium of two incubated samples, to calculate PMN. Nitrate and ammonium 

from the nonincubated sample were included as inorganic measurements of nitrogen.  

 

2.5 Statistical Analysis 

Data analysis was performed in RStudio version 2021.9.0.351 using R statistical 

software version 4.1.1 (R Core Team, 2020). Descriptive statistics were performed with R 

packages, Tidyverse (Wickham et al., 2019) and Psych (R Studio Team, 2022). Correlation 

among soil health values was analyzed with ggpairs()and corrplot() functions. Single factor 

analysis was run using one-way ANOVA and linear regression. For ANOVA, the aov() and 

summary() functions were used and when there was a statistical difference (p-value <0.05), 

Fisher’s least significant difference (LSD) was conducted using the function LSD.test() from 

the agricolae package. For linear regression, lm() and summary() functions were used. 

Assumptions of linear models, normality, and equal and constant variance were assessed 

using QQ and residuals vs. fitted plots. In linear regression, explanatory variables were 

transformed when necessary to uphold assumptions. For select response variables, clay 

content, stocking density, seasonal grazing pressure, and number of rotations were 

transformed with a polynomial transformation. For some variables, no transformations could 

correct violations of normality and equal variance. Single factor analysis was run on 

transformed variables when applicable. A p-value less than or equal to 0.05 was considered 

statistically significant. All single factor analysis is included in supplementary materials.  
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Out of the 92 sites, 3 sites did not have complete management, and were removed 

when analyzing land use and management variables. Single factor analysis between response 

variables and inherent soil properties (n=92) and land use history (n=89) was run on the entire 

dataset. Afterwards, we explored rotationally grazed pastures separately. Given significant 

differences between continuously and rotationally grazed pastures and the desire to evaluate 

certain grazing management practices that apply only to rotationally grazed systems, random 

forest analysis was run on the rotationally grazed pasture subset (n=78).  

Random forest analysis was used to evaluate the relative importance of inherent soil, 

land use, grazing management, and pasture management variables in rotationally grazed 

pastures.  Random forest analysis, using randomForestSRC and ggRandomForests R 

packages, was selected because of its ability to handle exploratory research designs and its 

robustness to different data types (continuous and categorical), missing data, nonlinearity, and 

collinearity (Breiman, 2001; Ishwaran et al., 2008, 2021b; Ishwaran & Kogalur, 2022). 

Random forest creates many random regression trees with a bootstrapped dataset, then ranks 

the importance of the variables on whether and by how much the trees improved statistically 

with that factor present in the tree. The random forest analysis tries 1/3 of the variables at 

each split and selects the variable that adds the most predictive value to the model. 5000 trees 

were run to minimize error of the final model and the variability of error when re-running the 

model. A random seed was set to allow for reproducibility of the final model. Missing data 

were imputed; for categorical variables, the most common category was assigned, and for 

continuous variables the median value was assigned. However, in this dataset, there were very 

few missing data. Categorical variables were excluded if 90% of the observations had the 

same value (soil order, land ownership, and manure applied before sampling). Even if 
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variables were correlated, they were included in the model to assess the relative importance 

among them.  

The importance of each variable is measured using two methods: variable importance 

(VIMP) and average minimal depth. VIMP is based on whether and by how much the 

bootstrapped regression trees improved statistically with a given factor present in the tree. The 

most important variable has a relative importance of 1, and the succeeding variables of 

importance are relative to the most important variable. While VIMP calculates how important 

a variable was at improving the model, minimal depth evaluates how close to the root node 

the variable is in the regression tree. The average minimal depth reflects how predictive a 

variable is for the entire dataset, where a lower value indicates the variable typically appears 

closer to the root node in the regression tree. A higher VIMP rank compared to minimal depth 

rank indicates that the variable was important, but often at lower branches in the regression 

tree. Partial effect plots of important variables were created with the plot.variable() function, 

which varies the explanatory variable of interest and uses the random forest model to predict 

response values by calculating them over all remaining covariates, averaging and plotting 

them (Ishwaran et al., 2021).  

This machine learning methodology was selected because it evaluates the relative 

importance of variables both as a significant effect, as well as how it interacts with the other 

variables. Additionally, by evaluating results from many trees, random forest analysis avoids 

the challenge of conditionality that is observed in regression tree analysis, that is whether or 

not a variable is important is dependent on the previous branches in the tree. Given the nature 

of the dataset and variables of interest, there is a high potential for interaction or correlation 

effects that may otherwise be overlooked in other statistical approaches.  
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3. Results 
 
3.1 Soil Measurements 

3.1.1 Summary Statistics 

There was a wide range of values for all soil C and N measurements: OM% (2.0-

7.7%), TC% (1.1-4.2%), TN% (0.09-0.37%), C:N (9.1-15.2), POXC (373-1230 mg kg-1), 

ACE (4.5-15.5 g kg-1), MinC (15.7-207.8 mg kg-1), and PMN (36.9-235.9 mg kg-1) (Table 

S2.6 & Table S2.7). OM, C:N and ACE were right skewed (0.96, 1.32, and 1.48 respectively) 

and had kurtosis greater than 1, indicating a peaked distribution. These deviations in 

normality were minor, so no transformations were performed and the non-transformed 

response variables were used in statistical analyses. The other metrics had normal 

distributions.  

 

3.1.2 Relationships between biological indicators of soil health and OM, TC, TN and C:N 

Pastures sites with complete soil data (n=92) were used for this analysis. Labile and 

bulk C and N measurements were all positively related, though the strength of relationships 

varied (Table 2.2, Figure S2.1). POXC had the strongest relationships with bulk pools, R2 

ranging 0.62-0.64, and MinC had the weakest relationships with bulk pools, R2 ranging 0.25-

0.37. Generally, bulk C and N explained greater variation in the chemical extractions (POXC 

and ACE), relative to the biological incubations (MinC and PMN). C:N had a negative 

relationship with biological incubations MinC and PMN (R2 =0.16 and 0.14, respectively), but 

no relationship with POXC or ACE. 
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Table 2.2: Coefficient of determination (R2) for labile C and N indicators vs. bulk C and 
N measurements.   
  OM TC TN C:N 
 ----------------------- R2 ----------------------- 
POXC 0.62 0.63 0.64 NS 
ACE 0.52 0.60 0.53 NS 
MinC 0.34 0.25 0.37 0.16 
PMN 0.55 0.43 0.58 0.14 

OM= soil organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon to nitrogen ratio; 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant 
 

3.1.3 Soil health indicator correlations 

Positive correlations among biological indicators of soil health (POXC, ACE, MinC, 

and PMN) ranged from r=0.43 to r=0.82 (Figure 2.2). MinC and PMN had the strongest 

correlation (r=0.82), while the weakest correlations were between MinC and the chemical 

extractions (r=0.43 with ACE, r=0.53 with POXC).  

 

Figure 2.2: Scatterplots and correlation coefficients (r) among POXC, ACE, MinC and 
PMN 
POXC = permanganate oxidizable carbon (mg kg

-1
); ACE = autoclaved-citrate extractable protein (g 

kg
-1

); MinC = mineralizable carbon (mg kg
-1

); PMN = potentially mineralizable nitrogen (mg kg
-1

) 

 
3.2 Soil Properties 
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Texture class and clay, silt and sand content had significant relationships with OM, 

TN, C:N, MinC, and PMN (Figure 2.3, S2.2, S2.3). Sand content was negatively related with 

soil C and N values, whereas silt had a positive relationship and clay content had a positive 

polynomial relationship, with values tapering at approximately 25% clay. Relationships 

between texture and biological incubations, MinC and PMN, were stronger compared to the 

other C and N measurements (R2 values ranging from 0.3-0.4). POXC and ACE had no 

relationship with texture. POXC had a positive relationship with pH (R2 = 0.13). Additionally, 

OM had a weak positive relationship with pH, while C:N had a negative relationship.  

Poorly drained soils corresponded with higher OM, TC, MinC and PMN, but poor 

distribution of data among drainage class limits the ability to discern significant differences 

across all drainage classes (Figure S2.4). 

 
Figure 2.3: Boxplot of OM, TC, TN, C:N, POXC, ACE, MinC, and PMN by texture 
class. 
Texture class was determined from measured sand and clay content. Texture classes include: loamy sand 
(n=2), sandy loam (n=11), silt loam (n=67), loam (n=8), silty clay loam (n=4). In the boxplot, the middle 
line indicates the median and boxes delimit first and third quartiles. Upper and lower whiskers represent 1.5 
times the interquartile range or, if there were no observations beyond that range, the maximum and 
minimum values.  Letters indicate significant differences (p-value < 0.05) among texture classes 
determined through ANOVA and Fisher’s LSD. OM= organic matter (%); TC= total carbon (%); TN= total 
nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); ACE = 
autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially 
mineralizable nitrogen (mg kg-1); NS=not significant  
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3.3 Pasture age & land use history  

Pasture age had positive relationships will all factors except C:N, representing 

between 19 and 37% of the variation across response variables (Figure 2.4). However, the 

relationship between bulk pools produced slightly greater R2 values (0.33-0.37) compared to 

labile pools (0.19 – 0.28). Sites previously fallowed had greater bulk and labile C and N 

compared to sites previously cropped. ACE was greater in sites previously in a row crop/hay 

rotation, compared to those that were exclusively hay, but no other soil metrics differed with 

prior agricultural system (Figure S2.5).  

 

Figure 2.4: Scatterplots of bulk and labile C and N measurements and pasture age 
(years).  
Points are colored blue for rotationally grazed pastures and red for continuously grazed. 
Regression lines and coefficient of determination (R2) between pasture age and soil metrics 
are included for significant relations (p<0.05). All but the relationship between C:N and 
pasture age were significant.  
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1);  NS=not significant 
 

3.4 Management 
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3.4.1 Continuous vs. Rotational Grazing 

Pastures that were continuously grazed had higher values for total C and N pools (OM, 

TC and TN), as well as labile pools (POXC, ACE, MinC, PMN) (Figure 2.5). In this dataset, 

the continuously grazed pastures were often older pastures that had never been tilled for 

agricultural production. Continuously and rotationally grazed systems are inherently very 

different, and many grazing management practices do not apply to continuously grazed 

pastures. To effectively evaluate pasture and grazing management decisions that apply to 

rotationally grazed pastures, just those pastures (n=78) are evaluated in the random forest 

statistical analysis.  

 

Figure 2.5: Boxplot of bulk and labile C and N measurements by grazing category 
Sites were categorized as continuously or rotationally grazed pastures based on management data 

provided by the farmer. In the boxplot, the middle line indicates the median and boxes delimit first and 

third quartiles. Upper and lower whiskers represent 1.5 times the interquartile range or, if there were 

no observations beyond that range, the maximum and minimum values.  Letters indicate significant 

differences (p-value < 0.05) among grazing category, determined through ANOVA and Fisher’s LSD. 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant. 
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3.4.2 Management in rotationally grazed pastures 

To evaluate grazing management practices specific to rotationally grazed pastures, the 

remaining analysis was conducted exclusively on rotationally grazed pastures (n=78). Due to 

a smaller sample size, rotationally grazed sites differed slightly in texture properties and 

pasture age compared to the full dataset; the same trends between soil C and N measures and 

texture and pasture age hold true, but p-values were weaker in the rotationally grazed data 

(Tables S2.8-S2.13). Sites that were outwintered, where livestock remained on the pasture 

over the winter and received inputs of bedding and feed, corresponded with higher OM, TC, 

TN, POXC and ACE. These soil measures, as well as MinC, were higher in sites that were 

never hayed. Synthetic fertilizer application frequency had a negative relationship with MinC 

and PMN (R2= 0.07-0.11). Stocking density and seasonal grazing pressure had significant 

polynomial relationships with OM, TC, TN, POXC, ACE and PMN, where soil metrics 

increased with grazing pressure and then began to decrease at higher values (R2= 0.06-0.20). 

Rest period had a weak negative relationship with TC, TN, POXC, MinC and PMN (R2= 

0.05-0.11) (Tables S2.8-S2.13).   

Among rotationally grazed pastures, stocking rate, stocking density and seasonal 

grazing pressure were strongly correlated (r³ 0.52) (Figure 2.6). Stocking density and time in 

paddock are negatively correlated (r=-0.42) since it is common to have higher stocking 

density for a shorter duration, or lower grazing pressure for a longer duration. Similarly, the 

number of rotations and rest period are negatively correlated (r=-0.54), since there are 

typically fewer grazing events if the paddock rests longer between grazing events. Higher 

stocking rate is associated with lower residual pasture height (r=-0.41), but this trend is not 
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observed for stocking density. Pasture age has a moderate negative correlation with manure 

frequency (r=-0.27) and positive correlation with time in paddock (r=0.23). Accounting for 

inherent soil properties, there are also low to moderate correlations between sand content and 

legume composition (r=-0.21), stocking rate (r=-0.19), fertilizer frequency (r=0.19), and rest 

period (r=0.40).  

 

Figure 2.6: Correlation coefficients (r) between all soil and management exploratory 
continuous variables for rotationally grazed pastures (n=78).  
Size and color of the circle behind each number represents the strength and direction of the 
correlation (green=positive, red=negative) 
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Figure 2.7: Summary table of important variables according to random forest analysis 
according to variable importance (VIMP) and average minimal depth (MD). 
For each soil C and N measurement (column), the influence of each exploratory variable 
included in the analysis (rows) was determined by variable importance (VIMP) and average 
minimal depth (MD). VIMP represents how much the variable strengthened the model and 
corresponds to the cell color. The most important variable is assigned importance of 1 
(colored green) and all other variables are given a relative importance based on how much it 
improved the model compared to the most important variable. Boxes are color coded based on 
VIMP for ease of interpretation (see key). The numbers in the cells correspond to ranking of 
importance according to average minimal depth (MD). MD reflects how close to the 
regression tree root node a variable appeared on average. Being closer to the root node 
signifies that, as a single split in the data, the variable explained larger variation in the dataset. 
Variables are ranked so that 1 corresponds with the variables closest to the root node. Only 
variables with minimal depth < 5 are numbered on the graph, as these are the most influential. 
See supplementary tables S14-S21 for exact values of relative importance and average 
minimal depth. 
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OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
  



 48 

3.5 Random Forest Analysis 

3.5.1 Variables of importance 

For all soil measurements the random forest analysis out of bag (OOB) R2 ranged from 

0.32-0.45, POXC and PMN having the highest R2 (Tables S2.14-S2.21). Pasture age was the 

most important factor according to VIMP and minimal depth for all soil measurements except 

for C:N, which was most influenced by pH and texture (Figures 2.7, 2.8). Grazing and pasture 

management practices were more important for OM, TC, TN, POXC and ACE, whereas 

texture factors more were important for MinC and PMN. Compared to bulk measurements of 

C and N, biological indicators of soil health had more factors with VIMP relative importance 

greater than 0.2. Time in paddock was identified as the most important grazing variable, 

ranging in relative importance from 0.2-0.6 for MinC, TC, ACE, OM, and POXC, in 

increasing order. Time in paddock was typically ranked higher by VIMP compared to 

minimal depth, signifying its importance at lower branches of the regression trees due to its 

interaction with other factors, rather than being highly predictive for the entire dataset. After 

time in paddock, other important grazing and management practices include stocking density 

or rate, rest period, manure application frequency, and residual pasture height. Sand, silt, and 

clay content had relative importance between 0.35-0.80 for MinC and PMN, but less than or 

equal to 0.1 for OM, TC, TN, POXC and ACE. pH was an important variable for POXC and 

C:N.  
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Figure 2.8: Random forest variable importance (VIMP) plots for soil C and N measurements in rotationally grazed 
pastures (n=78).  
The list of factors are ordered by VIMP; higher factors were more important for explaining variation in the indicator. For variables 
identified as important according to the minimal depth method, rank of importance is along the righthand side of the graphs (1= 
most important). OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate 
oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable 
nitrogen (mg kg-1)
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3.5.2 Land use history: Pasture age & previous land use 

The partial effect of pasture age shows rapid increases in predicted soil C and N values 

in the first 0-30 years after pasture establishment (Figure 2.9). However, over time the trend 

between pasture age and soil value differs by measurement. While predicted TN, POXC, 

MinC and PMN plateaued between 20-40 years, predicted OM, ACE and TC continued to 

increase with pasture age. Previous land use depicts similar trends as single factor analysis, 

with previously fallowed sites corresponding to greater soil health (Figure S2.6).  

 

Figure 2.9: Partial effect of pasture age on OM, TC, TN, C:N, POXC, ACE, MinC and 
PMN 
Predicted values are calculated as pasture age varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- 
two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
 
3.5.3 Inherent soil properties 

Texture content had similar trends in partial effect plots for all bulk and labile C and N 

measurements (Figures S2.7-S2.9), however, the importance of these texture properties is 

greater for MinC and PMN compared to the other soil measurements (Figure 2.10). Predicted 

values increased with clay content, plateauing between 10-20% clay content. Sand had a 
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negative linear trendline and silt had a positive linear relationship with predicted MinC and 

PMN. Alternatively, C:N was greater at lower clay and silt content and higher at greater sand 

content (Figures S2.7-S2.9).  

