BIODIVERSITY & LIVESTOCK WELLBEING

Juan Alvez (PhD) UVM Extension, Center for Sustainable Ag. Pasture Program

Project Team (alphabetical):

Jimmy Aruzamen
Research Technician (DMV)

Dr. Juan Alvez
Pasture Technical Coord.
Center for Sustainable Agriculture, UVM Extension

Melissa Bainbridge
Ph.D. Candidate
Dept. of Animal & Veterinary Sciences

Dr. John Barlow
Assistant Professor
Dept. of Animal & Veterinary Sciences

Guy ChoiniereChoiniere Family Farm

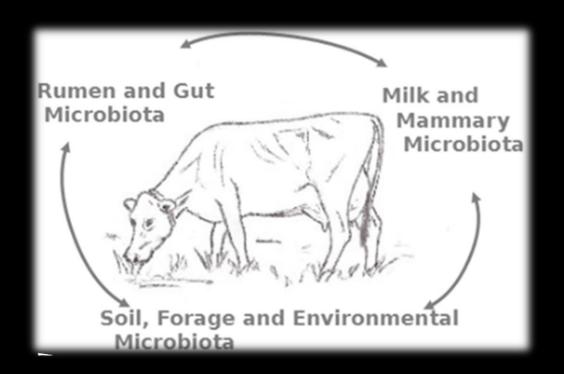
Dr. Jana Kraft
Assistant Professor
Dept. of Animal & Veterinary Sciences

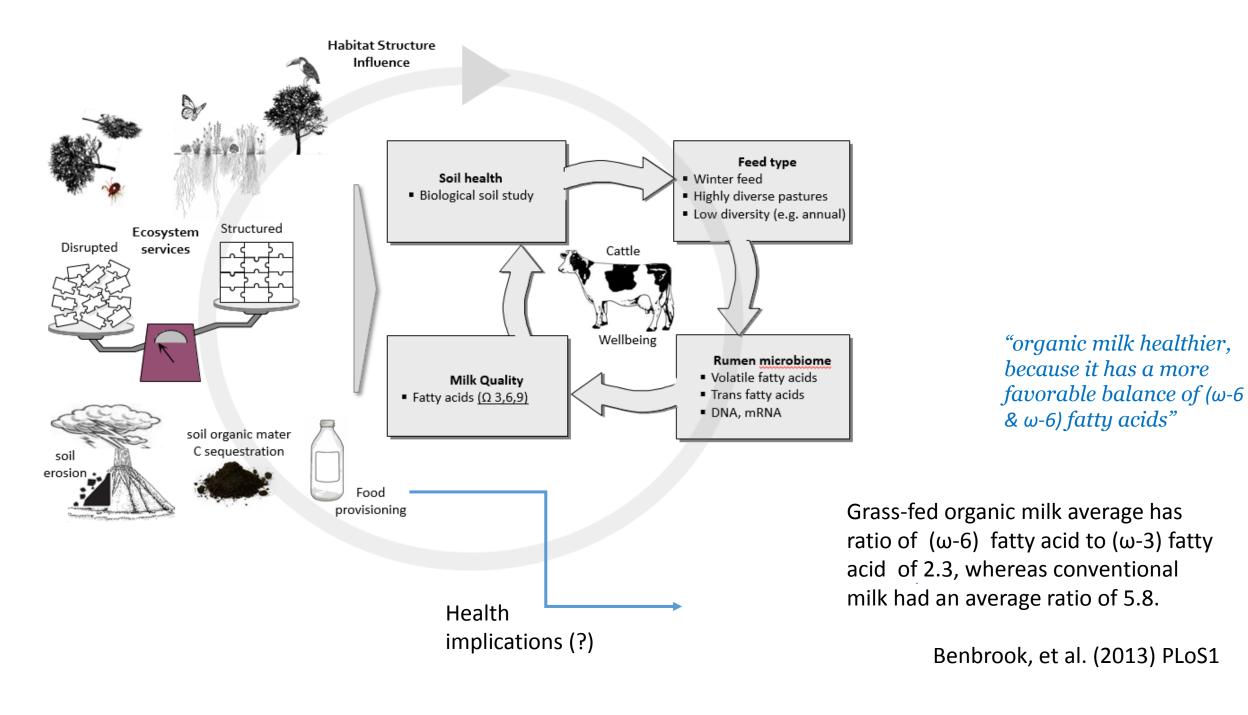
Emily Golf Student Dept. of Animal & Veterinary Sciences

Dr. Joe Roman
Research Assistant Professor
Rubenstein School of Env. & Natural Resources

UVM REACH
Office of the Vice President for
Research

Robert Mugabe
Ph.D. Candidate
Dept. of Animal & Veterinary Sciences

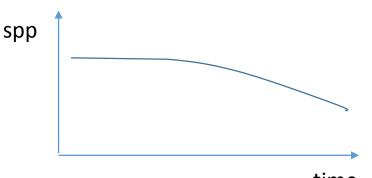



Center for Sustainable Agriculture

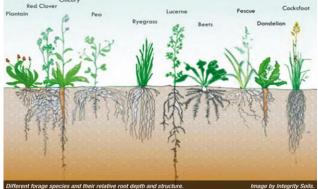
Road Map

- Rationale
 - Biodiversity crisis
 - Soils
 - Forages
 - Animals
- Highgate Study

Reasons for Studying Biodiversity Effects...