Predicted OM and POXC were lower in acidic soils with pH less than 6, which 

corresponded to sites that received applications of lime in the past five years. C:N shows a 

different trend, with a steep climb in predicted C:N when pH is greater than 7 (Figure 2.11).  

 

Figure 2.10: Partial effect of clay, silt, and sand on MinC and PMN 
Predicted values of MinC and PMN are calculated as clay, silt and sand vary over observed 
values. Values are calculated over all remaining covariates, averaged, and plotted. Dashed red 
lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure 2.11: Partial effect of pH on OM, C:N, POXC 
Predicted values of OM, C:N, and POXC are calculated as pH varies over observed values. 
Values are calculated over all remaining covariates, averaged, and plotted. Dashed red lines 
indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1) 
 

3.5.4 Grazing management 

Time in paddock less than one day was associated with greater predicted OM, TC, TN, 

POXC and ACE, but once grazing events were greater than 1d, there was no effect on 

predicted soil values (Figure 2.12). Comparatively, biological incubations, MinC and PMN, 

had weaker trends with time in paddock. Lower stocking density or stocking rate 

corresponded with lower predicted OM, TC, TN, POXC, and PMN (Figure 2.13). Predicted 

values for OM, TC, TN, and POXC increased until a stocking density of 50-100 AU/ha, at 

which point they plateaued. Predicted PMN and stocking rate followed the same trend, 

plateauing at 3 AU/ha. Predicted soil values increased with rest period, peaking around a rest 

period of 25-30 days, and then declining (Figure 2.14). At a residual pasture height greater 

than 20cm, predicted values of OM and ACE increased (Figure S2.10). Predicted OM and 

POXC was greater around 4-5 rotations per season, compared greater or fewer grazing events 

per season (Figure S2.11). 
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Figure 2.12: Partial effect of time in paddock (days) on OM, TC, TN, C:N, POXC, ACE, MinC 
and PMN 
Predicted values are calculated as time in paddock per grazing event varies over observed 
values. Values are calculated over all remaining covariates, averaged, and plotted. Dashed red 
lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1)

 
Figure 2.13: Partial effect of stocking density on OM, TC, TN, and POXC and stocking rate on 
PMN  
Predicted values are calculated as stocking density or stocking rate varies over observed 
values. Values are calculated over all remaining covariates, averaged, and plotted. Dashed red 
lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); POXC = permanganate oxidizable 
carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 



 54 

 

 

Figure 2.14: Partial effect of rest period on OM, TC, TN, POXC and PMN  
Predicted values are calculated as rest period varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- 
two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); POXC = permanganate oxidizable 
carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
 
Pasture management 
 

Pasture management practices were not as important to soil C and N values as other 

factors. Predicted MinC increased as legume percentage increased to 15%, and then plateaued 

(Figure S2.12). Manure applied more than three times in the past five years corresponded with 

greater predicted OM, TN and POXC. The practice of outwintering livestock on the paddock 

in the past five years corresponded with greater predicted values for OM and ACE (Figure 

S2.13). Alternatively, haying, which removes biomass from the system, corresponded with 

lower predicted values of MinC (Figure S2.14).  

 

3.6 Sampling Time 

Since soil sampling was confined to a two-week period to minimize temporal effects 

on biological indicators of soil health (Diederich et al., 2019; Hurisso, Culman, et al., 2018; 
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Hurisso et al., 2016), this study evaluated days between sampling time and the last grazing 

event as a variable. While grazing may have immediate effects on C and N dynamics and the 

resulting soil health measurements, single factor and random forest analysis did not indicate 

this factor was important.  

 

4. Discussion 
 
4.1 Biological indicators of soil health reveal additional information on C and N pools  

OM, TC and TN only explained 25-64% of the variation in POXC, ACE, MinC, and 

PMN, which confirms prior research that bulk pools account for some, but not all, variation in 

the labile pools. Hurisso et al. (2018), found that dependent on site and sampling time, 

coefficients of determination between OM and POXC, MinC and ACE ranged 0.20-0.54, 

0.19-0.36, and 0.24-0.61 respectively. In survey work of over 5,000 sites, Fine et al. (2017) 

reported correlations between OM and POXC, ACE and MinC (4-day incubation) of 0.72, 

0.78, and 0.67 respectively. As in this study, previous research found chemical extractions 

had stronger relationships to bulk pools compared to biological incubations. In Morrow et al. 

(2016), SOC and TN were more correlated with POXC (r=0.93), compared to MinC (r=0.28, 

0.31) or PMN (r=0.59, r=0.67). Soil health results from Sikora (2020), revealed strong 

relationships among POXC, SOC and SOM (R2>0.54), but weak positive relationships 

between MinC and all other C-related indicators (R2 < 0.15). Labile C and N measurements 

are positively related to bulk C and N, yet have remaining variability not attributed to those 

measurements, indicating that they are measuring different pools of C and N. 
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This study revealed positive correlations of varying strength among biological 

indicators of soil health, consistent with previous research (B. S. Crookston et al., 2021; 

Culman et al., 2013; Fine et al., 2017; Hurisso, Culman, et al., 2018; Hurisso et al., 2016; 

Morrow et al., 2016). A meta-analysis by Hurisso et al. (2016) demonstrated variability in the 

correlation between POXC and MinC that may be attributed to the site-specific factors and 

variation. Multisite surveys had weak relationships between POXC and MinC (R2 £ 0.17), as 

did single site studies on coarse textured soils (Hurisso 2016). Morrow et al. (2016) and 

Hurisso et al. (2018) also observed weaker correlations between POXC and MinC, r=0.43 and 

r=0.46 respectively, compared to correlations between among other labile pools and OM (r> 

0.6).  Relative to our study, Sikora observed weaker relationships among biological indicators 

of soil health (R2=0.11-0.46), but trends are consistent that the strongest correlation was 

between the biological incubations PMN and MinC, and the weakest correlation was between 

POXC and MinC. This highlights that the chemical extractions and biological incubations 

reflect different biologically active C and N pools.  

 

4.2 Pasture age is an important driver of soil C and N measures  
 

Pasture age was the most important factor for soil C and N pools, which confirms 

findings from long-term trials that demonstrated similar gains in C in the soil surface with 

duration of well-managed pasture. The pasture system at the Wisconsin Integrated Cropping 

Systems Trial observed increases in soil total organic carbon (TOC) in the upper 15cm over a 

20-year period, while common grain and forage systems lost TOC (Sanford et al., 2012). In an 

on-farm WI study, pasture age was positively related to SOC gains in pastures compared to a 
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paired crop field (Becker et al., 2020). Similar relationships are observed for biological 

indicators of soil health. Rowntree et al. (2020) found that 20 years of well managed pasture 

in southeastern U.S. resulted in linear increases of soil health metrics with study duration: a 2-

fold increase in microbial respiration, 5-fold increase in ACE protein, and 10-fold increase in 

active carbon, or POXC.  

Corresponding with trend lines in the random forest partial effect plots, other studies 

found rapid increases in soil C and N measures after conversion of cropland to pasture, with 

decreasing gains over time (Franzluebbers, Stuedemann, et al., 2000; Guillaume et al., 2021). 

Using a chronosequence of grazed tall fescue, Franzluebbers, Stuedemann, et al., 2000 found 

that during the first ten years under pasture, soil organic C and total N accumulated at an 

average rate of 100 and 7.3 g m2 yr-1, after which accumulation of SOC and TN dropped to 

only 48 and 4.4 g m2 yr-1 between 10-30 years after establishment, and 20 and 0.6 g m2 yr-1 

between 30-50 years after establishment. As SOC and soil health increases, it becomes more 

challenging to maintain comparable increases (Abdalla et al., 2018; Arndt et al., 2022; 

Guillaume et al., 2021; McSherry & Ritchie, 2013). While this study includes a range of 

pastures 1-100 years in age, there is a substantial skew towards younger pastures and greater 

research on pastures between 20-100 years old is necessary to understand the nature of the 

trend line between soil health and pasture age among older pastures.  

 

4.3 Inherent properties were important for select soil measurements 

4.3.1 Soil Texture  

Soil texture was a strong driver for biological incubations, MinC and PMN, but 

contrary to other research, not for total C and N measures or chemical extractions. The partial 
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effect trend lines for soil texture properties were consistent between the MinC and PMN: 

negative linear trends with sand content and positive trends with clay, until predicted values 

plateaued around a clay content of 15-25%. It is challenging to build SOM in coarse-textured 

soils, since sand particles do not form organo-mineral complexes as easily as clay (Arndt et 

al., 2022; Six et al., 2002; W. J. Wang et al., 2003). However, unlike this study, soil health 

assessments in other cropping systems show stronger relationships between texture and SOM 

and POXC, relative to MinC (Amsili et al., 2021; Fine et al., 2017; Hurisso et al., 2016). 

Other research suggests that the relationship between SOC and clay in pastures may be region 

and climate specific (McSherry & Ritchie, 2013). Lastly, most of the sites in our study were 

silt loams, so the lack of variability may have limited the ability to fully detect the relationship 

between texture soil health indicators.  

 

4.3.2 pH 

The strong positive relationship between POXC and pH has been observed in other 

Wisconsin soil health assessments (Malone, 2022; Richardson, 2018; Sikora, 2020). Though 

this relationship is not well studied (Gasch et al., 2020; Hurisso, Culman, et al., 2018), 

Richardson (2018) hypothesized that this relationship may be due to the permanganate 

oxidizing carbonates, inflating POXC values.  

 

4.4 Grazing management variables were important factors for biological soil health 
indicators 

 
4.4.1 Continuously vs. rotationally grazed pastures  
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Continuously grazed pastures, which constituted 12% of the sites, had higher bulk and 

labile C and N compared to rotationally grazed systems, despite substantial evidence on the 

benefits of rotational grazing over continuous grazing for pasture productivity and soil quality 

(Byrnes et al., 2018; Conant et al., 2017; Mosier et al., 2021; Oates et al., 2011; Oates & 

Jackson, 2014; Rowntree et al., 2020; Teague et al., 2013; T. Wang et al., 2018). In this study, 

continuously grazed pastures were typically older (average age of 30, compared to 14 years 

for rotationally grazed sites). Additionally, continuously grazed pastures in this study had low 

stocking rates which can help prevent overgrazing and soil degradation (Briske et al., 2008; 

Chen et al., 2015; Franzluebbers & Stuedemann, 2010; M. Zhang et al., 2018). Generally, 

greater C inputs and manure deposition, through outwintering, inputs of bedding and feed, 

and manure deposition can contribute to soil C and N (Yang et al., 2019). Another 

consideration is that this study evaluated C and N in terms of concentrations, not accounting 

for bulk density, which can be higher under continuous versus rotationally grazed pastures 

(Abdalla et al., 2018; Byrnes et al., 2018). Survey work is snapshot in time, and we are unable 

to discern if these continuously grazed pastures are gaining or losing soil health over time 

and/or if indicator values would be higher under rotational grazing practices when all other 

factors are held constant.  

 

4.4.2 Grazing management  

Random forest analysis elucidates the responsiveness of biological indicators to 

management properties compared to bulk pools, since they had more variables of higher 

relative importance. This response is a reflection that soil health indicators are more sensitive 
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than OM or SOC to management (Culman et al., 2012, 2013; Hurisso et al., 2016; Wander & 

Drinkwater, 2000). 

Partial effect plots demonstrated that greater soil health values corresponded with 

management intensive rotational grazing (MIRG) practices: medium to high grazing pressure, 

shorter grazing events, and adequate residual height, rest, and regrowth. In Wisconsin, studies 

have shown these practices to be beneficial to pasture health and productivity (Oates et al., 

2011; Paine et al., 1999; Paine & Gildersleeve, 2011). The potential for plant health, C and N 

inputs, and soil quality to improve under these management practices is reflected in the partial 

effect trends between grazing management and biological soil health.  

A shorter grazing event with higher stocking densities and sufficient rest, can facilitate 

greater forage production, equal manure distribution, and weed suppression (Franzluebbers et 

al., 2012; Oates et al., 2011; L. K. Paine et al., 1999; Teague & Kreuter, 2020; T. Wang et al., 

2016). Teague et al. (2015) corroborated this study’s findings that excessively long grazing 

events or recovery periods resulted in poorer plant recovery, which in turn may deter soil 

health. However, grazing management is context specific and dynamic to individual pastures 

and in-season variability (Abdalla et al., 2018; McSherry & Ritchie, 2013; Mosier et al., 2021; 

Oates et al., 2012). Therefore, other studies found benefits of lower stocking rates or longer 

rest periods than what was identified in this study to soil C (Abdalla et al., 2018; Mosier et al., 

2021; T. Wang et al., 2018; T. Zhang et al., 2015). On the contrary, Becker et al. (2021) 

observed that rest period was negatively related to SOC, which they hypothesized was 

because pastures with higher SOC could support more frequent grazing events. Such 
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confounding factors could also exist in this study, as it is possible that more productive 

pastures can support higher stocking densities and/or shorter rest periods. 

4.5 Pasture management was not important to soil health values relative to other factors 

Pasture management practices, including outwintering, haying, pasture composition, 

manure applications and synthetic fertilizer use had very small effects in this study. Though 

outwintering, associated with additional inputs of straw, hay and manure, and haying, or the 

removal of biomass, were significant in single factor analysis for OM, TC, TN, POXC and 

ACE, they were not identified as important variables in random forest analysis when all 

factors were considered. Other studies in grain systems identified the importance of 

aboveground biomass and retaining residue (Culman et al., 2012; Hurisso et al., 2016; 

Hurisso, Moebius‐Clune, et al., 2018), and comparisons between rotationally grazed pastures 

and hay fields demonstrated lower C and N in exclusively hayed fields (Arndt et al., 2022; 

Franzluebbers, Stuedemann, et al., 2000; Oates & Jackson, 2014; Tilhou et al., 2021).  

In this study, the additional manure use was only important to SOM and TN, with 

minimal importance to the other soil C and N measures compared to other factors. Manure 

often is promoted to build soil health in row cropping systems, but previous research shows 

inconsistent effects of manure on SOM and biological soil health (Bera et al., 2016; Hurisso et 

al., 2016; Jokela et al., 2009; Mikha et al., 2017; Nunes, van Es, et al., 2020; Rui et al., 2020; 

Yang et al., 2019). Given that grazed pastures already have high manure deposition there are 

likely minimal effects of manure applications in this study. Synthetic fertilizer frequency had 

a negative correlation with MinC and PMN in single factor analysis, though it was not 

important once all other factors were considered in the random forest.  
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Legume percentage was only weakly important to MinC, which benefited from a 

legume percentage of 15% or greater. Other studies found that crop diversity and legumes to 

have a significant effect on biological indicators of soil health, especially MinC, in both 

cropping and pasture systems (Arndt et al., 2022; Chen et al., 2001; Culman et al., 2013; 

Hurisso et al., 2016; Skinner et al., 2006). Pasture specific SOC and soil health work have 

identified pasture composition, including grass physiological type (C3 vs. C4), legume cover, 

species diversity within functional groups, and the percentage of improved grass and legume 

species as influential (McSherry & Ritchie, 2013; Skinner et al., 2006; Spiesman et al., 2018; 

Yang et al., 2019). Further exploration on the influence of pasture composition on biological 

soil health would be beneficial.  

5. Conclusion 
 

Pasture age, grazing management and soil texture were the most important factors in 

explaining variation in soil C and N measures. Results suggest that pasture age drives total 

and labile C and N pools and due to decreasing gains in predicted soil values over time, future 

research should explore whether there is a maximum threshold of these measurements in 

pastures. There is also evidence that within rotationally grazed systems, MIRG practices, such 

as higher stocking densities with shorter grazing intervals and sufficient recovery time, are 

associated with greater biological indicators of soil health. While only MinC and PMN were 

strongly influenced by soil texture, it is beneficial to continue to explore this relationship and 

benchmark soil health indicators accordingly. 

Soil health testing is a potential tool for farmers to adjust management practices and 

track improvements to soil health over time. But since pastures inherently integrate all 

principles of soil health, the question of how soil health testing may fit into a grazier’s toolbox 
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is uncertain. This study identified pasture age, soil texture, and grazing management as 

important variables to biological indicators soil health. However, out of these factors, only 

grazing management is within the grazier’s control. MIRG, which has direct benefits to 

pasture health and productivity, aligned with soil health benefits for rotationally grazed 

pastures in this study, reaffirming the benefits of well-managed grazing to both pasture and 

soil health. Beyond grazing management, other pasture management factors, like manure and 

fertilizer inputs, legume coverage, outwintering, and haying, were not identified in the 

random forest, which may limit the tools available to graziers to improve pasture soil health. 

If practices that promote soil health have direct benefits to pasture productivity, regular soil 

health testing to evaluate the efficacy of soil health building practices may be less valuable in 

pastures compared to row cropping systems.  

This study demonstrated that within pasture systems, biological indicators of soil 

health are variable, and sensitive to management as well as soil properties. But further value 

in soil health testing is dependent on the relationship between biological indicators of soil 

health and agronomic, economic, or environmental benefits. Therefore, it is important for soil 

health research to utilize a framework that links soil health indicators to desired soil functions 

and specific and pertinent outcomes, such as productivity, nutrient efficiency, soil C storage, 

greenhouse gas emissions, and water quality (Wade et al., 2022). Thus far, soil health research 

has been predominantly in row cropping systems, and it is imperative that pastures are 

represented in future research that evaluates relationships between soil health indicators, soil 

function and desired outcomes. Understanding the relationship between soil health indicators 

and essential ecosystem services is necessary to improve soil health in pasture soils and the 

broader agricultural landscape.  
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Supplementary materials 
 
Table S2.1: Categorical inherent properties, their levels and number of fields associated 
with each level.  
Due to differences between continuous (n=11) and rotationally (n=78) grazed pastures, site 
descriptions are provided based on grazing category. One farm (3 sites) did not provide 
management and its inherent site descriptions provided under the category “unknown 
management”. Texture class was determined based on measured sand, silt and clay content. 
Drainage class and soil order were retrieved from NRCS Web Soil Survey, based on GPS 
coordinates recorded at the center of the sampling area. 

Inherent Site Properties Site Category 

Factor Levels 
Rotationally 
Grazed Sites 

(n=78)  

Continuously 
Grazed Sites 

(n=11) 

Unknown 
Management 

(n=3) 
  number of sites (n) 

Region Kickapoo 38 8 0 
Marathon 40 3 3 

Texture 
Class 

loamy sand 1 0 1 
sandy loam 8 1 2 
loam 8 0 0 
silt loam 58 9 0 
silty clay loam 3 1 0 

Drainage 
Class 

poorly drained 0 2 0 
somewhat poorly drained 16 1 0 
moderately well drained 14 1 3 
well drained 45 7 0 
somewhat excessively drained 1 0 0 
excessively drained 2 0 0 

Soil Order 

Alfisols 68 10 0 
Entilsols 1 0 3 
Mollisols 1 1 0 
Spodosols 8 0 0 
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Table S2.2: Categorical management properties, their levels and number of fields 
associated with each level.  
Due to differences between continuous (n=11) and rotationally (n=78) grazed pastures, site 
descriptions are provided based on grazing category. Management data was provided from the 
farmers.  

Management Factors Site Category 

Factor Levels 
Rotationally 
Grazed Sites 

(n=78) 

Continuously 
Grazed Sites 

(n=11) 
    number of sites (n) 

Operation Type 

beef 44 7 
dairy 15 0 
heifers 7 3 
multispecies 12 1 

Land Ownership Owned  68 9 
Rented 10 2 

Previous Land Use 

fallow 5 3 
hay 14 0 
row crops 28 1 
row crops & hay 27 3 

unknown 4 4 

Rotationally Grazed Yes 78 0 
No 0 11 

Outwintered in last 5 
years 

Yes 21 3 
No 57 8 

Hay Frequency 
Category 

Never 55 10 
Sometimes 13 1 
Often 10 0 

Fertilizer applied in last 
5 years 

Yes 38 1 
No 40 10 

 Fertilizer applied this 
year 

Yes 23 1 
No 55 10 

Manure applied in last 5 
years 

Yes 28 0 
No 50 11 

Manure applied this 
year 

Yes 8 0 
No 67 11 
unknown 3 0 

Lime applied in last 5 
years 

Yes 25 0 
No 53 11 
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Table S2.3: Univariate statistics for all independent continuous soil properties.  
Data are separated into rotationally (“Rot”) and continuously (“Cont”) grazed pastures.  

  pH P  K  NO3
-  NH4

+  Sand Silt Clay 

    --------------------------------- ppm ---------------------------------    -------------------- % -------------------- 

 Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont 

n 78 11 78 11 78 11 78 11 78 11 78 11 78 11 78 11 

Minimum 5.4 6.0 5 10 30 47 1.1 1.4 3.4 4.1 12 14 8 30 9 16 

1st Quartile 6.2 6.3 14 24 76 145 3.0 4.3 5.2 4.3 17 16 50 57 16 18 

Median 6.4 6.6 23 42 114 188 4.9 5.8 6.2 5.6 23 18 58 61 18 20 

Mean 6.5 6.5 37 93 138 240 6.1 6.6 7.3 6.7 29 21 53 58 18 21 

3rd Quartile 6.8 6.7 37 142 168 278 7.6 6.7 9.1 9.0 31 20 61 64 20 23 

Maximum 7.4 7.0 273 286 525 670 20.5 20.9 18.8 10.4 83 53 71 69 35 29 

Std. Dev. 0.4 0.3 43 97 98 173 4.4 5.2 3.0 2.7 18 11 15 10 4 4 

CV 0.07 0.05 1.16 1.03 0.71 0.72 0.73 0.79 0.41 0.40 0.62 0.52 0.29 0.18 0.23 0.18 

Skewness 0.06 -0.18 3.16 0.88 2.07 1.23 1.28 1.7 1.45 0.27 1.84 2.03 -1.74 -1.63 0.8 0.73 

Kurtosis -0.25 -1.22 12.08 -0.88 5.11 0.74 1.16 2.22 2.03 -1.86 2.37 3.04 2.06 2.02 2.93 -0.2 
 

 

  



 76 

Table S2.4: Univariate statistics for continuous management variables.  
Data are separated into rotationally (“Rot”) and continuously (“Cont”) grazed pastures. 

  
Pasture Age 

Fertilizer 
Frequency 

Manure 
Frequency 

Legume 
Stocking 

Rate 
Stocking 
Density 

Seasonal Grazing 
Pressure 

  years # applications in past 5 years --- % --- ---------- AU ha-1 ---------- AU ha-1 * days  

 Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont Rot Cont 

n 78 11 78 11 78 11 78 11 75 10 78 10 78 10 

Minimum 1 2 0 0 0 0 0 0.2 0.7 1.1 6 1.1 38 82 

1st Quartile 4 20 0 0 0 0 7.5 6.0 1.0 1.4 30 1.4 252 173 

Median 9.5 30 0 0 0 0 14.5 10.9 1.7 1.6 91 1.6 454 229 

Mean 13.6 30.6 1.5 0.5 0.8 0 19.9 10.1 2.1 1.8 102 1.8 585 298 

3rd Quartile 19.8 40 3 0 1 0 31.0 14.8 2.4 1.8 122 1.8 628 355 

Maximum 100 60 5 5 5 0 80.3 17.8 8.0 3.5 433 3.5 3031 835 

Std. Dev. 15.9 19.4 2.0 1.5 1.4 0 16.3 5.6 1.5 0.7 102 0.7 568 224 

CV 1.17 0.64 1.29 2.76 1.79 NA 0.82 0.55 0.72 0.38 1.00 0.38 0.97 0.75 

Skewness 2.64 0.05 0.86 2.31 1.87 NA 1.07 -0.27 2.47 1.37 1.65 1.37 2.73 1.20 

Kurtosis 9.69 -1.16 -0.94 3.94 2.64 NA 0.96 -1.38 7.16 0.87 2.36 0.87 8.30 0.53 
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Table S2.5: Univariate statistics for all continuous management factors, specific to 
rotationally grazed pastures. 

  
Days 

between 
grazing and 

sampling  

Number of 
Rotations 

Time in 
Paddock 

Rest 
Period 

Residual Pasture 
Height 

  
 --------- days --------- ----- cm ----- 

n 73 78 78 78 78 
Minimum 0 2 0.33 14 5.1 
1st Quartile 13 3 1 30 10.2 
Median 21 4 1 30 12.7 
Mean 79 4.5 2.34 39 13.6 
3rd Quartile 200 6 3.5 45 15.2 
Maximum 260 10 14 150 27.9 
Std. Dev. 97 1.9 2.33 25 4.1 
CV 1.22 0.43 0.99 0.65 0.30 
Skewness 0.9 0.93 2.56 3.22 0.54 
Kurtosis -1.05 0.4 8.34 11.54 0.77 
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Table S2.6: Univariate statistics for organic matter (OM)%, total carbon (TC)%, total 
nitrogen (TN)%, and carbon-to-nitrogen ratio (C:N); n=92.  

  OM TC TN C:N 
  ------------------- % -------------------   
n 92 92 92 92 
Minimum 2 1.14 0.089 9.15 
1st Quartile 3.4 1.96 0.182 10.01 
Median 3.9 2.42 0.224 10.50 
Mean 4 2.45 0.231 10.71 
3rd Quartile 4.5 2.82 0.268 11.23 
Maximum 7.7 4.24 0.366 15.24 
Std. Dev. 1.02 0.65 0.062 1.06 
CV 0.25 0.27 0.27 0.10 
Skewness 0.96 0.51 0.24 1.32 
Kurtosis 1.91 -0.05 -0.48 2.61 

 
Table S2.7: Univariate statistics for permanganate oxidizable carbon (POXC), 
autoclaved-citrate extractable protein (ACE), mineralizable carbon (MinC) and 
potentially mineralizable nitrogen (PMN); n=92.  
  POXC ACE MinC PMN 
  mg kg-1 g kg-1 ---------- mg kg-1 ---------- 
n 92 92 92 92 
Minimum 372.7 4.5 15.68 36.94 
1st Quartile 563.5 6.2 101.17 104.9 
Median 718.1 7.2 128.47 125.36 
Mean 700.9 7.6 127.92 130 
3rd Quartile 816.5 8.4 158.44 157.41 
Maximum 1229.8 15.5 207.76 235.91 
Std. Dev. 170.1 2.0 41.08 41.14 
CV 0.24 0.26 0.32 0.32 
Skewness 0.31 1.48 -0.26 0.24 
Kurtosis -0.21 3.61 -0.33 -0.28 
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Figure S2.1: Scatterplots of biological soil health indicators (POXC, ACE, MinC and 
PMN) and i) organic matter (OM)%, ii) total carbon (TC)%, iii) total nitrogen (TN)%, 
and iv) carbon-to nitrogen ratio (C:N).  
Linear regressions were conducted for each relationship and coefficients of determination (R2) 
and regression equations are included in each figure. Estimates in the equations were 
statistically significant (alpha=0.05). POXC = permanganate oxidizable carbon (mg kg-1); ACE = 
autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially 
mineralizable nitrogen (mg kg-1) 
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Figure S2.2: Scatterplots of clay content all soil C and N measurements OM, TC, TN, 
C:N, POXC, ACE, MinC and PMN.  
Linear regressions were conducted for each relationship and if relationships were significant 
(alpha=0.05), coefficients of determination (R2) and estimated equation were included. Clay content 
was transformed to include a polynomial term (x+x2). The graph includes untransformed clay content 
on the x axis with the polynomial trendline. Estimates in the equations were statistically significant 
(alpha=0.05). OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant 

 
Figure S2.3: Scatterplots of sand content all soil C and N measurements OM, TC, TN, 
C:N, POXC, ACE, MinC and PMN.  
Linear regressions were conducted for each relationship and if relationships were significant 
(alpha=0.05), coefficients of determination (R2) and estimated equation were included. Estimates in 
the equations were statistically significant (alpha=0.05). OM= organic matter (%); TC= total carbon (%); TN= 
total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-
citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg 
kg-1) 
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Figure S2.4: Boxplot of all OM, TC, TN, C:N, POXC, ACE, MinC, and PMN by drainage class.  
Drainage class was determined through the NRCS Web Soil Survey: PD= poorly drained (n=2), SPD=somewhat poorly drained (n=17), 
MW=moderately well drained (n=18), WD= well drained (n=52), SED=somewhat excessively drained (n=1), ED=excessively drained (n=2).  
In the boxplot, the middle line indicates the median and boxes delimit first and third quartiles. Upper and lower whiskers represent 1.5 times 
the interquartile range or, if there were no observations beyond that range, the maximum and minimum values.  Letters indicate significant 
differences (p-value < 0.05) among previous land use, determined through ANOVA and Fisher’s LSD. OM= organic matter (%); TC= total carbon 
(%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable 
protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant 
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Figure S2.5: Boxplot of all OM, TC, TN, C:N, POXC, ACE, MinC, and PMN by previous land use.  
Previous land use was categorized as fallow hay, row crows, hay/row crop rotation, and unknown (when producers were unable to 

report land use prior to pasture). In the boxplot, the middle line indicates the median and boxes delimit first and third quartiles. 
Upper and lower whiskers represent 1.5 times the interquartile range or, if there were no observations beyond that range, the 

maximum and minimum values.  Letters indicate significant differences (p-value < 0.05) among previous land use, determined 
through ANOVA and Fisher’s LSD. OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-

nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon 
(mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant 
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Table S2.8: Analysis of Variance (ANOVA) results for texture class and drainage class for OM, TC, TN, C:N, POXC, ACE, 
MinC and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 
Texture Class Drainage Class 

 

 loamy 
sand 

sandy 
loam loam silt 

loam 

silty 
clay 
loam 

 
somewhat 
poorly 
drained 

moderately 
drained 

well 
drained 

somewhat 
excessively 
drained 

excessively 
drained 

n  1 8 8 58 3  16 14 45 1 2 

 ANOVA ANOVA 
 p-value      p-value      

OM (%) 0.149      0.326      

TC (%) 0.036 c a abc ab bc 0.016 b a b b a 
TN (%) 0.044 c ab abc a bc 0.163      

C:N < 0.001 ab a b b ab 0.005 b b b ab a 
POXC (mg kg-1) 0.072      0.294      

ACE (g kg-1) 0.020 b a ab b b 0.035 ab a ab b a 
MinC (mg kg-1) 0.005 b b ab a ab 0.014 b ab a b b 
PMN (mg kg-1) 0.001 b b ab a ab 0.077      

OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Table S2.9: Analysis of Variance (ANOVA) results for region and land ownership for OM, TC, TN, C:N, POXC, ACE, 
MinC and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 
Region Land ownership Operation Type 

 
 Kickapoo Marathon  

Owned Rented 
 Dairy Heifers Beef Multispecies 

n  38 40  68 10  15 7 44 12 

 ANOVA ANOVA ANOVA 

 p-value   p-value p-value    
OM (%) 0.053   0.765  0.787     
TC (%) 0.026 b a 0.217  0.423     
TN (%) 0.179   0.196  0.621     
C:N 0.040 b a 0.337  0.751     
POXC (mg kg-1) 0.101   0.694  0.150     
ACE (g kg-1) 0.007 b a 0.316  0.721     
MinC (mg kg-1) 0.001 a b 0.497  0.817     
PMN (mg kg-1) 0.037 a b 0.337  0.751     

OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Table S2.10: Analysis of Variance (ANOVA) results for previous land use, outwintering, and hay frequency for OM, TC, 
TN, C:N, POXC, ACE, MinC and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 
Previous Land Use Outwinter Hay frequency 

 

 Fallow Hay Row 
Crops 

Row 
crops & 

hay 
Unknown  No Yes  Never Sometimes Often 

n  5 14 28 27 4  57 21  55 13 10 

 ANOVA ANOVA ANOVA 

 p-value     p-value   p-value    
OM (%) 0.014 ab c c bc a 0.004 b a 0.016 a b ab 
TC (%) 0.028 ab c bc bc a 0.006 b a 0.002 a b b 
TN (%) 0.134      0.020 b a 0.004 a b b 
C:N 0.466      0.410   0.299    
POXC (mg kg-1) 0.195      0.020 b a 0.012 a b b 
ACE (g kg-1) 0.001 a c bc b ab <0.001 b a 0.047 a b ab 
MinC (mg kg-1) 0.012 ab bc c c ab 0.537   0.010 a ab b 
PMN (mg kg-1) 0.315      0.498   0.100    

OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Table S2.11: Analysis of Variance (ANOVA) results for fertilizer use, fertilizer applied this year, manure use, manure 
applied this year, and lime use for OM, TC, TN, C:N, POXC, ACE, MinC and PMN. Analysis was for rotationally grazed 
pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 

Fertilizer applied 

(5yrs) 

Fertilizer applied 

this year 

Manure applied 

(5yrs) 

Manure applied this 

year 
Lime applied (5yrs) 

 
 No Yes  No Yes  No Yes  No Yes  No Yes 

n  40 38  55 23  50 28  67 8  53 25 

 ANOVA ANOVA ANOVA ANOVA ANOVA 

 p-value   p-value   p-value   p-value   p-value   
OM (%) 0.133   0.207   0.654   0.005 b a 0.001 a b 

TC (%) 0.305   0.128   0.379   0.112   0.001 a b 

TN (%) 0.092   0.333   0.756   0.025 b a 0.001 a b 

C:N 0.051   0.316   0.099   0.130   0.773   
POXC (mg kg-1) 0.007 a b 0.008 a b 0.630   0.002 b a 0.000 a b 

ACE (g kg-1) 0.543   0.143   0.231   0.293   0.194   
MinC (mg kg-1) 0.003 a b 0.118   0.329   0.672   0.087   
PMN (mg kg-1) 0.003 a b 0.400   0.980   0.104   0.003 a b 

OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1)
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Table S2.12: Linear regression results for all continuous variables and organic matter (OM)%, total carbon (TC)%, total 
nitrogen (TN)%, and carbon-to-nitrogen ratio (C:N) of rotationally grazed pastures (n=78).  
Table includes p-values, and if the relationship was significant (p-value <0.05), coefficient of determination (R2) and direction of 
relationship (+ or -). ▲ signifies that explanatory variables were transformed into a polynomial to fit assumptions of linear 

regression; for the trendline direction, the first sign corresponds to “x” and the second sign corresponds to “x2”. 