- ✓ 1. We are losing it! What is the value of it?
 - Massive extinctions (Primm et al. 1995)
 - Benefits of conserving biodiversity 100:1 (Balmford et al. 2002)
 - Dilution Effect (Bonds et all. 2012 PLOS1; Levi et. al 2012)

✓ 2. Forage diversity

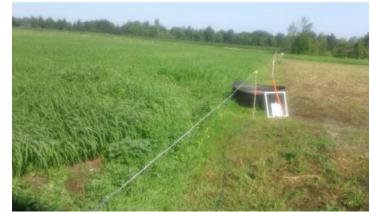

- Higher productivity & C storage (Tillman, et al. 2001)
- Monotony: animals stop eating! (acidosis, amonia)
- Tanins (BFT 13x less Ecoli) vs. alkaloids (TF, Alf. Brome)

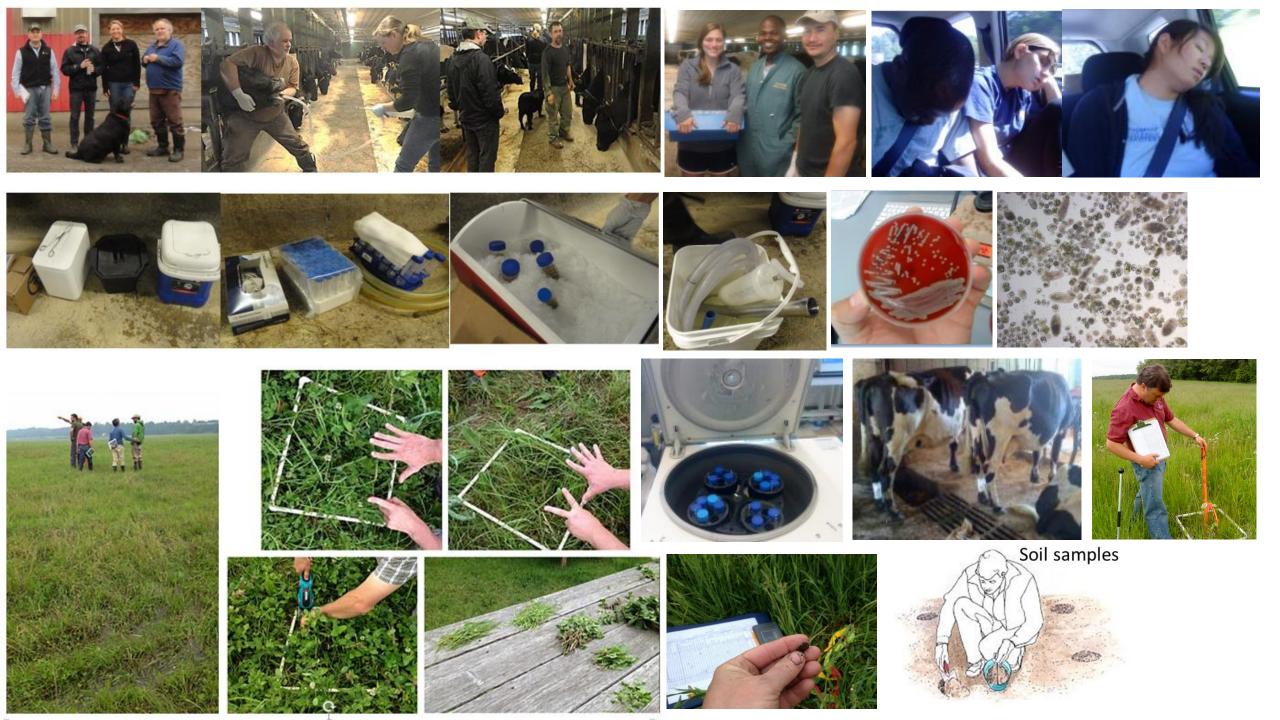
√ 3. Soil health

- Trophobiosis (Chaboussou)
- Ethilene/O2 Fe3 -> Fe2 (Widdowson)
- Biocenosis

Scope of the study: Samples and Analyses

- Hay and TMR: for quality analysis, while cows were in barn
- o **Forages**: (pre & post grazing, quality, botanical composition, pasture monitoring, 3 main spp);
- o Grazing behavior and activity: monitoring systems with electronic data loggers
- Bacteriological: (nose, hock, udder skin swabs)
- Rumen fluid: (pH, fatty acids, dna to determine microbiome)
- Feces: weekly, individual samples.
- Milk (pH, to check fatty acids from diet, other).
- Soil: one sample /paddock where cows grazed. Earthfort (OR) & Woodsend lab (ME).