 
OM (%) TC (%) TN (%) C:N  

p-value R2 Slope p-value R2 Slope p-value R2 Slope p-value R2 Slope 
Soil Properties             

 
pH 0.007 0.09 + 0.067 0.04 + 0.398   0.006 0.10 + 

Sand (%) 0.354   0.405   0.342   <0.001 0.28 + 

Silt (%) 0.271   0.697   0.174   <0.001 0.27 - 

Clay (%) 0.946   0.032 0.06 - 0.367   <0.001 ▲ 0.31 -, + 

Pasture management             

 

Pasture age  <0.001 0.21 + <0.001 0.28 + <0.001 0.27 + 0.848   

Fertilizer frequency (past 5 
years) 0.293   0.883   0.806 

 
 0.438   

Manure frequency (past 5 
years) 0.098   0.422   0.153 

 
 0.110   

Legume % 0.474   0.298   0.484  
 0.402   

Grazing management         
 

   

 

Days between grazing and 
sampling 0.726   0.392   0.575 

  
0.509   

Stocking rate 0.623   0.892   0.447  
 0.038 0.06 - 

Stocking density 0.007 ▲ 0.12 +, - 0.004 ▲ 0.14 + , - 0.004 ▲ 0.14 +, - 0.316   

Seasonal grazing pressure 0.088 ▲ 0.06 +, - 0.035 ▲ 0.09 + , - 0.006 ▲ 0.13 +, - 0.159   

Number of rotations 0.038 ▲ 0.08 + , - 0.020 ▲ 0.10 + , - 0.044 ▲ 0.08 +, - 0.523   

Time in paddock 0.793   0.683   0.837  
 0.879   

Rest period 0.780   0.024 0.07 - 0.003 0.11 - 0.035 0.06 + 

Residual pasture height 0.586   0.931   0.868   0.871   
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Table S2.13: Linear regression results for all continuous variables and permanganate oxidizable carbon (POXC), 
autoclaved-citrate extractable protein (ACE), mineralizable carbon (MinC), and potentially mineralizable nitrogen (PMN) 
of rotationally grazed pastures (n=78).  
Table includes p-values, and if the relationship was significant (p-value <0.05), coefficient of determination (R2) and direction of 

relationship (+ or -). ▲signifies that explanatory variables were transformed into a polynomial to fit assumptions of linear 

regression; for the trendline direction, the first sign corresponds to “x” and the second sign corresponds to “x2”.    

 
POXC ACE MinC PMN 

p-value R2 Slope p-value R2 Slope p-value R2 Slope p-value R2 Slope 
Soil Properties             

 
pH 0.001 0.15 + 0.984   0.984   0.560   
Sand (%) 0.266   0.051 0.05  <0.001 0.27 - <0.001 0.23 - 
Silt (%) 0.122   0.142   <0.001 0.27 + <0.001 0.25 + 
Clay (%) 0.433   0.002 0.12 - <0.001 0.27 +, - <0.001 0.21 +, - 

Pasture management             

 
Pasture age  0.001 0.13 + <0.001 0.29 + <0.001 0.17 + <0.001 0.16 + 
Fertilizer frequency (past 5 years) 0.053 0.05 - 0.277   0.003 0.11 - 0.021 0.07 - 
Manure frequency (past 5 years) 0.099   0.950   0.648   0.385   
Legume % 0.659   0.697   0.539   0.537   

Grazing management             

 

Days between grazing and 
sampling 0.621   0.502   0.257   0.531   
Stocking rate 0.423   0.884   0.069   0.007 0.09 + 
Stocking density <0.001▲ 0.20 +, - 0.009▲ 0.12 +, - 0.738   0.385   
Seasonal grazing pressure 0.017▲ 0.10 +, - 0.036▲ 0.09 +, - 0.460▲   0.030▲ 0.09 +, - 
Number of rotations 0.090▲ 0.06 +, - 0.4536   0.050▲ 0.08 +, - 0.104▲   
Time in paddock 0.530   0.954   0.306   0.741   
Rest period 0.042 0.05 - 0.774   0.047 0.05 - 0.035 0.06 - 
Residual pasture height 0.651   0.400   0.953   0.628   
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Table S2.14: Organic Matter random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

Organic Matter Random Forest: Factor Importance 
 

____ VIMP Analysis____           Minimal Depth Analysis 

 
Rank 

Variable 
Importance 

Relative 
Importance 

Rank 
Average 

Minimal Depth 

Pasture age 1 0.48 1 1 2.59 

Manure frequency 2 0.20 0.42 2 4.96 

Time in paddock 3 0.18 0.36 7 5.35 

Previous land use 4 0.11 0.24 8 5.39 

Lime 5 0.08 0.16 4 5.08 

Stocking density 6 0.07 0.15 3 5.08 

Residual pasture height 7 0.06 0.12 12 5.81 

Clay (%) 8 0.05 0.11 13 5.91 

Number of rotations 9 0.05 0.11 6 5.24 

pH 10 0.05 0.11 5 5.09 

Outwinter 11 0.05 0.10   
Rest period 12 0.05 0.10 11 5.54 

Legume (%) 13 0.04 0.09 9 5.41 

Seasonal grazing pressure 14 0.04 0.09 10 5.49 

Silt (%) 15 0.03 0.06   
Sand (%) 16 0.03 0.06   
Hay frequency 17 0.02 0.04 14 5.97 

Days between grazing and sampling 18 0.02 0.04   
Drainage class 19 0.01 0.02   
Stocking rate 20 0.01 0.02   
Region 21 0.01 0.02   
Fertilizer frequency 22 0.00 0.01   
Fertilizer this year 23 0.00 0.00   
Operation type 24 0.00 0.00   
Fertilizer 25 0.00 0.00   
Manure 26 0.00 0.00   
(OOB) R squared: 0.32 

(OOB) Requested performance error: 0.38 
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Table S2.15: Total carbon random forest analysis results. 
 “VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

Total Carbon Random Forest: Factor Importance 
 

____ VIMP Analysis____           Minimal Depth Analysis 

 
Rank 

Variable 
Importance 

Relative 
Importance 

Rank 
Average 

Minimal Depth  

Pasture age 1 0.29 1 1 2.31 

Time in paddock 2 0.08 0.29 4 4.71 

Stocking density 3 0.05 0.18 3 4.53 

Rest period 4 0.04 0.15 2 4.46 

Previous land use 5 0.03 0.12 15 5.43 

Silt (%) 6 0.03 0.11 6 5.02 

Drainage class 7 0.03 0.11 14 5.39 

Clay (%) 8 0.03 0.10 7 5.05 

Sand (%) 9 0.03 0.09 5 4.91 

Lime 10 0.02 0.08 8 5.14 

Seasonal grazing pressure 11 0.02 0.07 10 5.18 

Number of rotations 12 0.02 0.07 11 5.22 

Residual pasture height 13 0.02 0.07 12 5.33 

Hay frequency 14 0.02 0.06 9 5.16 

pH 15 0.01 0.05 13 5.36 

Outwinter 16 0.01 0.05   
Stocking rate 17 0.01 0.04   
Region 18 0.01 0.03   
Legume (%) 19 0.01 0.02   
Manure frequency 20 0.01 0.02   
Days between grazing and sampling 21 0.00 0.01   
Operation type 22 0.00 0.01   
Fertilizer this year 23 0.00 0.00   
Manure 24 0.00 0.00   
Fertilizer 25 0.00 0.00   
Fertilizer frequency 26 0.00 0.00   
(OOB) R squared: 0.37 
(OOB) Requested performance error: 0.19 



 

 
 
 
 

91 

Table S2.16: Total Nitrogen random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

Total Nitrogen Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth 

Pasture age 1 0.0023 1 1 2.01 
Stocking density 2 0.0004 0.19 3 4.16 
Rest period 3 0.0004 0.17 2 4.12 
Manure frequency 4 0.0004 0.16 9 5.28 
Time in paddock 5 0.0003 0.12 11 5.34 
Silt (%) 6 0.0002 0.10 5 4.97 
Seasonal grazing pressure 7 0.0002 0.10 4 4.52 
Sand (%) 8 0.0002 0.08 8 5.16 
Clay (%) 9 0.0002 0.08 14 5.41 
Residual pasture height 10 0.0001 0.06 7 5.14 
Stocking rate 11 0.0001 0.06 13 5.41 
Previous land use 12 0.0001 0.06   
Lime 13 0.0001 0.06 6 5.12 
Outwinter 14 0.0001 0.05   
pH 15 0.0001 0.04 15 5.50 
Number of rotations 16 0.0001 0.03 12 5.39 
Hay frequency 17 0.0001 0.03 10 5.32 
Drainage class 18 0.0001 0.03   
Legume (%) 19 0 0.01   
Region 20 0 0.01   
Operation type 21 0 0.01   
Days between grazing and sampling 22 0 0.00   
Fertilizer frequency 23 0 0.00   
Fertilizer this year 24 0 0.00   
Manure 25 0 0.00   
Fertilizer 26 0 0.00   
(OOB) R squared: 0.35 
(OOB) Requested performance error: 0.0017 
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Table S2.17: Carbon to nitrogen ratio (C:N) random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

C:N Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth  

pH 1 2.05 1 2 3.63 
Clay (%) 2 0.62 0.30 1 3.23 
Sand (%) 3 0.36 0.18 4 4.23 
Silt (%) 4 0.35 0.17 3 4.16 
Drainage class 5 0.13 0.06 5 5.19 
Time in paddock 6 0.13 0.06 6 5.21 
Operation type 7 0.07 0.03   
Stocking rate 8 0.06 0.03   
Rest period 9 0.05 0.03   
Seasonal grazing pressure 10 0.05 0.02   
Manure frequency 11 0.03 0.01   
Pasture age 12 0.03 0.01   
Fertilizer frequency 13 0.03 0.01   
Residual pasture height 14 0.03 0.01   
Previous land use 15 0.02 0.01   
Region 16 0.02 0.01   
Stocking density 17 0.02 0.01   
Number or rotations 18 0.02 0.01   
Fertilizer this year 19 0.01 0.01   
Legume (%) 20 0.01 0.00   
Hay frequency 21 0.01 0.00   
Days between grazing and sampling 22 0.01 0.00   
Fertilizer 23 0.01 0.00   
Lime 24 0.00 0.00   
Outwinter 25 0.00 0.00   
Manure 26 0.00 0.00   
(OOB) R squared: 0.35 
(OOB) Requested performance error: 0.69 
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Table S2.18: POXC random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

POXC Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth  

Pasture age 1 12684 1 1 2.93 
Stocking density 2 7366 0.58 2 3.23 
Time in paddock 3 7055 0.56 5 4.16 
Lime 4 6062 0.48 4 3.60 
pH 5 4651 0.37 3 3.45 
Rest period 6 3466 0.27 6 4.31 
Residual pasture height 7 2273 0.18 8 4.62 
Previous land use 8 2142 0.17 10 4.98 
Seasonal grazing pressure 9 1916 0.15 7 4.39 
Number of rotations 10 1642 0.13 9 4.79 
Manure frequency 11 1124 0.09   
Operation type 12 979 0.08   
Fertilizer frequency 13 950 0.07   
Outwinter 14 938 0.07   
Fertilizer this year 15 859 0.07   
Clay (%) 16 677 0.05   
Hay frequency 17 594 0.05   
Drainage class 18 585 0.05   
Legume (%) 19 534 0.04   
Manure 20 500 0.04   
Stocking rate 21 462 0.04   
Silt (%) 22 240 0.02   
Fertilizer 23 202 0.02   
Region 24 178 0.01   
Days between grazing and sampling 25 67 0.01   
Sand (%) 26 -52 0.00   
(OOB) R squared: 0.45 
(OOB) Requested performance error: 15039 
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Table S2.19: ACE random forest analysis results. 
 “VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

ACE Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth  

Pasture age 1 6.17 1 1 2.30 
Time in paddock 2 1.99 0.32 2 4.25 
Residual pasture height 3 1.16 0.19   
Previous land use 4 1.15 0.19 3 4.29 
Outwinter 5 0.75 0.12 4 4.69 
Stocking density 6 0.34 0.06 6 5.03 
Clay (%) 7 0.23 0.04 5 4.78 
Seasonal grazing pressure 8 0.20 0.03   
Rest period 9 0.18 0.03   
Silt (%) 10 0.17 0.03   
Sand (%) 11 0.17 0.03   
Drainage class 12 0.15 0.02   
Legume (%) 13 0.12 0.02   
Manure frequency 14 0.12 0.02   
Hay frequency 15 0.07 0.01   
Region 16 0.07 0.01   
Number of rotations 17 0.05 0.01   
Days between grazing and sampling 18 0.04 0.01   
Stocking rate 19 0.03 0.01   
pH 20 0.02 0.00   
Operation type 21 0.02 0.00   
Fertilizer this year 22 0.01 0.00   
Lime 23 0.01 0.00   
Fertilizer frequency 24 0.00 0.00   
Manure 25 0.00 0.00   
Fertilizer 26 0.00 0.00   
(OOB) R squared: 0.32 
(OOB) Requested performance error: 2.18 

  



 

 
 
 
 

95 

Table S2.20: MinC random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

MinC Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth  

Pasture age 1 630 1 1 2.67 
Clay (%) 2 489 0.78 3 3.79 
Sand (%) 3 345 0.55 2 3.65 
Silt (%) 4 303 0.48 4 3.89 
Previous land use 5 144 0.23 6 4.80 
Time in paddock 6 140 0.22 7 5.06 
Hay frequency 7 83 0.13 11 5.53 
Number of rotations 8 78 0.12 9 5.49 
Legume (%) 9 72 0.11 5 4.61 
pH 10 66 0.11 8 5.09 
Fertilizer frequency 11 47 0.08   
Outwinter 12 47 0.07   
Stocking density 13 25 0.04 10 5.52 
Residual pasture height 14 13 0.02   
Rest period 15 13 0.02   
Stocking rate 16 12 0.02   
Region 17 11 0.02   
Drainage class 18 11 0.02   
Days between grazing and sampling 19 11 0.02   
Seasonal grazing pressure 20 8 0.01   
Fertilizer 21 6 0.01   
Manure frequency 22 2 0.00   
Lime 23 1 0.00   
Fertilizer this year 24 0 0.00   
Manure 25 0 0.00   
Operation type 26 -1 0.00   
(OOB) R squared: 0.36 
(OOB) Requested performance error: 831 
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Table S2.21: PMN random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

PMN Random Forest: Factor Importance  
____ VIMP Analysis____           Minimal Depth Analysis 

 

Rank 
Variable 

Importance 
Relative 

Importance 
Rank 

Average 
Minimal Depth  

Pasture age 1 852 1 1 2.48 
Clay (%) 2 369 0.43 4 4.35 
Sand (%) 3 346 0.41 3 4.04 
Silt (%) 4 300 0.35 2 3.83 
Stocking rate 5 184 0.22 5 4.82 
Time in paddock 6 154 0.18 7 5.00 
Rest period 7 101 0.12 6 4.94 
Seasonal grazing pressure 8 80 0.09 8 5.17 
Residual pasture height 9 72 0.08   
Stocking density 10 65 0.08 10 5.29 
Previous land use 11 41 0.05   
Legume (%) 12 41 0.05 9 5.26 
Outwinter 13 36 0.04   
Number of rotations 14 35 0.04   
Lime 15 33 0.04   
Fertilizer frequency 16 27 0.03   
pH 17 17 0.02   
Hay frequency 18 14 0.02   
Manure frequency 19 13 0.02   
Fertilizer 20 12 0.01   
Operation type 21 11 0.01   
Drainage class 22 7 0.01   
Days between grazing and sampling 23 7 0.01   
Fertilizer this year 24 4 0.00   
Region 25 1 0.00   
Manure 26 0 0.00   
(OOB) R squared: 0.44 
(OOB) Requested performance error: 674 
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Figure S2.6: Partial effect of previous land use on OM, TC, POXC, ACE, and MinC  
Predicted values are calculated for previous land use category over all remaining covariates, 
averaged, and plotted.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); POXC = permanganate oxidizable carbon (mg kg-1); ACE = 
autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1)
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Figure S2.7: Partial effect of clay content on OM, TC, TN, C:N, POXC, ACE, MinC and PMN 
Predicted values are calculated as clay (%) varies over observed values. Values are calculated over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure S2.8: Partial effect of sand content on OM, TC, TN, C:N, POXC, ACE, MinC and PMN 
Predicted values are calculated as sand (%) varies over observed values. Values are calculated over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure S2.9: Partial effect of silt content on OM, TC, TN, C:N, POXC, ACE, MinC and PMN 
Predicted values are calculated as silt (%) varies over observed values. Values are calculated over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure S2.10: Partial effect of residual pasture height on OM, POXC, ACE 
Predicted values are calculated as residual pasture height varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two 
standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate 
extractable protein (g kg-1) 
 

 

Figure S2.11: Partial effect of number of rotations on OM, POXC, MinC  
Predicted values are calculated as number of rotations varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two 
standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); POXC = permanganate oxidizable carbon (mg kg-1); MinC = mineralizable carbon 
(mg kg-1) 
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Figure S2.12: Partial effect of percent legumes on MinC 
Predicted values are calculated as legume (%) varies over observed values. Values are calculated over 
all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
MinC = mineralizable carbon (mg kg-1) 

 

Figure S2.13: Partial effect of outwinter on OM and ACE 
Predicted values are calculated for outwintering categories over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
OM= organic matter (%); ACE = autoclaved-citrate extractable protein (g kg-1) 
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Figure S2.14: Partial effect of haying frequency on MinC 
Predicted values are calculated for hay frequency categories over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
MinC = mineralizable carbon (mg kg-1) 

 

  



 

 
 
 
 

104 

R Code 
 
Univariate Statistics: 

#group soil C and N indicators 

library(dplyr)  

Indicators <- SH_da %>% 

  dplyr:: select(OM, TC, TN, TCtoTN, POXC_June, ACE_June, MinC_June, PMN_June) 

 

#analysis 

library(pastecs) 

library(psych) 

summary(Indicators) 

describe(Indicators) 

stat.desc(Indicators) 

 

Linear Regression: 

m <- lm(POXC_June~OM, data=SH_da) 

plot(m) #check assumptions of linear model 

summary(m) 

 

Correlation matrix: 

library(GGally) 

library(ggpubr) 

library(ggplot2) 

ggpairs(Indicators) 

 

 

ANOVA 
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library(agricolae) 
model <- aov(OM ~ Texture, data= SH_da)  

summary(model) 

lsd=LSD.test(model, c("Texture"), group=T) 

lsd  

 

Random Forest  

#load packages 

library(randomForestSRC) 

library(ggRandomForests) 

 

#set seed & make random forest 

set.seed(220603) 

OM_RF <- rfsrc(OM ~ Region+ pH + sand + clay + silt +  

DrainageClass+ OperationType_General + PastureYears + PreviousLandUse_cat + 

Legume_June+ 

                 Fertilizer_thisYear + Fertilizer + Fertilizer_freq + Manure +  

                 Manure_freq + Lime + Overwinter  + HayFreq + DaysSinceGrazing_June + 

                 StockingRate_ha + StockingDensity_ha + 

SeasonStockingDensity_ha + NumberRotations +  

                 TimeInPaddock + RestPeriod + ResidualPastureHeight_cm,  

               data = Rotation, ntree = 5000, 

               na.action = "na.impute", nimpute = 1, 

               importance = "anti", 

               forest=TRUE) 

 

#retrieve random forest results 

OM_RF 
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#plot random forest results 

plot(OM_RF) 

plot(gg_vimp(OM_RF)) 

 

#minimal depth analysis 

var.select(object = OM_RF, conservative = "low") 

 

#plot partial effects 

plot.variable(OM_RF, xvar.names = "PastureYears", partial = TRUE, 

              xlab="Pasture Age(years)", ylab="Predicted OM (%)")   
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Chapter 3: Biological indicators of soil health are sensitive to sampling time in 
Wisconsin pasture  
 
Abstract 
 
Biological indicators of soil health are sensitive to sampling time and understanding temporal 

effects can shape how to use soil health testing in the future. While soil health testing is 

common in row cropping systems, uncertainty remains if, and when, soil health testing may 

be beneficial in pastures. Pastures in Wisconsin (n=92) were sampled for permanganate 

oxidizable carbon (POXC), autoclave citrate extractable protein (ACE), mineralizable carbon 

(MinC), and anaerobic potentially mineralizable nitrogen (PMN) in June and September to 

evaluate (i) seasonal effects on biological indicators of soil health, and (ii) differences in 

indicator responsiveness to soil, land use and management practices due to sampling time. All 

indicators were statistically different between sampling times. The effect of sampling time 

was largest for MinC, and the mean difference (September-June) was -45.78 mg kg-1, 

compared to POXC (35.12 mg kg-1), ACE (-0.29 g kg-1), and PMN (-5.75 mg kg-1). For ACE, 

MinC and PMN, relationships with bulk C and N were weaker in September compared to 

June, and R2 values were less than those in June by 0.1-0.2. In September, pasture age had no 

relationship with MinC and weaker relationships with POXC, ACE and PMN (R2<0.17), 

compared to June (R2=0.19-0.28). While continuously grazed pastures had lower ACE and 

PMN in September compared to June, rotationally grazed pastures maintained these values 

between sampling times. The relative importance of inherent soil properties, land use, and 

management factors to biological indicators of soil health for both sampling times were 

evaluated using random forest analysis to explore seasonal effects. September results revealed 

findings not observed in June: a lower variable importance for pasture age for POXC, MinC, 
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and PMN, a negative relationship between MinC and synthetic fertilizer application, 

inconsistencies in trends between texture and MinC, and greater importance of rest period (for 

ACE and PMN) and residual pasture height (for MinC). Sampling time influenced how 

indicators relate to soil and management properties, and well-managed grazing may minimize 

in-season declines in soil health.  

 

1. Intro 
 

Soil health testing offers opportunities to evaluate and track the efficacy of 

management practices and improvements to soil health, but determining and standardizing 

methodology is necessary to make them reliable tools for farmers. Soil health indicators 

include simple measurements of soil biology, such as labile carbon (C) and nitrogen (N) pools 

as well as C and N mineralization. Biological indicators of soil health, including 

permanganate oxidizable carbon (POXC), autoclave citrate extractable protein (ACE), 

mineralizable carbon (MinC), and anaerobic potentially mineralizable nitrogen (PMN), reflect 

active C and N and microbial activity (Culman et al., 2012; Drinkwater, et al., 1996; 

Franzluebbers et al., 2000; Hurisso et al., 2018). These measurements have been identified 

and promoted based on criteria that they are logistically feasible, cost-effective, responsive to 

management, and of agronomic or environmental value (Culman et al., 2013; Franzluebbers et 

al., 2018; Hurisso et al., 2016; Idowu et al., 2008; Morrow et al., 2016; Nunes et al., 2018; 

van Es & Karlen, 2019; Wade et al., 2020; Wander & Drinkwater, 2000).  

However, biological indicators of soil health also demonstrate temporal variability and 

seasonal sensitivity (Culman et al., 2013; Diederich et al., 2019; Hurisso et al., 2018; Nunes, 
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Franzluebbers et al., 2016; van Es, et al., 2020). Previous research in row cropping systems 

found that POXC, MinC, ACE and PMN were greater in the middle of the growing season 

compared to spring or fall, though there is site-specific variation attributed to climate, soil 

properties, cropping system and management (Culman et al., 2013; Diederich et al., 2019; 

Hurisso, Culman, et al., 2018). Seasonal variability of biological soil health may be attributed 

to direct effects of climatic variables and indirect effects of plant growth and development 

(Stevenson et al., 2014). Though there is increasing effort to build soil health databases, 

sources of variability, particularly seasonal effects, are rarely included or considered 

(Crookston et al., 2021). As soil health testing is promoted to farmers, understanding the 

effect of sampling time is crucial to provide recommendations for best management practices.  

The current recommendation for farmers interested in soil health testing is to 

consistently sample at the same time of year (Culman et al., 2013; Hurisso, Culman, et al., 

2018; Morrow et al., 2016). In row crop systems, it is typical to soil sample earlier in the 

season (April-June), prior to fertilizer application and/or before it becomes too cumbersome to 

sample due to crop growth. However, depending on the sampling time, soil health test results 

may reveal different information about management effects on soil health or potential 

agronomic outcomes. Culman et al. (2013) found that as the season progressed from pre-plant 

to V10, biological indicators of soil health (POXC, MinC, and PMN) were more effective at 

predicting corn grain yield and total biomass. Other cropping systems, such as pastures, have 

greater flexibility with sampling time since it is easier to sample throughout the season. 

Therefore, soil health testing recommendations are not confined to a certain timeframe and 
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would benefit from greater understanding into how sampling time influences soil health 

indicators and their relationships with management and agronomic outcomes.  

Soil health research in temperate, cool-season pastures is limited, leaving uncertainty 

around the value and seasonal variability of soil health indicators in pastures. Seasonal 

patterns in plant growth and development differ in annual cropping systems and grazed, 

perennial pastures. In the upper Midwest, cool-season pastures attain most of their growth in 

the spring, declining in forage quantity and quality through the season (Brink et al., 2007; 

Oates et al., 2011; Paine et al., 1999; Riesterer et al., 2000). Late summer into early fall, often 

referred to as the “summer slump”, can be a particularly challenging time for graziers and 

requires well managed grazing to produce sufficient forage. Adapting grazing management to 

leave greater residual pasture height and provide adequate time for recovery and regrowth can 

help minimize summer declines in forage production (Oates et al., 2011; Paine et al., 1999). 

Seasonal variation in pasture growth and grazing management can impact biological soil 

health, and may influence how biological indicators of soil health are interpreted based on 

sampling time (Bardgett et al., 1997, 1999; Bardgett & Shine, 1999; Bardgett & Wardle, 

2003; Jangid et al., 2008; Lin et al., 2020; Stevenson et al., 2014; Wardle et al., 2004).  

This study explored how sampling time influenced biological indicators of soil health 

and their relationship with soil properties, land use and management practices. Using an on-

farm soil health assessment approach, 92 Wisconsin pastures were sampled in early June and 

late September and analyzed for POXC, ACE, MinC, and PMN. These sampling times were 

selected for several reasons: to avoid periods of very low microbial activity common in early 

spring and late fall in Wisconsin (Diederich et al., 2019), to coincide with periods of high and 
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low pasture productivity (Paine et al., 1999; Oates et al., 2011), and to evaluate effects of in-

season grazing management. We hypothesized that biological indicators of soil health would 

differ based on sampling time and that sampling time may alter the relationships between 

indicators and soil properties, land use and management factors.  

 

2. Materials and Methods 
 

Field selection, soil sampling, lab analysis and statistical analysis were performed 

according to the methods outlined in Chapter 2, and can be found there in more detail. 

Briefly, 92 pastures were sampled in two regional clusters in Wisconsin: Kickapoo and 

Marathon. Soil samples were collected twice in 2021: between 2- 11 June and 17-26 

September. From a 50m x 50m representative area, 20 soil cores were taken to a depth 0-15 

cm and combined into one composite sample. Soil organic matter (OM), total carbon (TC), 

total nitrogen (TN), and the carbon-to-nitrogen ratio (C:N) were just analyzed in June and 

POXC, ACE, MinC, and PMN were analyzed in both June and September. OM, TC, TN, C:N 

were only analyzed once, since research shows there is less temporal variation for 

measurements of total N and C pools. POXC, ACE and MinC were analyzed at Ohio State 

University’s soil test lab, according to protocols by Culman et al. (2012), Franzluebbers et al. 

(2000), and Hurisso et al. (2018), respectively. Anaerobic PMN was analyzed in-house 

according to the Drinkwater et al. (1996) protocol.  

 Temperature and precipitation data were collected from a central weather station in 

each region. Marathon weather data were retrieved from the Wausau weather station and 
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Kickapoo data were retrieved from the Viroqua weather station (National Weather Service). 

Precipitation data for August 2021 was missing at the Viroqua weather station.  

Like in chapter two, descriptive statistics, linear regression, and analysis of variance 

(ANOVA) were performed with R statistical software version 4.1.1 (R Core Team, 2020). 

The relationships between the June and September biological soil health measurements were 

analyzed using a two-sided paired T-test, with the t.test() function. Correlation among soil 

health values was analyzed with the ggpairs() function. Linear regression was used to evaluate 

the relationship between the September biological indicators of soil health and OM, TC, TN, 

and C:N. For linear regression, lm() and summary() functions were used and assumptions of 

linear models, normality, and equal and constant variance were assessed using QQ and 

residuals vs. fitted plots. A p-value less than or equal to 0.05 was considered statistically 

significant. 

Single factor and random forest analysis was used to evaluate how soil properties, land 

use and management factors explained variation in June and September measurements of 

labile C and N, in accordance with the statistical methods in chapter 2. The package 

randomForestSRC was used to evaluate the importance of each variable using two methods: 

variable importance (VIMP), which calculates how much a variable improved the random 

forest model when it was included, and the average minimal depth that the variable appears in 

the regression trees, which indicates how predictive that variable is for the overall dataset. 

Higher VIMP and/or lower minimal depth values correspond with factors that were important 

in explaining variation in the soil measures. The randomForestSRC and ggRandomForest 
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packages were used to further analyze trends and generate partial effect plots for important 

variables.  

 

3. Results 
 

3.1 Weather 

Monthly total precipitation and mean daily maximum and minimum temperatures were 

greatest in the summer months (Figure 3.1). From June through August 2021, the mean daily 

minimum was approximately 16°C and 15°C in Wausau (Marathon region) and Viroqua 

(Kickapoo region) respectively, and the mean daily maximum was approximately 28°C and 

26°C respectively. Since August precipitation data were unavailable for the Viroqua weather 

station, the cumulative precipitation for June and July 2021 was 29.3cm for the Kickapoo 

region. For the Marathon region, the cumulative precipitation for June and July 2021 was 40.0 

cm, and when including August (June through August 2021) it was 64.4cm. Seasonal trends 

in 2021 correspond with typical weather patterns at these weather stations (National Weather 

Service).  
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Figure 3.1 Monthly precipitation and temperature data (2021) in Wausau and Viroqua, 
Wisconsin.  
Precipitation (cm) and temperature (°C) were measured at the Wausau and Viroqua weather 
stations to correspond to sites in the Marathon and Kickapoo regions respectively. Data were 
retrieved from the National Weather Service and the National Oceanic and Atmospheric 
Administration. No precipitation data was collected at the Viroqua weather station in August 
2021, and thus is left blank in the figure.  
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3.2 Soil Measurements 

3.2.1 Summary Statistics 

There was a wide range of values for June and September measurements of labile C 

and N: POXC (373-1230 and 422-1183 mg kg-1), ACE (4.5-15.5 and 4.0-13.7 g kg-1), MinC 

(15.7-207.8 and 6.4-168.7 mg kg-1), and PMN (36.9-235.9 and 37.6 mg kg-1), June and 

September respectively (Tables S2.7 & S3.1). At both sampling times, skewness and kurtosis 

was just greater than 1 for ACE, indicating a slightly right-skewed, peaked distribution. The 

other metrics had normal distributions. Given that deviations in normality were minor, no 

transformations were performed, and the non-transformed response variables were used in 

statistical analyses. 