3 Diets


DIVERSE NE COOL SEASON PASTURES (2x, 4 wk grazings)

Biological Analysis

Report prepared for:

UVM Center for Sustainable Ag

Juan Alvez

23 Mansfield Ave

Burlington, VT 05401 USA

Report Sent: 6/5/2014

Sample#: 01-118763 | Submission:01-023883

Unique ID: Cool

Plant: Pasture

Invoice Number: 11197

For interpretation of this report please contact:

Earthfort Labs

info@earthfort.com

(541) 257-2612

		IIIVOICE IV	umber. 11197						
jalvez@uvm.ed	<u>u</u>		Consult	ing fees may apply					
Organism Biomass Data	Dry Weight	Active Bacteria (µg/g)	Total Bacteria (µg/g)	Active Fungi (μg/g)	Total Fungi (µg/g)	Hyphal Diameter (µm)	Classified by type a	# per gram or # per and identified to gen no nematodes ident	us.
Results	0.740	73.8	785	7.85	427	2.85	Bacterial Feeders	0.72	
Comments	In Good Range	Below range	Above range	Below range	In range		Cephalobus Eucephalobus		0.24
Expected Low	0.45	75	300	75	300		Prismatolaimus		0.03
Range High	0.85	150	600	150	600		Rhabditidae		0.19
	P Flagellates	rotozoa (Number Amoebae	s/g) Ciliates	Total Nematodes #/g	_	olonization (%) ECTO	Fungal/Root Feeders Aphelenchus Root Feeders Heterodora	0.03 0.21 Cyst nematode	0.03
Results	18733	62243	374	0.96	Not Ordered	Not Ordered	Longidorus Paratylenchus	Needle nematode Pin nematode	0.03
Comments	Good	Good	High	Low			Paratylenchus	rin nematode	0.13
Expected Low	10000	10000	0	10	10%	10%			
Range High	100000	100000	200	20	50%	50%			
Organism Biomass Ratios	Total Fungi to Tot.Bacteria	Active to Total Fungi	Active to Total Bacteria	Active Fungi to Act.Bacteria	Nitrogen Cycling Potential (lbs/ad	:)			
Results	0.54	0.02	0.09	0.11	100-150				
Comments	Low	Low	Low	Low					
Expected Low	1	0.25	0.25	1					
Range High	2	0.95	0.95	2					

UVM Center for Sustainable Ag

Juan Alvez

23 Mansfield Ave

Burlington, VT 05401 USA

Report Sent: 6/5/2014 Sample#: 01-118763 | S

Unique ID: Cool

Plant: Pasture

Invoice Number: 11197 Sample Received: 5/29/2014

<u>jalvez@uvm.edu</u>

Within normal moisture levels.

Dry Weight:

Active Bacteria: Bacterial activity low, foods may be required.

Total Bacteria: Excellent bacterial biomass.

Active Fungi: Fungal activity low, foods may be required.

Total Fungi: Good fungal biomass.

Hyphal Diameter: Good balance of fungi.

Protozoa: Nutrients are being cycled and made available to plants in good rates.

Total Nematodes: Low numbers, low diversity, root feeders present.

Mycorrhizal Col.:

TF/TB: Too bacterial for some pasture grasses

AF/TF: Low fungal activity, foods may be required.

AB/TB: Low bacterial activity, foods may be required.

AF/AB: Bacterial dominated, becoming more bacterial.

Interpretation Comments:

Actinobacteria Biomass = 9.29 ug/g

Farily good fungal diversity; hyphal diameter 1.5 to 5um.

Biological Analysis

Report prepared for:

UVM Center for Sustainable Ag

Juan Alvez

23 Mansfield Ave

ialvez@uvm.edu

Burlington, VT 05401 USA

Report Sent: 6/5/2014

Sample#: 01-118764 | Submission:01-023883

Unique ID: Mill

Plant: Pasture

Invoice Number: 11197

Sample Received: 5/29/2014

For interpretation of this report please contact:

Earthfort Labs

info@earthfort.com

(541) 257-2612

Consulting fees may apply

Organism Biomass Data	Dry Weight	Active Bacteria (µg/g)	Total Bacteria (µg/g)	Active Fungi (µg/g)	Total Fungi (µg/g)	Hyphal Diameter (µm)
Results	0.770	68.7	597	10.4	465	2.9
Comments	In Good Range	Below range	In range	Below range	In range	
Expected Low	0.45	75	300	75	300	
Range High	0.85	150	600	150	600	

_							
							1
	Pi	rotozoa (Number	rs/g)	Total	Mycorrhizal Co	olonization (%)	
	Flagellates	Amoebae	Ciliates	Nematodes #/g	ENDO	ECTO	1
							lFi
							1"
Results	5981	36007	359	4.22	Not Ordered	Not Ordered	L
0		01	100-1				F
Comments	Low	Good	High	Low			,
Expected Low	10000	10000	0	10	10%	10%	ш
Dango							ı
Range High	100000	100000	200	20	50%	50%	R
				<u>'</u>			1"
Organism	Total Fungi to	Active to Total	Active to Total	Active Fungi to	Nitrogen		l
Biomass Ratios	Tot.Bacteria	Fungi	Bacteria	Act.Bacteria	Cycling		
Eleliace i tatioo	. Ct. Daotoria	. arigi	Dastoria		Detential (lbs/ss		

Comme	สแธ	LOW	Good	nigii	LOW	1 1	
Expected	Low	10000	10000	0	10	10%	10%
Range	High	100000	100000	200	20	50%	50%
Organis Biomass R		_	Active to Total Fungi	Active to Total Bacteria	Active Fungi to Act.Bacteria	Nitrogen Cycling Potential (lbs/ac))
Result	ts	0.78	0.02	0.12	0.15	100-150	
Comme	nts	Low	Low	Low	Low		
Expected	Low	1	0.25	0.25	1		
Range	High	2	0.95	0.95	2		

Nematode detail (# per gram or # per mL) Classified by type and identified to genus.

(If section is blank, no nematodes identified.)