 

3.2.2 Relationships between biological indicators of soil health and OM, TC, TN and C:N 

In September, bulk C and N had the strongest relationships with POXC (R2 =0.54-

0.66), and the weakest relationships with MinC (R2 £0.17), as was observed in June (Table 

3.1). The relationships between ACE, MinC, and PMN and bulk C and N were weaker in 

September compared to June, and September R2 values were less than those in June by 0.1-

0.2 (Figure S3.1). In September, relationships between labile C and N and OM were stronger 

than those with TC and TN, but this was not observed in June. In September, only PMN had a 

weak, negative relationship with C:N (R2=0.08). OM, TC, TN and C:N were measured on the 

soil samples collected in June, and while it is not expected for bulk C and N to vary through 

the season, it is possible that the weaker relationships with September measurements can be 

attributed to this. 
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Table 3.1: Coefficient of determination (R2) for September labile C and N indicators vs. 
bulk C and N measurements 
  OM TC TN C:N 

  ---------------------------- R2 ---------------------------- 
POXC     

 June 0.62 0.63 0.64 NS 
 Sept 0.66 0.61 0.54 NS 

ACE     

 June 0.52 0.60 0.53 NS 
 Sept 0.43 0.39 0.30 NS 

MinC     

 June 0.34 0.25 0.37 0.16 

 Sept 0.17 0.15 0.14 NS 
PMN     

 June 0.55 0.43 0.58 0.14 

 Sept 0.58 0.39 0.48 0.08 
OM= soil organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon to nitrogen ratio; 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS= not significant 
 
3.2.3 Soil health indicator correlations 

All September biological indicators of soil health were positively correlated with one 

another. Correlations range from r=0.39-0.72 (Figure 3.2). The strongest correlations are 

between POXC and ACE (r=0.65) and PMN (r=0.72). The weakest correlations are between 

ACE and MinC (r=0.39) and PMN (r=0.41). Correlations are slightly lower for September 

values compared to June values, particularly for the correlations between PMN and MinC 

(r=0.57 vs. 0.82), and ACE (r= 0.41 vs. 0.58).  
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Figure 3.2: Scatterplots and correlation coefficients (r) among POXC, ACE, MinC and 
PMN.  
Scatterplots, distribution curves and r values (in black) refer to the September measurements. 
June correlations are written in red for reference. 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
 
3.3 Effect of sampling time 

Correlations between sampling times were strong for POXC, ACE, and PMN (r > 

0.84), but only r=0.41 for MinC (Table 3.2). The paired t-test revealed significant differences 

between June and September for all biological indicators of soil health (Table 3.3). While 

POXC was greater in September (with a mean difference of 35.12 mg kg-1), the other 

indicators were lower in September, on average. Sampling time had the largest effect on 

MinC, with a mean difference of -45.78 mg kg-1. When considering the difference between 

the sampling times relative to the June measurement, the average percent change in POXC, 

ACE, and PMN was small (3-7% with a standard deviation approximately 15%), compared to 

MinC, which had an average change of 32%, with a standard deviation of 31%.  
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Table 3.2: Correlation coefficients (r) between the June and September measures for 
POXC, ACE, MinC and PMN.  
Indicator Correlation (r)  
POXC 0.84 
ACE 0.84 
MinC 0.41 
PMN 0.87 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
 
Table 3.3: Two-sided paired T-test results for POXC, ACE, MinC and PMN evaluating 
the hypothesis that September-June values= 0.  
Positive values indicate that September measurements were greater than June; Negative 
values indicate that September measurements were less than June. The test statistic, p-value, 
mean of difference and 95% confidence interval for the difference are included. To provide 
relative magnitude of the effect size, the table includes “% Difference”, or the change in 
indicator values (%), calculated as: (September-June)/June. For the percent difference, the 
table includes mean, standard deviation (SD), and the range with minimum (min) and 
maximum (max) values). n=92 
 

 Paired t-test % Difference  

 p-value 
Mean of 
difference 95% CI Mean (SD) [min, max] 

POXC (mg kg-1) <0.001 35.12 [15.71, 54.53] 7% (15%) [-28%, 62%] 
ACE (g kg-1) 0.011 -0.29 [-0.52, -0.07] -3% (15%) [-26%, 69%] 
MinC (mg kg-1) <0.001 -45.78 [-54.51, -37.04] -32% (31%) [-88%, 122%] 
PMN (mg kg-1) 0.008 -5.75 [-9.97, -1.54] -3% (16%) [-59%, 46%] 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); SD= standard deviation; 
min=minimum; max=maximum 
 
3.4 Soil properties 

Sampling time had no effect on the relationship between texture and POXC, slight 

effects on the relationships between texture and ACE and PMN, and larger effects on the 

relationship between texture and MinC (Figure 3.3, Tables S3.2 & S3.3). ACE was greater in 

sandy loams compared to all other texture classes in September, while in June, texture class 
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was not significant. ACE had a weak negative relationship with clay content (R2=0.07) in 

September, which was not observed in June.  

In September, MinC did not differ in sandy loams, loams, and silty clay loams, 

whereas in June, MinC was lower in loamy sands and sandy loams compared all other texture 

classes. Relationships between MinC and sand, silt and clay content were weaker in 

September (R2 = 0.05-0.10) compared to June (0.35-0.39). 

PMN had stronger relationships with texture in September compared to June. In 

September, PMN was lower in loamy sands and sandy loams than all other texture classes, but 

June showed no difference in PMN in sandy loams, loams, and silty clay loams. Relationships 

between PMN and sand, silt and clay were slightly stronger in September (R2=0.38), 

compared to June (0.3-0.31).  

pH was only significant for POXC at both sampling times and POXC had a stronger 

positive relationship with pH in September (R2=0.21) compared to June (R2=0.13).  
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Figure 3.3: Boxplot of September measurements of POXC, ACE, MinC, and PMN by texture class.  
Texture class was determined from measured sand and clay content. Texture classes include: loamy sand (n=2), 
sandy loam (n=11), silt loam (n=67), loam (n=8), silty clay loam (n=4). In the boxplot, the middle line indicates 
the median and boxes delimit first and third quartiles. Upper and lower whiskers represent 1.5 times the 
interquartile range or, if there were no observations beyond that range, the maximum and minimum values.  
Letters indicate significant differences (p-value < 0.05) among texture classes determined through ANOVA and 
Fisher’s LSD. Letters along the top of the graph in black correspond with the boxplot and September 
measurements; letters in red along the bottom correspond with June ANOVA results, for reference.  
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); NS=not significant  
 

3.5 Land use: pasture age and previous land use 

For POXC, ACE and PMN, only 16-17% of the variation in September measurements 

was explained by pasture age, compared to 19-28% in June. MinC, which had R2  = 0.22 in 
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June, did not have a significant relationship with pasture age in September (Figure 3.4). At 

both sampling times, POXC, ACE and PMN were greater in sites previously fallowed 

compared to those cropped prior to pasture establishment; however for MinC, only June 

values were greater in previously fallowed sites (Table S3.3).  

   

Figure 3.4: Scatterplots of June and September POXC, ACE, MinC and PMN and 
pasture age (years).  
Points are colored blue for rotationally grazed pastures and red for continuously grazed. Regression lines and 
coefficient of determination (R2) between pasture age and soil metrics are included for significant relations 
(p<0.05). All but the relationship between MinC and pasture age were significant. June R2 values for the 
relationship between pasture age and June soil measurements are included in red for reference.  
OM= organic matter (%); TC= total carbon (%); TN= total nitrogen (%); C:N= carbon-to-nitrogen ratio; POXC 
= permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
NS=not significant 
 
3.6 Management 

NS 
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3.6.1 Grazing System 

In September, continuously grazed pastures were associated with greater POXC and 

PMN, whereas in June, all labile C and N measurements were greater in continuously grazed 

pastures compared to those rotationally grazed (Figure 3.5). A paired t-test was conducted on 

continuously and rotationally grazed pastures separately to evaluate the effect of sampling 

time on biological indicators of soil health (Table 3.4). In continuously grazed pastures, there 

was no change in POXC and decreases in ACE (average= -1.26 g kg-1), MinC (-74.84 mg kg-

1), and PMN (-18.90 mg kg-1) from June to September. Comparatively, in rotationally grazed 

pastures, POXC increased (32.37 mg kg-1), ACE and PMN were unchanged, and MinC 

decreased (-43.14 mg kg-1), but to a lower magnitude than in continuously grazed sites, from 

June to September.  

 

Figure 3.5: Boxplot of POXC, ACE, 
MinC and PMN by grazing category 
Sites were categorized as continuously or 
rotationally grazed pastures based on 
management data provided by the farmer. In 
the boxplot, the middle line indicates the 
median and boxes delimit first and third 
quartiles. Upper and lower whiskers represent 
1.5 times the interquartile range or, if there 
were no observations beyond that range, the 
maximum and minimum values.  Letters 
indicate significant differences (p-value < 
0.05) among grazing category, determined 
through ANOVA and Fisher’s LSD. June soil 
values (not included here) were significantly 
higher in continuously grazed pastures 
compared to rotationally grazed pastures for 
all POXC, ACE, MinC and PMN 
POXC = permanganate oxidizable carbon (mg kg-

1); ACE = autoclaved-citrate extractable protein (g 
kg-1); MinC = mineralizable carbon (mg kg-1); 
PMN = potentially mineralizable nitrogen (mg kg-

1); NS= not significant. 
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Table 3.4: Two-sided, paired T-test results (based on grazing category) for POXC, ACE, 
MinC and PMN evaluating the hypothesis that September-June values= 0.  
Paired t-test analysis was conducted on continuously grazed (n=11) and rotationally grazed 
(n=78) pastures to evaluate if results differed based on grazing system. Positive values 
indicate that September measurements were greater than June; Negative values indicate that 
September measurements were less than June. The test statistic, p-value, mean of difference 
and 95% confidence interval for the difference are included. A p-value < 0.05 was significant; 
when p-value > 0.05, we did not reject the null hypothesis that the June and September values 
were equal and did not report a mean difference or 95% CI.  
 
 Continuously Grazed (n=11) Rotationally Grazed (n=78) 

 p-value 
Mean of 
difference 95% CI p-value 

Mean of 
difference 95% CI 

POXC (mg kg-1) 0.183   0.003 32.37 [11.37, 53.37] 
ACE (g kg-1) 0.002 -1.26 [-1.96, -0.57] 0.133   
MinC (mg kg-1) <0.001 -74.84 [-101.45, -48.23] <0.001 -43.14 [-52.43, -33.84] 
PMN (mg kg-1) 0.011 -18.90 [-32.33, -5.46] 0.082   

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1); CI=confidence interval 
 
 
3.6.2 Pasture and grazing management in rotationally grazed systems 

To evaluate grazing management practices specific to rotationally grazed pastures, the 

remaining analysis was conducted exclusively on rotationally grazed pastures (n=78). Due to 

a smaller sample size, rotationally grazed sites differed slightly in texture properties and 

pasture age compared to the full dataset. The same trends for texture and pasture age hold 

true, but p-values were weaker for the relationships between pasture age and POXC and 

PMN, and stronger between texture properties and ACE (Tables S3.4-S3.8).  

Single factor analysis identified certain management practices as significant to 

September biological indicators of soil health (Tables S3.4-S3.8). Relationships between 

labile C and N measures and outwintering, haying, and stocking density were similar for June 

and September sampling times. Significant relationships observed in September but not in 

June included MinC and fertilizer application frequency (R2=0.12, negatively related) ACE 
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and rest period (R2= 0.10, positively related), and MinC and residual pasture height (R2=0.08, 

positively related).    
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Figure 3.6: Summary table of important variables to September soil health indicators 
from random forest analysis, according to variable importance (VIMP) and average 
minimal depth (MD). 
For each soil C and N measurement (column), the influence of each exploratory variable included in the analysis 
(rows) was determined by variable importance (VIMP) and average minimal depth (MD). VIMP represents how 
much the variable strengthened the model and corresponds to the cell color. The most important variable is 
assigned importance of 1 (colored green) and all other variables are given a relative importance based on how 
much it improved the model compared to the most important variable. Boxes are color coded based on VIMP for 
ease of interpretation (see key). The numbers in the cells correspond to ranking of importance according to 
average minimal depth (MD). MD reflects how close to the regression tree root node a variable appeared on 
average. Being closer to the root node signifies that, as a single split in the data, the variable explained larger 
variation in the dataset. Variables are ranked so that 1 corresponds with the variables closest to the root node. 
Only variables with minimal depth < 5 are numbered on the graph, as these are the most influential. See 
supplementary tables  for exact values of relative importance and average minimal depth.; POXC = 
permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = 
mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure 3.7: Random forest variable importance (VIMP) plots for September POXC, 
ACE, MinC and PMN in rotationally grazed pastures (n=78).  
The list of factors are ordered by VIMP; higher factors were more important for explaining variation in the 
indicator. For variables identified as important according to the minimal depth method, rank of importance is 
along the righthand side of the graphs (1= most important). Exact values of relative importance and average 
minimal depth are provided in supplementary materials; POXC = permanganate oxidizable carbon (mg kg-1); 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Figure 3.8: Change in relative importance from June to September for select factors for 
POXC, ACE, MinC and PMN.  
The difference in VIMP relative importance was calculated as: September relative importance 
– June relative importance. If September relative importance was greater, bars are colored 
green; if June relative importance was greater, bars are colored red. Factors graphed are those 
with the largest difference in relative importance.  
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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3.7 Random Forest 

Random forest analysis out of bag (OOB) R2 were comparable between the two 

sampling times (R2=0.25-0.49 in September compared to R2 =0.32-0.45 in June) (Tables S3.9-

S3.12). An exception was the MinC random forest, which had a R2=0.25 in September 

compared to R2 =0.35 in June. For MinC and PMN, average minimal depth values for the 

most predictive variable were lower in September (3.38 and 3.58, respectively) compared to 

June (2.67 and 2.48, respectively). This signifies that variation in September MinC and PMN 

was not well explained by a single explanatory variable. Rather, many factors explained 

variation in data at lower branches of the regression trees.     

 

3.7.1 Variables of importance  

For each soil measurement in September, the most important variables by VIMP and 

minimal depth respectively, were: POXC (pH for both), ACE (pasture age for both), MinC 

(sand for both), PMN (clay, pasture age) (Figures 3.6 & 3.7). Factors that were important to 

biological indicators of soil health in both June and September include: texture for MinC and 

PMN; pH for POXC; pasture age for ACE, PMN and POXC (but to a lower magnitude in 

September); and stocking density and time in paddock for POXC.  For other variables, 

sampling time had a large effect on changes in relative importance (Figure 3.8). Factors with 

notable differences in relative importance include pasture age, fertilizer frequency, rest 

period, and residual pasture height.   

POXC had the most consistent random forest results between the two sampling times. 

Aside for pH being more important and pasture age being less important in September 
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compared to June, the relative importance of texture and management factors and the trends 

between POXC and important variables were similar between the two sampling times.  

Like June, ACE was most influenced by pasture age and had fewer variables of high 

relative importance. However, from June to September, the VIMP relative importance of rest 

period and clay content increased by 0.27 and 0.20 respectively, and were more important 

according to average minimal depth.  

Sampling time had the largest effect on MinC random forest results. Pasture age 

decreased from a relative importance of 1.0 in June to 0.15 in September. Sand content 

increased, and silt and clay decreased, in importance according to VIMP and minimal depth. 

Even though texture was consistently important, trends between MinC and texture differ by 

sampling time. Fertilizer application frequency increased in relative importance for MinC 

from 0.08 in June to 0.76 in September; and residual pasture height increased in relative 

importance from 0.02 to 0.36.  

Aside for stocking rate which had a lower relative importance for PMN in September 

compared to June, the variables of importance were consistent between sampling times. At 

both sampling times, pasture age was the most important variable according to minimal depth, 

signifying it best described variation in PMN compared to the other factors. Texture 

properties were consistently important between sampling times, but with higher VIMP 

relative importance in September. Rest period had higher importance in September (VIMP 

relative importance=0.45; minimal depth ranking=2), relative to June (VIMP relative 

importance=0.12; minimal depth ranking=6).  
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3.7.2 Pasture age 

Trends between pasture age and predicted values of POXC, ACE and PMN were 

consistent between June and September; partial effect plots demonstrated rapid increases in 

predicted soil values after pasture establishment, with predicted POXC and PMN plateauing 

at around 30-40 years and ACE continuing to increase (Figure S3.2). Due to lower relative 

importance of pasture age in September compared to June, predicted MinC did not have a 

trend with pasture age, and POXC and PMN partial effect plots had higher standard 

deviations and lower effect sizes depicted on the y-axis.  

 

3.7.3 Inherent soil properties 

MinC, which was highly influenced by sand content at both sampling times, had 

differing trendlines based on sampling time. While June showed strong relationships between 

MinC and sand content (negative), silt (positive), and clay (positive with a plateau), 

September partial effect plots show predicted MinC increased until a sand content of 20% and 

then plateaued (Figure 3.9). In September, predicted MinC trends with silt and clay were 

weak with high standard deviation. While texture was important throughout the regression 

trees in September, there was no strong trend that represented directionality between texture 

and MinC, as there was in June.  

Only observed in September, predicted ACE declined with clay content, until it 

leveled at 20% clay content (Figure S3.3). Alternatively, trends between PMN and texture, 

and pH and POXC were consistent between sampling times (Figures S3.4, S3.5).   
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Figure 3.9: Partial effect of sand, silt and clay on MinC for June and September.  
(Top) Predicted values of September MinC calculated as sand, silt and clay vary over observed values. 
(Bottom) Predicted values of June MinC calculated as sand, silt and clay vary over observed values.  
Values are calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two 
standard deviations. Rel Imp= relative importance according to VIMP 
MinC = mineralizable carbon (mg kg-1) 
 

3.7.4 Grazing management 

In September, partial effect plots reaffirm the benefits of well-managed rotational 

grazing. POXC maintains the same trends with time in paddock and stocking density as June: 

greater predicted POXC corresponded with grazing events less than one day and stocking 

density greater than 100 AU/ha (Figure S3.6). 

Rest period had a greater relative importance for September measures of ACE and 

PMN compared to those in June, but partial effect trendlines differ between the two labile N 

measures (Figure 3.10). In September, predicted ACE increased with rest periods greater than 

60 days and PMN trendlines mirror those in June, where predicted soil health peaked around 
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25-30 days and decreased when rest periods were greater than 40 days. These trends are 

highly influenced by one farm (3 sites) that had a rest period of 140 days, meaning there was 

no grazing event between June and September. These sites had increases in POXC and ACE, 

but no change to MinC and PMN between the two sampling times (Figure S3.7).  

Predicted MinC in September increased with residual pasture height until 15cm, at 

which point it plateaued (Figure 3.10). Conversely, residual height was not important to June 

measures of MinC. Trends between residual height and predicted ACE and POXC were the 

same in June and September: predicted ACE increased at residual height greater than 20cm 

and POXC shows no consistent trend. 