Bacterial Feeders 3.62 Cephalobus 1.14 0.40 Diploscapter Eucephalobus 0.20 0.07 Monhystrella Panagrolaimus 0.13 Rhabditidae 1.61 0.07 Zeldia Fungal Feeders 0.07 Discolaimus 0.07 Fungal/Root Feeders Aphelenchus 0.07 Ditylenchus Stem & Bulb nematode 0.07

Filenchus 0.07 Root Feeders 0.33 0.20 Paratylenchus Pin nematode Pratylenchus Lesion nematode 0.07 0.07 Xiphinema Dagger nematode

UVM Center for Sustainable Ag

Juan Alvez

Dry Weight:

23 Mansfield Ave

Burlington, VT 05401 USA

Invoice Number: 11197

Report Sent: 6/5/2014

Unique ID: Mill

Sample Received: 5/29/2014

Sample#: 01-118764

Plant: Pasture

ialvez@uvm.edu

Within normal moisture levels

Bacterial activity low, foods may be required. Active Bacteria:

Total Bacteria: Good bacterial biomass.

Active Funai: Fungal activity low, foods may be required.

Total Fungi: Good fungal biomass.

Hyphal Diameter: Good balance of fungi.

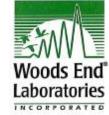
Protozoa: Lacking species diversity.

Total Nematodes: Low numbers, good diversity, root feeders present.

Mycorrhizal Col.:

TF/TB: Too bacterial for some pasture grasses

AF/TF: Low fungal activity, foods may be required.


AB/TB: Low bacterial activity, foods may be required.

AF/AB: Bacterial dominated, becoming more bacterial.

Interpretation Comments:

Actinobacteria Biomass = 8.93 ug/g

Farily good fungal diversity; hyphal diameter 1.5 to 5.5um.

Innovative Soil Testing since 1975

290 Belgrade Road P.O. Box 297 Mount Vernon, ME 04352

207 293 2457 for more information: lab@woodsend.org

SOIL HEALTH TOOL PREMIUM TEST

Performed with USDA-ARS H3A Extraction Method

For.

Juan Alvez UVM - Extension 23 Mansfield Ave Burlington, VT

05452

Acct No: 2849 Lab ID: 9136.0 Soil: M 1-2 Sample:

Sample Rece Report

Test Interpretations

Soil Health Score

(updated 10-15-2014)

Soluble C:N Ratio

Solvita CO2-Burst ppm

Microbially Active

Carbon- "MAC"

Micro Aggregate

Stability

Total Soluble N

■ Nitrate-N fraction

■ Mg++ ■ Na+

Alter

Soluble Nitrogen lb/a

Extractable Cations

Crop Inter

eived:	11/3/2014	QAQC:
Date:	11/24/2014	COB
nded:	Hay-Unimproved	Systematics

26.2

8.5

30.3

12%

9%

Microbially Available

Rating

ML

VL

Nitrogen Sources (ppm)

■ Total

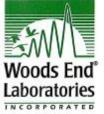
Respired

Avail-N

■ Nitrate

m Amino

Tested Factors	Symbol	UNITS	Level Found	Rating
Total Soluble N	Grg N + NOS-N +	ppm §	29.8	ML
Nitrate-N fraction	NO ₃ -N	ppm	10.6	M
Water Extract Org. C	Corp	C-ppm	252	M
SLAN Amino-N	NH ₂ -N	N-ppm	198	М
Phosphate (P')	Р	lb/a	107	VH
Potassium	K+	lb/a	384	H
Calcium	Ca++	lb/a	1724	MH
Iron	Fe++	ppm	80	ML
Aluminum	Al 3+	ppm	180	L
Availability Factors		/1=0A	-0.000	
Nitrogen (N-min+Avail)		lb/a	67	M
Phosphorus P2O5		lb/a	247	VH
Potassium K ₂ O		lb/a	461	Н
Indicator Factors				
P-Saturation		P/(AI + Fe)	20.7	н
Fe+Al (acidity indicate	ity indicator) ppm		260	L
Calcium Saturation		Ca/(Fe+Al)	3.32	VH


Calcium Saturation	1	Ca/(Fe+Ai)	3.32	VH
Nutrient Calculat	ions, Value	as \$/a	cre a	vailable	
N + P ₂ O ₅ + K ₂ O	/ acre	\$	317	and the same	Compared to
Nutrient Requirer	ments	Nit	rogen	Phosphate	Potash
Hay-Unimproved	lbs/acre	п	one	none	none
(sesumed total nutrient rec	quirement)	1	50	25	25
Limestone Requirem	ent Ibs/acre	N.	ione		
	A COMPANY OF THE PARTY OF THE P	CONTRACTOR OF THE PARTY.	M038		

USDA	Cover	Crop Recommendations	
		>Based on Soil Health Score of: 2	26.2

Fall Cover Crop Recommended

Optional Tests (included with I	Premiun Soil Test)					
Soil Organic Matter	LOI%	5.1	MH	pH in Water	6.98	M
Basal CO ₂ -C	ppm	30.38	H	Magnesium (lb/a)	192	OK
Effective CEC**	cmol/kg	7.7	1	Sodium lb/a	33	OK

Ratings: VL=Very Low, L=Low, M=Moderate, MH=Medium High, H=High, VH=Very High USDA Climate Zone Used for this report. 4b.

Innovative Soil Testing since 1975

290 Belgrade Road P.O. Box 297 Mount Vernon, ME 04352 207 293 2457 for more information: lab@woodsend.org

SOIL HEALTH TOOL PREMIUM TEST

Performed with USDA-ARS H3A Extraction Method

For:

Juan Alvez UVM - Extension 23 Mansfield Ave

05452 Burlington, VT

Lab ID: 9136.1 Acct No: 2849 Sample: Soil: Bn Side R

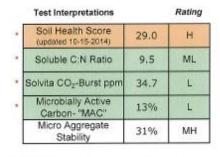
> Sample Received: 11/3/2014 Report Date: 11/24/2014

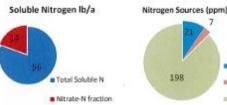
QAQC: Crop Intended: Hay-Unimproved

	Tested Factors	Symbol	UNITS	Level Found	Rating
	Total Soluble N	Org.N + NCO-N +	ppm §	28.2	ML
	Nitrate-N fraction	NO ₃ -N	ppm	6.8	L
	Water Extract Org. C	C_{org}	C-ppm	268	M
,	SLAN Amino-N	NH ₂ -N	N-ppm	198	М
	Phosphate (P')	Р	lb/a	74	Н
	Potassium	K+	lb/a	215	MH
	Calcium	Ca++	lb/a	841	L
	Iron	Fe++	ppm	90	ML
١	Aluminum	Al 3+	ppm	244	M
	Availability Factors			0.000	
	Nitrogen (N-min+Avail)		lb/a	64	M
	Phosphorus P2O5		lb/a	169	H
	Potassium K ₂ O		lb/a	259	MH
	Indicator Factors				
	P-Saturation		P/(Al + Fe)	11.0	H
	Fe+Al (acidity indicate	or)	ppm	334	L
	Calcium Saturation		Ca/(Fe+Al)	1.26	MH

Nutrient Calculations, Value	as \$/acre a	vailable	
N + P ₂ O ₅ + K ₂ O / acre	\$ 204		1 - 100 entra 1000
Nutrient Requirements	Nitrogen	Phosphate	Potash
Hay-Unimproved lbs/acre	none	none	none
(assumed total nutrient requirement)	50	25	25
Limestone Requirement Ibs/acre	None		
USDA Cover Crop Recomme	endations		-1-12
>Based on Soil I	Health Score of	29.0	

Mix Recommended:

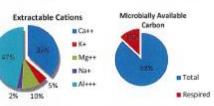

Fall Cover Crop Recommended


Optional Tests (included with Premiun Soil Test)						
Soil Organic Matter	LOI %	5.1	MH	pH in Water		
Basal CO ₂ -C	ppm	29.11	MH	Magnesium (lb/a)		
Effective CEC**	cmol/kg	5.8		Sodium lb/a	a	

USDA Climate Zone Used for this report: 4b

Ratings: VL=Very Low, L=Low, M=Moderate, MH=Medium High, H=High, VH=Very High

* Soil Health Test Traits All nutrients in Soil Health Tool Extract (H3A), **Effective CEC = H3A extr. Al*Ca+Mg+K+Ne; optional SOM by LOI @360° C Methods; Soil Health Tool, USDA-ARS Temple TX; Soil Test Procedures for the NE USA Bulletin #493, Univ of DE; VT Aluminum Index