 

Figure 3.10: Partial effect of grazing management practices on September ACE, PMN, 
MinC. (left) Predicted values of ACE as rest period varies; (center) Predicted values of 
PMN as rest period varies; (right) Predicted values of MinC as residual pasture height 
varies.  
Predicted values are calculated as rest period or residual pasture height varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two standard 
deviations.  
Rel Imp= relative importance according to VIMP 
ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
 

3.6.5 Pasture management 

Sampling time greatly influenced the relationships between MinC and synthetic 

fertilizer and manure application frequency (Figure 3.11). Predicted MinC declined with 
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increasing fertilizer use in the past five years, whereas three or more manure applications in 

the past five years corresponded with higher predicted MinC.  

 

Figure 3.11: Partial effect of (left) fertilizer application frequency and (right) manure 
application frequency on predicted September MinC 
Predicted values are calculated as fertilizer or manure frequency varies over observed values. Values are 
calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two standard 
deviations.  
Rel Imp= relative importance according to VIMP 
MinC = mineralizable carbon (mg kg-1) 
 

4. Discussion 
 

4.1 Biological indicators of soil health were sensitive to seasonal variability 

All indicators, particularly MinC, differed from June to September and the magnitude 

of the differences corresponded with previous work. Diederich et al. (2019) reported seasonal 

differences in POXC, MinC and PMN of approximately 100 mg kg-1, 40 mg kg-1, and 30 mg 

kg-1, respectively, in well-managed pasture. Culman et al. (2013) found maximum differences 

of approximately 150 mg kg-1 for POXC, 10-20 mg kg-1 for MinC, and 5-25 mg kg-1 for PMN 

in annual grain systems under different management treatments. Hurisso et al. (2018) reported 

similar trends for POXC and MinC, 70-100 mg kg-1 and 6-20 mg kg-1, respectively, and 0.5-

1.4 g kg-1 for ACE.  
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The heightened temporal variability of MinC is consistent with other research findings 

across various agricultural systems (Crookston et al., 2021; Hurisso, Culman, et al., 2018; 

Menefee et al., 2022; Morrow et al., 2016; Wade et al., 2018). Hurisso et al. (2018) measured 

soil health indicators in corn fields throughout the growing season and observed temporal 

variation was the greatest in MinC (CV=22-37%), compared to OM-LOI (16–25%), POXC 

(9–21%), and ACE protein (7–13%). Crookstone et al. (2021) found soil respiration 

(measured with the Solvita test and 4-day respiration) had greater seasonal variability, 

particularly in coarse soils, compared to other total and labile C and N measurements. 

Alternatively, Diederich et al. (2019) found that PMN was more sensitive to sampling date 

and the interaction between sampling date and cropping system than POXC or MinC.  

4.2 Seasonal changes in biological soil health attributed to direct effects of the soil 
environment and indirect effects of plant growth 

ACE, MinC and PMN were greater in June compared to September, which confirmed 

previous studies in this region that demonstrated peaks in biological indicators of soil health 

in July and August. Heightened biological soil health is attributed to direct effects of 

conducive temperature and precipitation on microbial activity and indirect effects of plant 

growth stages (Culman et al., 2013; Diederich et al., 2019; Stevenson et al., 2014; Wade et al., 

2018). Abiotic conditions, such as soil moisture and temperature, influence the composition 

and activity of the microbial community (Fierer, 2017). MinC and PMN, which are biological 

incubations and proxies for biological activity, are more sensitive to seasonal variation due 

changes in weather and additions of easily decomposable substrates (Franzluebbers et al., 

1994). Peak values of labile C and N and microbial activity, typically observed during the 
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summer in Midwestern agricultural systems, have been attributed to greater temperature and 

precipitation that foster a conducive soil environment for microbial activity, as well as greater 

C inputs due to plant growth (Campbell et al., 1999; Culman et al., 2013; Franzluebbers et al., 

1994; R. I. Griffiths et al., 2003; Kennedy et al., 2005). In contrast, Campbell et al. (1999) 

observed that MinC and PMN were negatively correlated with soil moisture and temperature 

in a semiarid grassland in Canada. They found that conducive environmental conditions 

stimulated decomposition of soil C, and without sufficient inputs of fresh C, there was less 

substrate to be detected in the laboratory biological incubation. This underscores the 

importance of C inputs from plant growth to promote microbial activity, as well as increase 

labile C and N.  

Typical trends in forage productivity in Wisconsin’s cool season pastures align with 

observed fluctuations in biological indicators of soil health. The seasonal growth pattern of 

cool-season pastures, which peak around June and decline through the season (Brink et al., 

2007; Oates et al., 2011; Paine et al., 1999; Riesterer et al., 2000) has indirect effects on the 

microbial community (Bardgett et al., 1998; Franzluebbers et al., 1994; Stevenson et al., 

2014). Plant growth influences the microbial community through many mechanisms and 

feedbacks: plant nutrient uptake, litter decomposition, quality of C and N inputs, root 

turnover, and root exudates (Bardgett & Shine, 1999; Bardgett & Wardle, 2003; B. S. 

Griffiths et al., 2004; Hamilton et al., 2008; Kennedy et al., 2005; Wang et al., 2016; Wardle 

et al., 2004). Extensive root systems in pastures and seasonal patterns of root growth and 

turnover are particularly influential to biologically active fractions of C and N (Bardgett et al., 

1998; Chen et al., 2015; Corre et al., 2002; Hamilton et al., 2008; Jackson et al., 1997; Lovell 
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et al., 1995). In grazed pastures, feedbacks and interactions among weather, plant, livestock, 

and soil are dynamic through the season and can contribute to in-season variability of 

biological indicators of soil health.  

4.3 June measurements were more related to total pools of C and N and pasture age 

In June compared to September, biological indicators of soil health, particularly the 

biological incubations, had stronger relationships with total C and N and pasture age. When 

sampled in June, soil measurements were approaching typical peak values for the region, 

which we hypothesized strengthened the relationships among soil C and N metrics (Diederich 

et al., 2019). Weaker relationships among September measurements may indicate that after 

peak soil health values, other factors account for greater variation among indicators. The 

relationships between MinC and other soil C and N measures were particularly weak in our 

study, confirming observations in Crookston et al. (2021) that indicators with low temporal 

variation (OM, C:N, POXC, ACE) and those with high temporal variation (Solvita 24-hr 

respiration test and 4-day mineralizable C incubation) were weakly correlated. Though 

weaker relationships between September soil health values and total C and N may be 

attributed to seasonal fluctuations in our study, only analyzing for bulk C and N in June could 

also impact results due to sampling bias or seasonal changes in total pools (Crookston et al., 

2021; Culman et al., 2013; Diederich et al., 2019).  

When sampling closer to peak activity in June, pasture age explained more variation in 

the biological indicators of soil health compared to September. In our study, pasture age had a 

stronger relationship with OM, TC and TN, explaining 33-37% of the variation in bulk C and 
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N, compared to any labile C and N measure (chapter 2). In general, labile C and N 

measurements have greater variation unexplained by pasture age compared to total pools. 

Given weaker relationships between September labile C and N and pasture age, there may be 

in-season factors contributing to greater variation in the values.    

4.4 Relationships between inherent soil properties and biological indicators soil health vary 
based on sampling time 

The effect of sampling time had inconsistent effects on relationships between inherent 

soil properties and biological indicators of soil health. For POXC, ACE and PMN, these 

relationships were stronger in September compared to June (pH with POXC, and texture with 

ACE and PMN). The negative relationship between ACE and clay content was also observed 

by Amsili et al. (2021). They reported that ACE was lower in loam and fine texture groups 

compared to coarse and silt loam soils, which they attributed to lower extraction efficiency in 

soils with higher clay content (Giagnoni et al., 2013). However, this relationship typically was 

not found in other studies (Crookstone et al., 2021; Hurisso et al., 2016).  

Results for MinC depict uncertain trends with texture properties. While sand was 

consistently an important variable in June and September random forest analysis, the trend 

lines for the two sampling times differ and demonstrate the absence of a clear relationship 

between MinC and texture that holds through the season. Additionally, Crookstone et al. 

(2021) showed indicators exhibited dissimilar temporal variation according to soil texture. 

Temporal CV for indicators, particularly Solvita and 4-day respiration, was greater in coarse, 

compared to medium, and then fine textured soils. In this study, soils with a higher sand 
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content exhibited different trends in MinC between June and September, compared to medium 

and fine textured soils.   

 

4.5 Temporal changes in soil health may be attributed to in-season grazing management 

While the perceived benefits to soil health of rotational grazing over continuous 

grazing were not reflected by June measurements of labile C and N, evaluating the change in 

measures across the sampling times underscored the benefits of well-managed grazing. On 

average, rotationally grazed pastures had an increase in POXC throughout the season and 

maintained ACE and PMN between sampling times. Well-managed rotational grazing 

stimulates nutrient cycling, increases forage quantity and quality, improves plant community 

composition, and evenly distributes nutrient deposition from livestock, thus supporting C 

storage in the soil surface (Byrnes et al., 2018; Conant et al., 2017; Mosier et al., 2021; Oates 

et al., 2011; Paine et al., 1999; Teague & Kreuter, 2020; Wang et al., 2016). Grazing 

management can impact soil biology through indirect effects to litter quality and quantity, 

carbon allocation, litter decomposition due to manure deposition, and root growth (Bardgett & 

Shine, 1999; Bardgett & Wardle, 2003; Hamilton et al., 2008; Kennedy et al., 2005; Patra et 

al., 2005; Wang et al., 2016; Wardle et al., 2004).  

Random forest results demonstrated that among rotationally grazed pastures, sufficient 

rest and residual pasture height were important factors for September measures of biological 

indicators of soil health and may be valuable management practices to maintain soil health 

throughout the grazing season. To maintain productivity in the summer slump, cool-season 
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pastures require longer rest periods as the season progresses (Brink et al., 2007; Paine et al., 

1999). Providing sufficient rest and regrowth, particularly during periods of lower production, 

can promote plant growth, root exudation and belowground C inputs, which is likely to 

promote biological soil health  (Oates et al., 2011, 2012; Piñeiro et al., 2010; Teague et al., 

2015; Wang et al., 2016). Due to plant-grazing-soil interactions and feedbacks, in-season 

management may influence changes to labile C and N throughout the season (Wang et al., 

2016). 

4.6 Sampling time revealed a negative relationship of fertilizer use and MinC   

Results showed that biological incubations, especially September MinC, were 

negatively related to synthetic fertilizer use. Sufficient nitrogen is beneficial for plant growth, 

greater C inputs and soil C stabilization (Snyder et al., 2009; Sprunger et al., 2020). While 

some studies show that synthetic inputs can benefit SOC and TN in grasslands or have no 

effect (Conant et al., 2017; Hassink, 1994; Menefee et al., 2022), others show negative 

impacts. Previous studies demonstrate that synthetic fertilizer can deter root growth rates, 

impair microbial communities or influence temporal variation in microbial activity (Bardgett 

et al., 1998, 1999; Diederich et al., 2019; Franzluebbers et al., 1994; Jangid et al., 2008; 

Lovell et al., 1995). When compared to pastures that received manure inputs, those with 

synthetic fertilizer had lower PMN, microbial biomass, bacterial diversity and abundance, and 

greater seasonal variation in microbial communities (Dahal et al., 2021; Franzluebbers et al., 

1994; Jangid et al., 2008). Dahal et al. (2021) observed that the relationship among soil health 

indicators in pasture sites varied based on the use of synthetic nitrogen fertilizer versus broiler 
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litter, demonstrating potential variation due to fertilizer and manure use. Diedreich et al. 

(2019) observed that the use of synthetic fertilizer disrupted temporal trends in MinC and 

PMN, and that synthetic fertilizer may influence seasonal trends in C mineralization more 

than other management practices like tillage or crop rotation. Research suggests that fertilizer 

use may relate to lower MinC, as well as increase temporal variation of the indicator.  

5. Conclusion 
 

This research demonstrated the seasonal variability of biological indicators of soil 

health in pasture systems and the need to standardize sampling time for soil health testing. 

Biological indicators of soil health were greater in June, when weather conditions were most 

beneficial to pasture growth and microbial communities, compared to September. Dependent 

on sampling time, interpretation of soil health test results would differ greatly for MinC, but 

only moderately for POXC, ACE and PMN. Important factors for MinC differed greatly by 

sampling time, and sampling later in the season revealed that MinC had no relationship with 

pasture age, an inconsistent relationship with texture, and a negative relationship with 

fertilizer use. Comparatively, POXC, ACE and PMN’s variables of importance were 

consistent, but their relative ranking varied due to weaker relationships with pasture age in 

June compared to September. If only examining June or September soil health measurements, 

values in continuously grazed pastures were greater than or equal to those in rotationally 

grazed sites. However, evaluating the change in soil health through the grazing season 

highlighted the benefits of rotational grazing over continuously grazing to maintain labile C 

and N values through the season. Additionally, within rotationally grazed systems, sufficient 
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rest period and residual height had a larger effect on September soil measurements, when 

plant growth requires greater rest and recovery, compared to June. 

To determine if soil health testing in pastures is valuable, and if so, what sampling 

time poses the most benefit, biological indicators of soil health must be linked to agronomic 

or environmental value. While links between soil health tests and agronomic productivity 

have been established for corn and soybean, this has not been explored in pastures. Seasonal 

declines in pasture productivity can deter economic resilience and livestock health, which 

underscores the importance of grazing management practices that minimize the summer 

slump in forage production. Results highlight how seasonal variation in soil health correspond 

with typical trends in pasture productivity and relate to well-managed grazing. Evaluating 

relationships between biological indicators of soil health and pasture productivity throughout 

the season can elucidate if relationships between biological soil health and pasture 

productivity align or vary during times of rapid plant growth or declining production. 

Understanding if and what relationships may exist between seasonality, pasture productivity, 

grazing management and soil health will determine if measuring soil labile C and N is 

valuable in pastures, and how to select soil health indicators and sampling time to best 

evaluate and/or manage for pasture productivity and economic return.  
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Supplementary Materials 
 

Table S3.1: Univariate statistics for September measurements of permanganate oxidizable 
carbon (POXC), autoclaved-citrate extractable protein (ACE), mineralizable carbon (MinC) 
and potentially mineralizable nitrogen (PMN); n=92. 
 

 POXC ACE MinC PMN 
 mg kg-1 g kg-1 -------- mg kg-1-------- 
n 92 92 92 92 
Minimum 422.1 4.0 6.41 37.63 
1st Quartile 614.1 6.0 59.47 100.72 
Median 737.5 7.1 78.38 125.95 
Mean 736.0 7.3 82.14 124.24 
3rd Quartile 840.0 8.2 104.24 149.2 
Maximum 1183.1 13.7 168.67 234.84 
Std. Dev. 158.0 1.7 36.03 38.72 
CV 0.21 0.24 0.44 0.31 
Skewness 0.27 1 0.26 -0.02 
Kurtosis -0.24 1.63 -0.49 0.1 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Figure S3.1: Scatterplots of biological soil health indicators (POXC, ACE, MinC and 
PMN) and organic matter (OM)%,  total carbon (TC)%, total nitrogen (TN)%, and 
carbon-to-nitrogen ratio (C:N). June (green) and September (purple) values of POXC, 
ACE, MinC and PMN are graphed.  
Linear regressions between bulk and labile C and N measurements were conducted separately for each sampling 
time. Coefficients of determination (R2) and the equation estimated through linear regression are included in 
each figure (p-value <0.05). 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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Table S3.2: Linear regression results for all soil properties and pasture age and September POXC, ACE, MinC and PMN 
for all sampled pastures (n=92).  
Table includes p-values, and if the relationship was significant (p-value <0.05), coefficient of determination (R2) and direction of 
relationship (+ or -). ▲signifies that explanatory variables were transformed into a polynomial to fit assumptions of linear 
regression; for the trendline direction, the first sign corresponds to “x” and the second sign corresponds to “x2”.  