Other

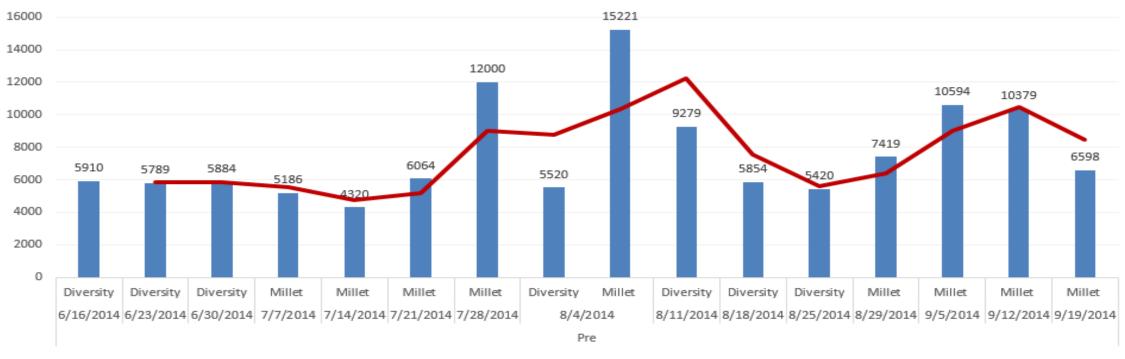
Avail-N

III Amino

6.75

134

62

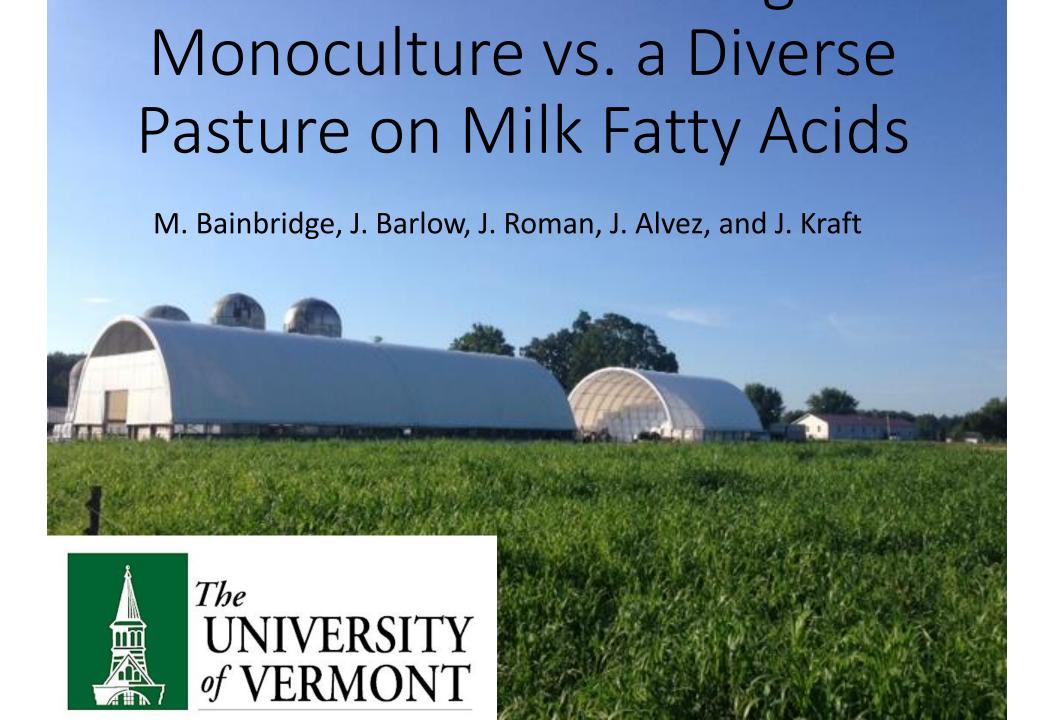

ML

OK

^{*} Soil Health Test Traits All nutrients in Soil Health Tool Extract (H3A), "Effective CEC = H3A extr. Al+Ca+Mg+K+Na; optional SOM by LOI @360°C Methods: Soil Health Tool, USDA-ARS Temple TX; Soil Test Procedures for the NE USA Bulletin #493, Univ of DE; VT Aluminum Index

Results: Forages

Millet DM (ave): 8,531 Kg/ha (7,618 lbs/A)


Diverse DM (ave): 6,227 Kg/ha (5,561 lbs/A)

Botanical Composition					
Grasses (67.3%)	Forbs (10.8%)	Legumes (14.8%)			
Orchard grass, Timothy, Ryegrass, June grass, Meadow	Platain, Dandelion, Burdock,	White clover, Red clover,			
fescue, Brome grass, Bent grass, Quackgrass, Kentucky	Milkweed, Bull Thistle	Common Vetch.			
Blue grass and Millet (treatment monoculture)					

Pasture and soil biology between Diverse and Millet

- Excellent overall pasture forage production and management
- Soils were covered (D, p<0.01)
- Adequate manure and trampling (D, p<0.01)
- Adequate moisture distribution (D, p<0.01)
- Grazed at mature stage (D, p=0.05)
- More earthworms and insects (D, but n/s)

Diverse NE cool season forage soils were not different than Millet soils

Media report health benefits of milk fatty acids

The Washington Post

Scientists have found another reason we should be drinking more whole milk

By Peter Whoriskey October 29

The New Hork Times

December 9, 2013

More Helpful Fatty Acids Found in Organic Milk

By KENNETH CHANG

Whole milk from organic dairies contains far more of some of the fatty acids that contribute to a healthy heart than conventional milk, scientists are reporting.

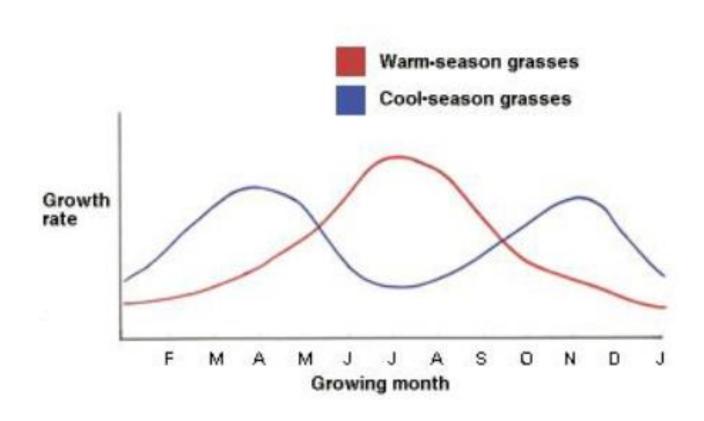
THE HUFFINGTON POST

Got (Organic Whole) Milk? New Study Says It's Healthier

Posted: 12/18/2013 12:55 pm EST Updated: 02/17/2014 5:59 am EST

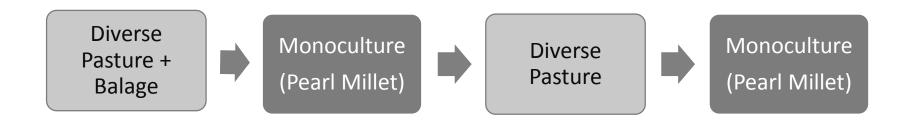
But a <u>new study</u>, led by Washington State University researcher Dr. Charles Benbrook, examined nearly 400 samples of organic and conventional milk over an 18-month period, and found that organic milk contained significantly more healthy omega-3 fatty acids than conventional milk. The researchers also found that whole milk was even higher in omega-3 fatty acids than low fat or fat free versions.

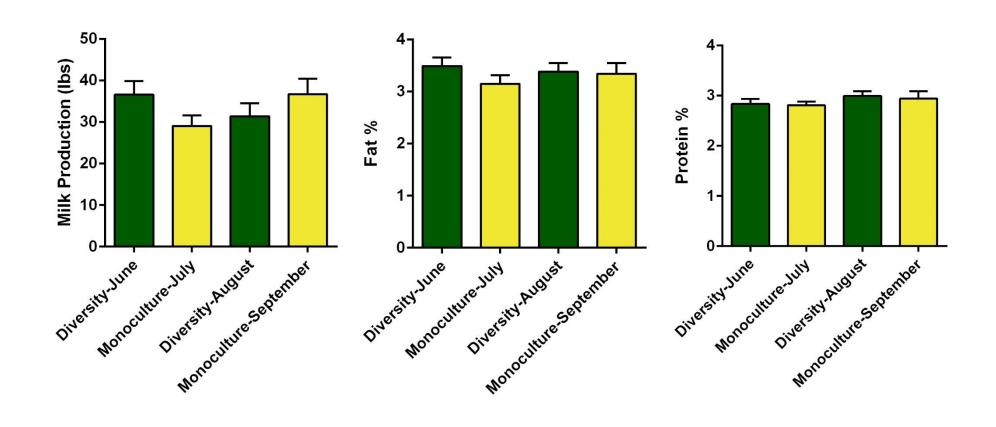
High omega-3 and CLA contents are advertised on products from grass-fed cows

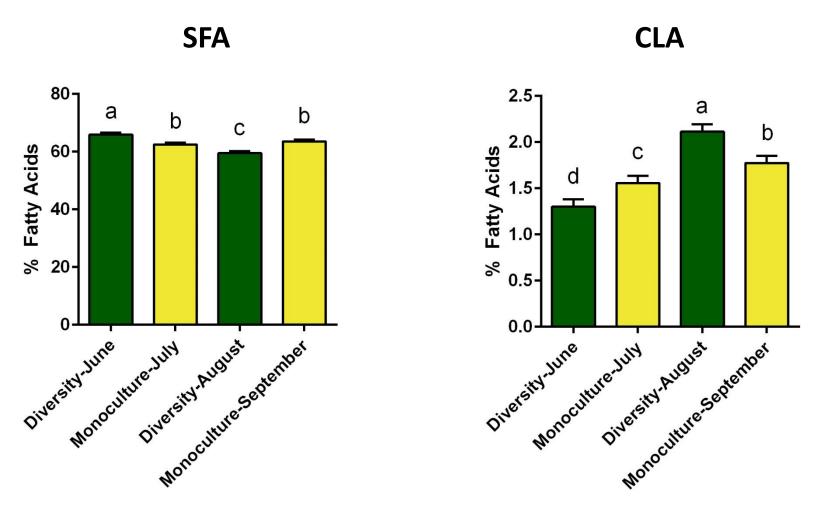

Desired milk fat composition changes

- Increase Polyunsaturated Fatty Acids (PUFA)
 - Particularly the omega-3 fatty acid α-linolenic acid (ALA)
- Increase Conjugated linoleic acids (CLA)
- Decrease Saturated fatty acids (SFA)

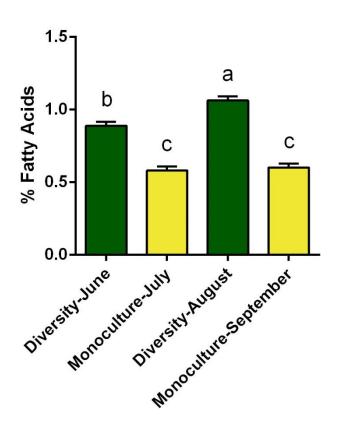
Ruminants must ingest PUFA for CLA and omega-3 fatty acids to be secreted in milk (CLA are derived from 18:2 and 18:3)


Grazing warm season annuals could produce more forage during hot months


Study Design



There is no difference in milk production, fat %, or protein % between the two pasture types


CLA are highest in milk when cows graze exclusively on a diverse pasture

Means without a common letter differ significantly.

Omega-3 fatty acids in milk are higher when cows graze a diverse pasture vs. a monoculture of pearl millet