 

POXC ACE MinC PMN 
p-value R2 Slope p-value R2 Slope p-value R2 Slope p-value R2 Slope 

pH <0.001 0.206 + 0.553   0.244   0.057 0.040 + 

sand (%) 0.059   0.059   0.005 0.083 - <0.001 0.385 - 
silt (%) 0.045 0.044 + 0.128   0.002 0.101 + <0.001 0.378 + 
clay (%)  0.347   0.012 0.067 - 0.032▲ 0.074 +, - <0.001▲ 0.375 +,- 
Pasture age  <0.001 0.161 + <0.001 0.174 + 0.085   <0.001 0.165 + 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
  



 

 
 
 
 

152 

Table S3.3: Analysis of Variance (ANOVA) results for drainage class (top) and previous land use (bottom) for September 
POXC, ACE, MinC and PMN. Analysis was on all sampled pastures (n=92).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 Drainage Class 

  
poorly 
drained 

somewhat 
poorly drained 

moderately 
well drained well drained 

somewhat 
excessively drained 

excessively 
drained 

n  2 17 18 52 1 2 

 ANOVA 

 p-value       
POXC (mg kg-1) 0.001 a b b b b b 
ACE (g kg-1) 0.111       
MinC (mg kg-1) 0.337       
PMN (mg kg-1) 0.001 a b bc b bc c 

 

 Previous Land Use 

  Fallow Hay Row Crops 
Row crops 

& Hay Unknown 
n  8 14 29 30 8 

 ANOVA 

 p-value      
POXC (mg kg-1) 0.039 ab c bc abc a 
ACE (g kg-1) <0.001 a c bc b bc 
MinC (mg kg-1) 0.268      
PMN (mg kg-1) 0.013 ab bc c c a 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
 



 

 
 
 
 

153 

Table S3.4: Analysis of Variance (ANOVA) results for texture class and drainage class for September POXC, ACE, MinC 
and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 Texture Class Drainage Class 

  loamy 
sand 

sandy 
loam loam silt 

loam 

silty 
clay 
loam 

 
somewhat 

poorly 
drained 

moderately 
drained 

well 
drained 

somewhat 
excessively 

drained 

excessively 
drained 

n  1 8 8 58 3  16 14 45 1 2 

 ANOVA ANOVA 

 p-value    p-value    
POXC (mg kg-1) 0.068      0.035 a a ab ab a 
ACE (g kg-1) <0.001 b a b b b 0.027 ab a ab ab a 
MinC (mg kg-1) 0.162      0.663      
PMN (mg kg-1) <0.001 c bc ab a ab 0.127      

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Table S3.5: Analysis of Variance (ANOVA) results for region and land ownership for OM, TC, TN, C:N, POXC, ACE, 
MinC and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 Region Land ownership Operation Type 

 
 Kickapoo Marathon  

Owned Rented 
 Dairy Heifers Beef Multispecies 

n  38 40  68 10  15 7 44 12 

 ANOVA ANOVA ANOVA 

 p-value   p-value   p-value     
POXC (mg kg-1) 0.004 b a 0.722  0.039 a ab b ab 
ACE (g kg-1) <0.001 b a 0.719  0.963     
MinC (mg kg-1) 0.092   0.830  0.358     
PMN (mg kg-1) 0.860   0.609  0.018 a ab b ab 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Table S3.6: Analysis of Variance (ANOVA) results for previous land use, outwintering, and hay frequency for September 
POXC, ACE, MinC and PMN. Analysis was for rotationally grazed pastures (n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 Previous Land Use Outwinter Hay frequency 

 
 Fallow Hay Row 

Crops 

Row 
crops 
& hay 

Unknown  No Yes  Never Sometimes Often 

n  5 14 28 27 4  57 21  55 13 10 

 ANOVA ANOVA ANOVA 

 p-value     p-value  p-value   
POXC (mg kg-1) 0.273      0.004 b a 0.021 a b ab 
ACE (g kg-1) 0.006 a b b b ab <0.001 b a 0.004 a b a 
MinC (mg kg-1) 0.819      0.050 b a 0.274    
PMN (mg kg-1) 0.210      0.242   0.240    

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Table S3.7: Analysis of Variance (ANOVA) results for fertilizer use, fertilizer applied this year, manure use, manure 
applied this year, and lime use for September POXC, ACE, MinC and PMN. Analysis was for rotationally grazed pastures 
(n=78).  
Table includes p-values and, when p-value < 0.05, letters to indicate significant differences according to Fisher’s LSD.   

 Fertilizer applied 
(5yrs) 

Fertilizer applied this 
year 

Manure applied 
(5yrs) 

Manure applied this 
year Lime applied (5yrs) 

 
 No Yes  No Yes  No Yes  No Yes  No Yes 

n  40 38  55 23     67 8  53 25 

 ANOVA ANOVA ANOVA ANOVA ANOVA 

 p-value   p-value   p-value   p-value p-value   
POXC (mg kg-1) 0.239   0.072   0.386   0.008 b a 0.001 a a 
ACE (g kg-1) 0.884   0.124   0.271   0.315   0.492   
MinC (mg kg-1) 0.002 a b 0.003 a b 0.067   0.855   0.830   
PMN (mg kg-1) 0.010 a b 0.630   0.226   0.135   0.001 a b 

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Table S3.8: Linear regression results for all continuous variables and September permanganate oxidizable carbon (POXC), 
autoclaved-citrate extractable protein (ACE), mineralizable carbon (MinC), and potentially mineralizable nitrogen (PMN) 
of rotationally grazed pastures (n=78).  
Table includes p-values, and if the relationship was significant (p-value <0.05), coefficient of determination (R2) and direction of 
relationship (+ or -). ▲signifies that explanatory variables were transformed into a polynomial to fit assumptions of linear 
regression; for the trendline direction, the first sign corresponds to “x” and the second sign corresponds to “x2”.    

 
POXC ACE MinC PMN 

p-value R2 Slope p-value R2 Slope p-value R2 Slope p-value R2 Slope 
Soil Properties             

 
pH 0.000 0.25 + 0.642   0.450   0.059   
Sand (%) 0.668   0.002 0.12 + 0.195   0.000 0.32 - 
Silt (%) 0.360   0.009 0.09 - 0.098 0.04 + 0.000 0.35 + 
Clay (%) 0.170   0.000 0.18 - 0.851   0.000 0.31 +, - 

Pasture management             

 
Pasture age  0.013 0.08 + 0.000 0.17 + 0.310   0.035 0.06 + 
Fertilizer frequency (past 5 years) 0.230   0.183   0.002 0.12 - 0.073   
Manure frequency (past 5 years) 0.051 0.05 + 0.778   0.456   0.071   
Legume % 0.592   0.775   0.725   0.769   

Grazing management             

 

Days between grazing and 
sampling 0.378   0.001 0.14 + 0.706   0.900   
Stocking rate 0.469   0.784   0.294   0.252   
Stocking density 0.001▲ 0.18 +, - 0.044▲ 0.08 +, - 0.418   0.431   
Seasonal grazing pressure 0.027▲ 0.09 +, - 0.089▲ 0.06 +, - 0.520▲   0.176▲   
Number of rotations 0.193▲   0.056   0.033▲ 0.09 +, - 0.017▲ 0.10 +, - 
Time in paddock 0.307   0.677   0.476   0.978   
Rest period 0.943   0.005 0.10 + 0.806   0.031 0.06 - 
Residual pasture height 0.657   0.899   0.010 0.08 + 0.324   

POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1)
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Table S3.9: September POXC random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

POXC Random Forest: Factor Importance  
____VIMP Analysis____ Minimal Depth Analysis 

 

Rank Variable 
Importance 

Relative 
Importance Rank Average 

Minimal Depth 

pH 1 8764 1 1 2.37 
Time in paddock 2 5402 0.62 4 4.06 
Stocking density 3 5213 0.59 2 3.63 
Pasture age 4 3343 0.38 3 3.89 
Residual pasture height 5 2524 0.29 5 4.39 
Clay (%) 6 1409 0.16 9 5.10 
Previous land use 7 1301 0.15 7 4.84 
Seasonal grazing pressure 8 1103 0.13 6 4.80 
Rest period 9 1002 0.11 11 5.19 
Hay frequency 10 949 0.11   
Outwinter 11 909 0.10   
Drainage class 12 898 0.10   
Lime 13 875 0.10   
Region 14 872 0.10   
Operation type 15 718 0.08   
Legume (%) 16 705 0.08 8 4.96 
Stocking rate 17 702 0.08   
Silt (%) 18 683 0.08 10 5.19 
Number of rotations 19 532 0.06   
Manure frequency 20 511 0.06   
Sand (%) 21 346 0.04 12 5.23 
Fertilizer frequency 22 262 0.03   
Days between grazing and sampling 23 137 0.02   
Fertilizer this year 24 131 0.02   
Manure 25 120 0.01   
Fertilizer 26 -18 0.00   
(OOB) R squared: 0.37 
(OOB) Requested performance error: 12608 
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Table S3.10: September ACE random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

ACE Random Forest: Factor Importance  
____VIMP Analysis____ Minimal Depth Analysis 

 

Rank Variable 
Importance 

Relative 
Importance Rank Average 

Minimal Depth 

Pasture age 1 2.63 1 1 2.92 
Rest period 2 0.80 0.30 3 4.34 
Clay (%) 3 0.61 0.23 2 4.00 
Outwinter 4 0.57 0.22 5 4.95 
Region 5 0.52 0.20   
Time in paddock 6 0.44 0.17 8 5.15 
Previous land use 7 0.41 0.16   
Residual pasture height 8 0.30 0.12   
Silt (%) 9 0.29 0.11 7 5.00 
Hay frequency 10 0.28 0.10 4 4.75 
Sand (%) 11 0.26 0.10 6 5.00 
Seasonal grazing pressure 12 0.14 0.05   
Stocking density 13 0.12 0.05   
Stocking rate 14 0.11 0.04   
Number of rotations 15 0.11 0.04   
Drainage class 16 0.06 0.02   
pH 17 0.04 0.02   
Lime 18 0.04 0.01   
Legume (%) 19 0.04 0.01   
Fertilizer frequency 20 0.04 0.01   
Manure frequency 21 0.03 0.01   
Days between grazing and sampling 22 0.01 0.00   
Operation type 23 0.01 0.00   
Fertilizer this year 24 0.01 0.00   
Manure 25 0.00 0.00   
Fertilizer 26 0.00 0.00   
(OOB) R squared: 0.37 
(OOB) Requested performance error: 1.82 
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Table S3.11: September MinC random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

MinC Random Forest: Factor Importance  
____VIMP Analysis____ Minimal Depth Analysis 

 

Rank Variable 
Importance 

Relative 
Importance Rank Average 

Minimal Depth 

Sand (%) 1 290 1 1 3.38 
Fertilizer frequency 2 221 0.76 2 3.79 
Clay (%) 3 136 0.47 5 4.34 
Fertilizer this year 4 126 0.44   
Fertilizer use 5 113 0.39   
Residual pasture height 6 105 0.36 6 4.39 
Manure frequency 7 91 0.31   
Number of rotations 8 89 0.31 4 4.24 
Silt (%) 9 74 0.25 7 4.40 
Rest period 10 62 0.21   
pH 11 57 0.20 3 4.15 
Time in paddock 12 56 0.19   
Stocking density 13 55 0.19   
Outwinter 14 47 0.16   
Pasture age 15 44 0.15   
Operation type 16 36 0.12   
Previous land use 17 32 0.11   
Region 18 27 0.09   
Hay frequency 19 23 0.08   
Legume (%) 20 20 0.07   
Manure 21 19 0.07   
Stocking rate 22 7 0.02   
Seasonal grazing pressure 23 6 0.02   
Days between grazing and sampling 24 3 0.01   
Drainage class 25 0 0.00   
Lime 26 0 0.00   
(OOB) R squared: 0.25 
(OOB) Requested performance error: 886 
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Table S3.12: September PMN random forest analysis results.  
“VIMP rank”, “Importance” and “relative importance” correspond with variables of importance 
(VIMP) analysis. Variables are ranked in order of variable importance (VIMP), which is calculated 
based on how important the variable was in explaining variation in the indicator value. “Minimal 
depth rank” and “minimal depth value” refers to the average minimal depth the factor appears in the 
regression trees. A minimal depth closer to 1 signifies that the factor was selected closer to the root 
node in the regression trees, and is more predictive of variation in the indicator as a single split.  

PMN Random Forest: Factor Importance  
____VIMP Analysis____ Minimal Depth Analysis 

 

Rank Variable 
Importance 

Relative 
Importance Rank Average 

Minimal Depth 

Clay (%) 1 708 1 3 4.10 
Sand (%) 2 534 0.76 4 4.30 
Silt 3 484 0.68 5 4.34 
Rest period 4 321 0.45 2 3.76 
Pasture age 5 288 0.41 1 3.58 
Operation type 6 79 0.11   
Time in paddock 7 68 0.10   
Seasonal grazing pressure 8 64 0.09 6 5.26 
Number of rotations 9 61 0.09   
pH 10 58 0.08 7 5.29 
Residual pasture height 11 49 0.07   
Stocking rate 12 43 0.06   
Outwinter 13 37 0.05   
Lime 14 34 0.05   
Stocking density 15 32 0.04   
Hay frequency 16 26 0.04   
Legume (%) 17 24 0.03   
Drainage class 18 16 0.02   
Manure frequency 19 15 0.02   
Previous land use 20 11 0.02   
Fertilizer frequency 21 6 0.01   
Days between grazing and sampling 22 4 0.01   
Manure 23 2 0.00   
Fertilizer 24 1 0.00   
Region 25 0 0.00   
Fertilizer this year 26 0 0.00   
(OOB) R squared: 0.49 
(OOB) Requested performance error: 544 
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Figure S3.2: Partial effect of pasture age on June & September POXC, ACE, MinC and PMN 
Predicted values are calculated as pasture age varies over observed values. Values are calculated over all remaining covariates, 
averaged, and plotted. Dashed red lines indicate +/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC = mineralizable carbon (mg kg-1); PMN = 
potentially mineralizable nitrogen (mg kg-1) 
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Figure S3.3: Partial effect of clay (%) on September ACE 
Predicted values are calculated as clay (%) varies over observed values. Values are calculated 
over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two 
standard deviations.  
Rel Imp= relative importance according to VIMP 
ACE = autoclaved-citrate extractable protein (g kg-1)  
 

 
Figure S3.4: Partial effect of pH on September POXC 
Predicted values are calculated as pH varies over observed values. Values are calculated over 
all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two standard 
deviations.  
Rel Imp= relative importance according to VIMP 
POXC = permanganate oxidizable carbon (mg kg-1) 
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Figure S3.5: Partial effect of sand (%), silt (%), clay (%) on September PMN 
Predicted values are calculated as sand, silt, or clay (%) varies over observed values. Values 
are calculated over all remaining covariates, averaged, and plotted. Dashed red lines indicate 
+/- two standard deviations.  
Rel Imp= relative importance according to VIMP 
ACE = autoclaved-citrate extractable protein (g kg-1) 
 

 
Figure S3.6: Time in paddock (left) and stocking density (right) on September POXC 
Predicted values are calculated as clay (%) varies over observed values. Values are calculated 
over all remaining covariates, averaged, and plotted. Dashed red lines indicate +/- two 
standard deviations.  
Rel Imp= relative importance according to VIMP 
POXC = permanganate oxidizable carbon (mg kg-1) 
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Figure S3.7: Scatterplots of rest period and the difference in biological soil health 
indicators (defined as September-June).  
Linear regression analysis was run to determine coefficients of determination (R2) and the equation estimated 
through linear regression are included in each figure (p-value <0.05). Difference in MinC and PMN were not 
significant.  
POXC = permanganate oxidizable carbon (mg kg-1); ACE = autoclaved-citrate extractable protein (g kg-1); MinC 
= mineralizable carbon (mg kg-1); PMN = potentially mineralizable nitrogen (mg kg-1) 
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R Code 
 
Univariate Statistics: 

#group soil C and N indicators 

library(dplyr)  

Indicators <- SH_da %>% 

  dplyr:: select(POXC_Sept, ACE_Sept, MinC_Sept, PMN_Sept) 

 

#analysis 

library(pastecs) 

library(psych) 

summary(Indicators) 

describe(Indicators) 

stat.desc(Indicators) 

 

Linear Regression: 

m <- lm(POXC_Sept~OM, data=SH_da) 

plot(m) #check assumptions of linear model 

summary(m) 

 

Correlation matrix: 

library(GGally) 

library(ggpubr) 

library(ggplot2) 

ggpairs(Indicators) 

Paired t-test: 

t.test(SH_da$POXC_June, SH_da2$POXC_Sept, paired = TRUE, alternative = "two.sided") 
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ANOVA 
 
library(agricolae) 
model <- aov(POXC_Sept ~ Texture, data= SH_da)  

summary(model) 

lsd=LSD.test(model, c("Texture"), group=T) 

lsd  

 

Random Forest  

#load packages 

library(randomForestSRC) 

library(ggRandomForests) 

 

#set seed & make random forest 

set.seed(220603) 

POXC_S_RF <- rfsrc(POXC_Sept~ Region+ pH + sand + clay + silt +  

DrainageClass+ OperationType_General + PastureYears + PreviousLandUse_cat + 

Legume_Sept+ 

                 Fertilizer_thisYear + Fertilizer + Fertilizer_freq + Manure +  

                 Manure_freq + Lime + Overwinter  + HayFreq + DaysSinceGrazing_Sept + 

                 StockingRate_ha + StockingDensity_ha + 

SeasonStockingDensity_ha + NumberRotations +  

                 TimeInPaddock + RestPeriod + ResidualPastureHeight_cm,  

               data = Rotation, ntree = 5000, 

               na.action = "na.impute", nimpute = 1, 

               importance = "anti", 

               forest=TRUE) 

 

#retrieve random forest results 

POXC_S_RF 

#plot random forest results 
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plot(POXC_S_RF) 

plot(gg_vimp(POXC_S_RF)) 

 

#minimal depth analysis 

var.select(object = POXC_S_RF, conservative = "low") 

 

#plot partial effects 

plot.variable(POXC_S_RF, xvar.names = "PastureYears", partial = TRUE, 

              xlab="Pasture Age(years)", ylab="Predicted POXC (Sept)") 

 

 

 

 

 

 