Omega-3 fatty acids

Omega-6/Omega-3 ratio

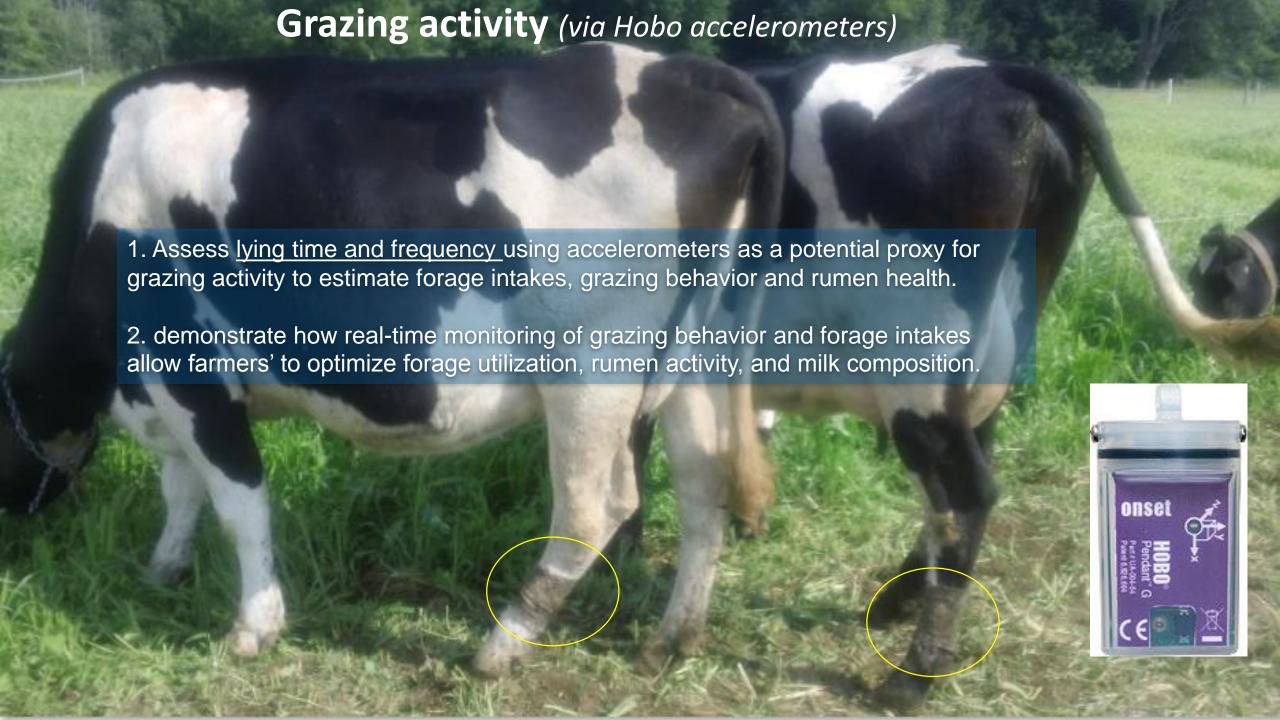
Means without a common letter differ significantly.

Take home message

- Grazing a pearl millet monoculture vs. diverse pasture had no effect on milk production, or milk fat and protein percentages.
- The content of omega-3 fatty acids and CLA was highest when grazing only a diverse pasture (no supplemental balage).
- Future research is looking into the rumen microbes and their effects on the fatty acid profile of milk.

Questions?

Activity monitoring for pasture-based dairy cattle


- Optimizing lying time is important to ensure
 - Good welfare and cow comfort
 - Good production
- Optimizing rumination time is important to ensure
 - Rumen health
 - Good production

Visual observation is the "gold standard"

Time consuming
Labor intensive

Continuous electronic monitoring systems offer alternatives

Activity and rumination monitoring

Wireless sensor and radiofrequency devices on identification tags

- Activity monitors for animal movement/behavior

Accelerometers

- Cow comfort assessments influence of housing
- Estrus / heat detection
- Health status metritis detection; mastitis detection before clinical signs

- Rumination monitors

Microphone and vibration recording

Some commercially available systems

 Hobo Pendant G Accelerometers

(research applications)

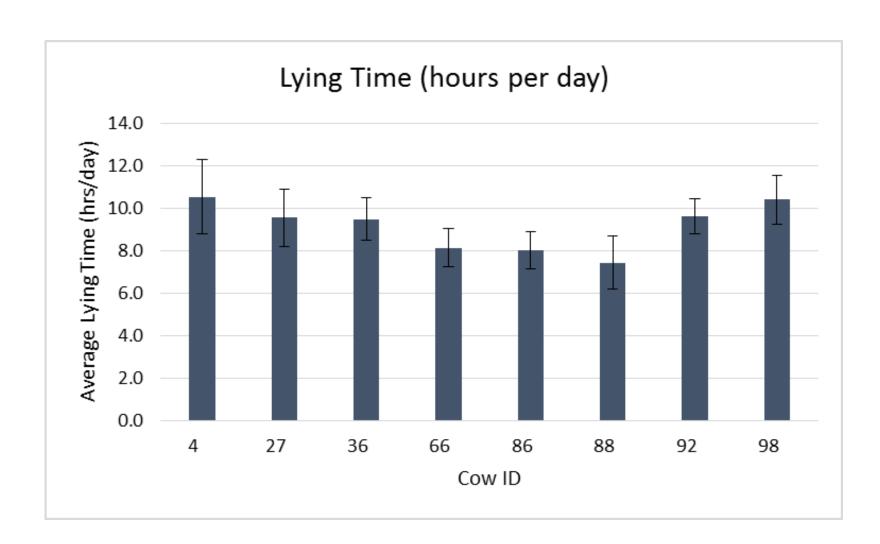
Heatime (SCR) Accelerometers and sound recorders (commercially available)

Check with any major AI stud service or milking systems company

Source - http://extension.psu.edu/animals/dairy/news/2015/choosing-an-activity-system-for-your-dairy

Methods:

 8 cows fitted with Hobo data loggers for 5 x 14 day periods from June to September while grazing 2 different pasture types


Results:

Average lying time 9.2 hrs per day

No effect of pasture type on lying time

Differences among cows in lying time

Higher producing cows had longer average lying times

Discussion or Questions

Acknowledgements:

NESARE Grant
UVM REACH Grant